
. Supplementary File .

SCIENCE CHINA
Information Sciences

Driving Android Apps to Trigger Target API
Invocations Based on Activity and GUI Filtering

Hongzhou YUE1 , Yuqing ZHANG1,2*, Wenjie WANG2,3 & Qixu LIU2,3

1State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China;
2National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, Beijing 101408, China;

3State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

Appendix A Introduction of A3E and Targeted Exploration

A3E is an automatic Android GUI exploration tool which uses two GUI exploration strategies—targeted exploration and

depth-first exploration [1]. Depth-first exploration regards the entry point activities of an app as the starting points of

the exploration and the exploration is guided by a depth-first traversal algorithm. Targeted exploration makes full use of

the exported activities and can start the exported activities directly. Through the experiments, the paper [1] verified that

targeted exploration is more efficient than depth-first exploration. So we mainly concern about the targeted exploration of

A3E.

Figure B1 shows the workflow of A3E’s targeted exploration. The input of A3E is app’s bytecode. A3E uses SCanDroid [2]

to construct SATG (Static Activity Transition Graph) which reflects the transition relationships between the activities. Then

A3E uses the Automatic Explorer to explore the app through the guidance of SATG.

Algorithm A1 A3E’s targeted exploration

Input: SATG S = (A,E);

1: Procedure TExploration(S)

2: for each node ai in A that is entry activity do

3: switch to activity ai;

4: currentA← ai;

5: for each edge ai → aj in E do

6: if aj is an exported activity then

7: switch to activity aj ;

8: currentA← aj ;

9: S′ ← get subgraph of S from aj ;

10: TExploration(S′);

11: end if

12: end for

13: Ga ← extract GUI elements of currentA;

14: for each gi in Ga do

15: exercise gi;

16: if the current activity jumps to a not-yet-explored activity ak then

17: S′ ← get subgraph of S from ak;

18: currentA← ak;

19: TExploration(S′);

20: end if

21: end for

22: end for

*Corresponding author (email: zhangyq@ucas.ac.cn)



2 Yue H Z, et al. Sci China Inf Sci

SCanDroid

App Bytecode

Static Taint 

Analysis

Static Activity 

Transition Graph

Automatic 

Explorer

Exploration 

Results

Target 

Exploration

App running on phone Debugging Bridge

3

1

4

2
6

t

7

5

8

Figure B1 Overview of targeted exploration in A3E

Button1 Button2

Button3 Button4

Button5 Button6

Activity2

 Activity1

Activity a4

Button7 Button8

Activity3

Number:

Content:

unLock doOther

startA3 sendSMS

Target API

 t1

 t2

 b9  b10

 b11  b12

 a2  a4

 a1

 a3

 Launcher

 b5  b6

 b1

 b3

 b7

 b2

 b4

 b8

Figure B2 GUI architecture of an app. The red color texts

are used to identify each element, which are not part of the

app.

Algorithm A1 is the exploration algorithm of A3E’s targeted exploration. The input of the algorithm is SATG S = (A,E).

For each node ai in A that is entry activity, A3E finds each edge ai → aj in E. If aj is an exported activity, it means that

this activity can be independently called by A3E. Then A3E gets the subgraph S′ of S from the starting node aj . S′ is

used as input of “TExploration” which will be started as a new procedure. Subsequently, Automatic Explorer will extract

and systematically exercise all the GUI elements in the current screen. If the current activity switches to a not-yet-explored

activity ak, A3E gets the subgraph S′ of S from the starting node ak. Then S′ will be used as input of “TExploration”

which will be started as a new procedure.

Appendix B Problem and Solution

Appendix B.1 Problem of A3E

Now let us go back to see what we need—we need a GUI exploration tool that can automatically drive a running app to

trigger the target API invocations in it. Obviously A3E can help us accomplish this task, because A3E can systematically

explore an app to exercise any activity and method it can reach. But the problem is—if we just want A3E to trigger some

API invocations that we are interested in, is A3E efficient?

We can illustrate this problem by a simple example shown in Figure B2. Figure B2 shows the structure of an app which

has four activities—a1, a2, a3 and a4. Suppose that we only care about the target API invocation “sendTextMessage”,

which only exists in activity a4. Activity a4 shows a screen to send text message. After input number in editText t1 and

content in editText t2 and click button b9 to unlock the function of sending message, a click of button b12 will trigger the

target API invocation “sendTextMessage” and send out a text message. Activity a1 is the launcher activity of this app,

which is composed of four buttons. Click of buttons b1, b2, b3 of a1 will start activities a2, a4, a3 respectively.

If we use A3E to explore this app, it will exercise every activity and every GUI element in each activity. Namely it

will exercise activities a1 ∼ a4 and GUI elements b1 ∼ b12, t1, t2. However, because we only care about the target API

invocations. So we only need A3E to exercise activities a1, a4 and GUI elements b2, b9, b12, t1, t2, not the others. From

this point of view, we think that A3E’s exploration strategy is inefficient.

Appendix B.2 Our Solution

For convenience of description, we give the following definitions:

Definition 1. For an Android app to be tested, symbol A+ is defined as the set of activities that need to be exercised in

this app and A− as the set of activities that need not. Set A is defined as all the activities in this app. Obviously, we have

A = A+ +A−.

Definition 2. For an activity a ∈ A+, symbol G+
a is defined as the set of GUI elements that need to be exercised and

G−
a as the set of GUI elements that need not. Set Ga is defined as all the GUI elements in activity a. Obviously, we have

Ga = G+
a +G−

a .

According to Definition 1 and 2, for the example shown in Figure B2, we can get A+ = {a1, a4}, A− = {a2, a3},
G+

a1 = {b2}, G−
a1 = {b1, b3, b4}, G+

a4 = {t1, t2, b9, b12}, G−
a4 = {b10, b11}.

As a matter of fact, to improve A3E’s efficiency in triggering target API invocations, measures should be taken to

construct A+ and A− of an app. Similarly, for each activity a ∈ A+, measures should be taken to construct G+
a and G−

a of

activity a. In the exploration period of A3E, A3E should only exercise activities in A+ and restrain from exercising those

in A−. Similarly, for each activity a ∈ A+, A3E should only exercise activities in G+
a and restrain from exercising those in

G−
a .

Therefore, two static analysis methods—Activity Filtering and GUI Filtering are proposed in this paper to improve

A3E’s efficiency in triggering target API invocations. Activity Filtering is used to construct A+ and A− of an app, while

GUI Filtering is used to construct G+
a and G−

a for each a ∈ A+. We made several improvements on A3E and integrated

these two static analysis methods into the static analysis module of A3E, and proposed a new Android GUI exploration



Yue H Z, et al. Sci China Inf Sci 3

tool—OA3E (Oriented A3E). Compared with A3E, OA3E’s advantage is that it can focus on exercising the activities and

GUI elements that need to be exercised and avoid wasting time on exercising the items that cannot lead to the target

API invocations. It can greatly improve the efficiency of A3E’s exploration process, which will be verified in Section

Appendix F. The implementation details of Activity Filtering and GUI Filtering will be introduced in Section Appendix C

and Appendix D.

Appendix C Activity Filtering

Now we will discuss how OA3E implements Activity Filtering to construct the activities set A+ and A− of an app.

Appendix C.1 Main Idea

For convenience of description, we assume that the code fragments shown in Listing 1 and 2 are the Java code and the

corresponding layout XML code of Activity a4 in Figure B2 respectively. Besides, we give Definition 3 and 4:

Listing 1 Code fragment of Activity a4

1 EditText number , content ;

2 Button unLock , doOther , send ;

3 boolean lock ;

4 pub l i c void onCreate ( Bundle savedIns tanceState ) {
5 super . onCreate ( savedIns tanceState ) ;

6 setContentView (R. layout .main) ;

7 lock = true ;

8 number = ( EditText ) findViewById (R. id . number) ; // t1

9 content = ( EditText ) findViewById (R. id . content) ; // t2

10 unLock = (Button ) findViewById (R. id . unLock) ; // b9

11 doOther = (Button ) findViewById (R. id . doOther) ; // b10

12 send = (Button ) findViewById (R. id . send) ; // b12

13 unLock . s e tOnCl i ckL i s t ener (new OnCl ickListener ( ) {
14 pub l i c void onClick (View arg0 ) { // h1

15 lock = f a l s e ;

16 }}) ;

17 doOther . s e tOnCl i ckL i s t ener (new OnCl ickListener ( ) {
18 pub l i c void onClick (View arg0 ) { // h2

19 /∗ do Other th ing ∗/
20 }}) ;

21 send . s e tOnCl i ckL i s t ener (new OnCl ickListener ( ) {
22 pub l i c void onClick (View arg0 ) { // h3

23 i f ( ! lock) {
24 PendingIntent p i = PendingIntent . g e tAc t i v i t y ( ActivityA4 . th i s , 0 ,

new Intent ( ) , 0) ;

25 SmsManager . ge tDe fau l t ( ) . sendTextMessage (number . getText ( ) . t oS t r ing ( )

, nu l l , content . getText ( ) . t oS t r ing ( ) , pi , nu l l ) ; // i 1

26 }}}) ;

27 }
28 pub l i c void c l i ckHand l e r (View source ) { //h4 , binded handler o f b11

29 ComponentName comp = new ComponentName( ActivityA4 . th i s , ActivityA3 . c l a s s ) ;

30 Intent i n t en t = new Intent ( ) ;

31 i n t en t . setComponent (comp) ;

32 s t a r tAc t i v i t y ( i n t en t ) ; // j1

33 }

Listing 2 Layout XML fragment of Activity a4. The ellipses signify code omitted for the sake of clarity.

1 <EditText android : id=”@+id/number” . . ./>

2 <EditText android : id=”@+id/content” . . ./>

3 <Button android : id=”@+id/unLock” android : t ext=”unLock” . . ./>

4 <Button android : id=”@+id/doOther” android : t ext=”doOther” . . ./>

5 <Button android : onCl ick=”clickHandler” android : t ext=”startA3” . . ./>

6 <Button android : id=”@+id/send” android : t ext=”sendSMS” . . ./>

Definition 3. For an Android app to be tested, symbol C+ is defined as the set of components that need to be exercised

in this app and C− as the set of components that need not. Set C is defined as all the components in this app. Obviously,

we have C = C+ + C−.

The component mentioned in Definition 3 refers to one of the three components of Android—activity, service, and broad-

cast receiver [3]. They can be started by some specific API invocations. For instance, an activity can be started by invoking

method “startActivity” or “startActivityForResult”. We call this type of invocation “component start invocation”. As

activity is one of the three components, so we can get A ⊆ C. The reason why we have to consider the three types of



4 Yue H Z, et al. Sci China Inf Sci

components is that components can start each other. For instance, an activity may start any other components, in which

may also exist target API invocations.

Definition 4. We use symbol i to represent a target API invocation and I to represent a set of target API invocations.

Symbol j is used to represent a component start invocation and J represents a set of component start invocations. Under

the circumstance of not starting a new component, if exercising component c can lead to target API invocation i, we call

component c can reach i inside the component, represented by c ≫ i. Similarly, under the circumstance of not starting

a new component, if exercising component c can lead to component start invocation j, we have c ≫ j. As an extension,

c ≫ I and c ≫ J represent that c can lead to a set of target API invocations and a set of component start invocations

respectively. For each component start invocation j, symbol cj is defined as the target component started by j and c
j→ cj

or c→ cj represents this component start relationship.

Take the code fragment shown in Listing 1 as an example, there is a target API invocation named “sendTextMessage”

in line 25. We use i1 to represent this target API invocation for convenience of description. A component start invocation

named “startActivity” can also be found in line 32. We use j1 to represent this component start invocation. In combination

with Figure B2, we can get a4≫ i1, a4≫ j1 and cj1 = a3.

For each component in an Android app to be tested, whether it needs to be exercised can be determined by Theorem 1:

Theorem 1. For a component c ∈ C, known c≫ I, c≫ J , the following three rules are used to determine whether c is

in C+ or C−:

(1) If I ̸= ∅, then c ∈ C+.

(2) If I = ∅ ∧ J = ∅, then c ∈ C−.

(3) Known I = ∅ ∧ J ̸= ∅, if ∀j ∈ J , cj ∈ C−, then c ∈ C−. Otherwise, c ∈ C+.

Theorem 1.(1) means that, if component c can reach some target API invocations inside the component, then c ∈ C+.

There is no doubt about it. For example, Component (Activity) a4 shown in Figure B2 is a component of this type and it

can reach the target API invocation i1 inside the component. Namely, a4 ∈ C+. Theorem 1.(2) means that, if component

c can neither reach any target API invocation nor any component start invocation inside the component, then c ∈ C−.

There is also no doubt about it because in this case, component c can neither reach any target API invocation inside the

component, nor reach any target API invocation indirectly by starting and exercising a new component. For example,

Component (Activity) a2 and a3 shown in Figure B2 are components of this type. Namely, a2, a3 ∈ C+. Theorem 1.(3)

means that, if component c cannot reach any target API invocation inside the component, but can reach some component

start invocations J inside the component, whether c is in C+ or C− depend on the components started by J . If all the

components started by J are in C−, it means that component c cannot reach any target API invocation indirectly by

starting and exercising a new component, then c ∈ C−. Otherwise, if ∃j ∈ J , cj ∈ C+, it means that component c

can reach some target API invocations indirectly by starting and exercising a new component. For example, Component

(Activity) a1 shown in Figure B2 is a component of this type and it can reach the target API invocation i1 indirectly by

starting and exercising activity a4. Namely, a1 ∈ C+.

Appendix C.2 Implementation

OA3E judges whether a component can reach a target API invocation or component start invocation inside the component

by static analysis of the control flow graph of the whole app built by WALA [4]. Directed by the control flow graph, if a

component c can reach a target API invocation i or component start invocation j, it can be got c≫ i or c≫ j. To address

the challenge of implicit control flow transitions through the Android framework, OA3E incorporates the results generated

by EdgeMiner [5] to achieve a more complete modeling of Android callback mechanism and a more complete control flow

graph.

In Section Appendix A, we had introduced that A3E constructs SATG to guide its targeted exploration. SATG built

by A3E has described the transition relationships between the activities. As an extension, OA3E takes into account the

transition relationships between the three types of Android components, not just activities. Accordingly, OA3E construct

a new graph—SCTG (Static Component Transition Graph), and the construction method of SCTG is the same as SATG.

Both of them use static taint analysis over the intent passing logic to find the relationship between the target API invocation

j and the target component cj .

Based on SCTG, OA3E takes a graph analysis algorithm to determine whether a component c is in C+ or C−, this

algorithm can be simply described as four steps: Step 1, a depth-first traversal algorithm [6] is used to change SCTG to a

directed acyclic graph [7]. Step 2, initialize set C to be all of the components in SCTG, and C+ = ∅, C− = ∅. Step 3, pull

the components that satisfy Theorem 1.(1) and 1.(2) out of C, and put them into C+ and C− respectively. Step 4, pull the

components that satisfy Theorem 1.(3) out of C, and put them into C+ or C− according to the actual situation. Repeat

this step until C = ∅.
Figure C1 is used to illustrate this analysis procedure of an SCTG. The red nodes represent components that need

to be exercised, the blue nodes represent components that need not to be exercised, and the white nodes represent the

components that need to be judged whether they need to be exercised. Component c1 represents the launcher activity or

exported activity which can act as the starting point of targeted exploration of A3E or OA3E. c6 represents a component

that satisfies Theorem 1.(1), while c7 and c8 represent components that satisfy Theorem 1.(2). Step 1 is shown by the

conversion from Figure C1.(a) to C1.(b). The reason why OA3E implements Step 1 is that, in the process of dynamic

exploration of an app, OA3E needs not to exercise an activity that had been exercised. Or it can be said that, if c
j→ cj

and cj ∈ C+, but cj is exercised before c according to A3E’s targeted exploration strategy, then c ∈ C+ cannot be got.



Yue H Z, et al. Sci China Inf Sci 5

c1

c2

c3

c4

c5

c6

c7

c8

c1

c2

c3

c4

c5

c6

c7

c8

c1

c2

c3

c4

c5

c6

c7

c8

(a) (b) (c)

Figure C1 Graph analysis procedure of an SCTG

Table D1 The relationship between GUI element, event handler and concerned API invocation of Activity a4

GUI Element GUI Object Event Handler Concerned API Invocation

b9 Button unLock h1: onClick (Line 14) —

b10 Button doOther h2: onClick (Line 18) —

b11 — h4: clickHandler (Line 28) j1: startActivity (Line 32)

b12 Button send h3: onClick (Line 22) i1: sendTextMessage (Line 25)

Therefore, this condition should be excluded by Step 1 to ensure the accuracy of analysis. For example, in Figure C1(a),

c4→ c1 and c1 ∈ C+, but c4 ∈ C+ cannot be got. In Step 3, c6 which satisfies Theorem 1.(1) was put into into C+, while

c7 and c8 which satisfy Theorem 1.(2) were put into into C−. In Step 4, c5, c4, c2 were put into C− in turn, while c1, c3

were put into C+. At last, it can be got that, C+ = {c1, c3, c6} and C− = {c2, c4, c5, c7, c8}.
There is an important problem in the process of constructing SCTG. That is, the completeness of SCTG sometimes

cannot be guaranteed. We had pointed out that the construction method of SCTG is the same as SATG which had

been realized by A3E. But A3E itself cannot guarantee the completeness of SATG, because sometimes the taint analysis

method that A3E uses to construct SATG cannot guarantee that the target component corresponding to a component start

invocation can be found. This drawback also exists in the construction of SCTG, namely, there exists the case that, known

c≫ j, but cj cannot be got. In this case, to reduce error, OA3E’s strategy is that if there is a component start invocation

j in an component c that cannot be found the target component cj , OA3E considers that c ∈ C+.

After C+ and C− are obtained, A+ andA− which are the results of Activity Filtering can be got byA+ =
{
c | c ∈ C+ and c is an activity

}
and A− =

{
c | c ∈ C− and c is an activity

}
.

Appendix D GUI Filtering

Now we will discuss how OA3E implements GUI Filtering to find G+
a and G−

a for each a ∈ A+. OA3E mainly does five

steps to implement GUI Filtering which will be introduced in the following sections from Appendix D.1 to Appendix D.5.

Appendix D.1 Search GUI Elements and Their Corresponding Event Handlers

Definition 5. We use symbol g to represent a GUI element and h to represent a GUI event handler. h = H(g) is used

to represent that h is the event handler of g.

GUI event handler can be realized by two ways—event listener and method binding [8]. For GUI event handlers realized

by method binding, OA3E can easily find the corresponding handlers from the layout XML file. For event handlers realized

by event listener, OA3E uses static taint analysis method which is based on SCanDroid to search the GUI elements and

their corresponding event handlers. OA3E marks each GUI object declaration as source and the event handler registration

API as sink. The code shown in Figure D1 is used to illustrate this taint analysis process. In Figure D1, button “a” is

marked as source and the event handler registration API “setOnClickListener” is marked as sink. If SCanDroid can find

a path from the source to the sink, then OA3E considers that it had found the relationship between a GUI element and its

corresponding event handler (Look at the blue dotted arrow in Figure D1).

OA3E also gets the GUI element type and event type from the layout XML file as well as from the code. The former

method is easy to implement by reading the properties of an GUI element from the layout XML file. For the latter method,

we illustrate it using the code shown in Figure D1. It can be easily seen that the type of GUI element “a” is button and

the corresponding event type is “Click” which is known from the event handler registration statement.

Let’s go back to see activity a4 shown in Figure B2 combined with Listing 1 and 2. After completing the search work for

the GUI elements and their corresponding event handlers, OA3E can get the results shown in the first 3 columns of Table

D1 for activity a4. The relationship between the GUI elements and their corresponding event handlers are: h1 = H(b9),

h2 = H(b10), h4 = H(b11) and h3 = H(b12).

Appendix D.2 Search Relationships Between Event Handlers and Concerned API Invo-

cations

Definition 6. Under the circumstance of not starting a new component, if exercising event handler h can lead to target

API invocation i, we call event handler h can reach i inside the component, represented by h ≫ i. Similarly, under the

circumstance of not starting a new component, if exercising event handler h can lead to component start invocation j, we



6 Yue H Z, et al. Sci China Inf Sci

a.setText("ok");

R.id.x

Sink:

R.id.x=0x7f050000;

Button a=(Button)findViewById(R.id.x);

Source Code Static Analysis

a.setOnClickListener( )

constant:

Button aSource:

setOnClickListener

Source:

"ok"constant:a.setText( ok );

R.id.x

Sink:

R.id.x=0x7f050000ff ;

a setText("ok");

Button ButtonButton aaa=(=(ButtonButton))findViewById(R.id.x);

Source Code Static Analysis

aa.setOnClickListenersetOnC ( )

constant:

Button a

setOnClickListener

Source:

"okok"constantconstant:::

Figure D1 Static analysis process of GUI filtering

OnClick() Method B1

Method A1 Method A2 Method B2

OnClick()

Method A1 Method A2

Class A

Method B1

Method B2

Class B

Target API startActivity

OnClickListener

Figure D2 Concerned API invocation searching

have h ≫ j. As an extension, h ≫ I and h ≫ J represent that h can lead to a set of target API invocations and a set

of component start invocations respectively. For each component start invocation j, h
j→ cj or h → cj represents that

component cj can be started by h.

Searching backward along the control flow graph built by WALA, OA3E can build the relationships between GUI event

handlers and the concerned API invocations (including target API invocations and component start invocations). This

process can be described by the example shown in Figure D2. In Figure D2, there are two classes—class A and B. Class

A is a GUI event listener class containing an event handler method “OnClick” inside. The event handler method calls

method A1 that can lead to the target API invocation. It also calls method A2 of class A and method B1, B2 of class

B which can lead to the component start invocation “startActivity”. Started from these two concerned API invocations,

OA3E searches backward along the control flow graph until reaching “onClick” method (The dotted arrows in Figure D2

represent the search trajectories). Then the relationships between event handler and the two concerned API invocations

are constructed.

For activity a4 shown in Figure B2, combined with Listing 1 and 2, a target API invocation i1 and a component start

invocation j1 can be found, and the relationships between them with the corresponding event handlers h3 and h4 are listed

in Table D1. That is, it can be got h3≫ i1 and h4≫ j1.

Appendix D.3 Judge Whether a GUI Element Needs to be Exercised

In order to facilitate the description of the method of judging whether a GUI element needs to be exercised, we give

Definition 7:

Definition 7. For an activity a ∈ A+, symbol H+
a is defined as the set of GUI event handlers that need to be exercised

in activity a and H−
a as the set of GUI event handlers that need not. Set Ha is defined as all the GUI event handlers in

activity a. Obviously, we have Ha = H+
a +H−

a .

For each activity a ∈ A+, Ga and Ha had been obtained in Section Appendix D.1. Before OA3E constructs set G+
a

and G−
a , set H+

a and H−
a must be constructed first. The construction method of H+

a and H−
a is shown by Theorem 2.

After each GUI event handler in Ha is processed according to Theorem 2, OA3E can get H+
a . Then H−

a can also be got by

H−
a = Ha −H+

a .

Theorem 2. For a GUI event handler h ∈ Ha, known h ≫ I, h ≫ J , the following three rules are used to determine

whether h is in H+
a :

(1) If I ≠ ∅, then h ∈ H+
a .

(2) If I = ∅ ∧ J ≠ ∅, and ∃j ∈ J , make cj ∈ C+, then h ∈ H+
a .

(3) Known h
′ ∈ H+

a , if there exists an object being used in the path of h
′ ≫ I or h

′ ≫ J , and its value can be changed

by h, then h ∈ H+
a .

Take the app shown in Figure B2 as an example, combined with Listing 1 and 2, it can be got by Theorem 2.(1) that

event handler h3 ∈ H+
a because of h3 ≫ i1. According to Theorem 2.(3), event handler h1 ∈ H+

a because the value of

object “lock” used in the path of h3 ≫ i1 can be changed by h1. According to Theorem 2.(2), it cannot be got h4 ∈ H+
a

because h ≫ j1, but cj1 ∈ C−. On the contrary, the event handler (of which the code is not displayed) corresponding to

GUI element b2 in activity a1 satisfies Theorem 2.(2) and needs to be exercised. After all the GUI event handlers in Ha4

are processed according to Theorem 2, it can be got H+
a4 = {h1, h3} and H−

a4 = {h2, h4}.
With H+

a and H−
a , G+

a and G−
a can be constructed by Theorem 3:

Theorem 3. For a GUI element g ∈ Ga, the following two rules are used to determine whether g is in G+
a or G−

a :

(1) If ∃h = H(g), and if h ∈ H+
a , then g ∈ G+

a , else if h ∈ H−
a , then g ∈ G−

a .

(2) If ∃h ∈ H+
a , and the value of GUI object corresponding to g is used by h, then g ∈ G+

a .

For activity a4 shown in Figure B2, it can be got b9, b12 ∈ G+
a4 and b10, b11 ∈ G−

a4 by Theorem 3.(1). Because the GUI

objects “number” and “content” which corresponding to GUI elements t1 and t2 respectively are used in event handler h3

(line 25 in Listing 1), therefore t1, t2 ∈ G+
a4. To summarize, it can be got G+

a4 = {b9, b12, t1, t2} and G−
a4 = {b10, b11} for

activity a4. Both Theorem 2.(3) and Theorem 3.(2) are related to value of an object. OA3E tracks the value of an object

by the method of point-to analysis [9] and taint analysis.



Yue H Z, et al. Sci China Inf Sci 7

Table D2 Results of GUI feature search for Activity a4

GUI Element GUI Object
GUI Feature Combination

Belong
View Id Displayed Text Type

b9 Button unLock R.id.unLock unLock Button F+
a

b10 Button doOther R.id.doOther doOther Button F−
a

b11 — — startA3 Button F−
a

b12 Button send R.id.send sendSMS Button F+
a

t1 EditText number R.id.number — EditText F+
a

t2 EditText content R.id.content — EditText F+
a

Appendix D.4 Search Features of GUI Elements

G+
a and G−

a built in Section Appendix D.3 represent the GUI elements that need to be exercised and those need not re-

spectively. However, they cannot guide the exploration process of OA3E’s Automatic Explorer because Automatic Explorer

cannot identify the GUI elements in G+
a and G−

a during the running process of an app. So the features that can uniquely

identify a GUI element and can be recognized by Automatic Explorer should be found. For convenience of description, we

give Definition 8:

Definition 8. For a GUI element g in activity a, we define symbol f as the GUI feature combination of g, represented

by f = F (g). If f can uniquely identify g in activity a, we call g is unique. F+
a and F−

a are defined as the sets of GUI

unique features combinations of GUI elements in activity a that need to be exercised and need not respectively, namely,

F+
a =

{
f | f = F (g), g ∈ G+

a and f is unique
}

and F−
a =

{
f | f = F (g), g ∈ G−

a and f is unique
}
.

OA3E mainly cares about three types of features—view ID, displayed text and GUI element type. We define these

features as α, β and γ respectively. Feature γ of a GUI element had been obtained in Section Appendix D.1. As for the

other two features, OA3E uses two methods to search—searching from the layout XML file and searching from the code.

For the first method, it is easy to read the features of a GUI element from the layout XML file, such as the attributes

“android : id” and “android : text” shown in Listing 2. As for the second method, OA3E uses the method of tracing the

propagation of constant string to find the view ID and displayed text of a GUI element. When a constant string propagates

to one of the GUI elements in G+
a or G−

a , OA3E judges whether it is the view ID or displayed text of this GUI element by

the API name of the touch point. This process can be described by Figure D1. In Figure D1, the red solid arrows represent

the propagation paths of constant strings. OA3E tracks the propagation of the constant strings “R.id.x” and “ok” until

they reach the GUI element—button “a”. Then OA3E judges the features of this GUI element by the API name of the

touch point, such as API “findV iewById” and “setText” in Figure D1. It can be got that “R.id.x” is the view ID of

button “a”, and “ok” is its displayed text.

A GUI element can be uniquely identified by the following three feature combinations:

(1) ⟨α, γ⟩. In this case, OA3E’s static analysis method can find the view ID of a GUI element. There is no doubt that

this feature combination can uniquely identify a GUI element because view ID is unique for each GUI element.

(2) ⟨β, γ⟩. This case means that OA3E cannot find the view ID of a GUI element. But it can find the displayed text of

the GUI element such as the displayed text “ok” in the code of Figure D1. After the static analysis, if OA3E finds that no

other GUI elements in the activity that have the same displayed text as this GUI element, then it can be considered that

this feature combination can uniquely identify a GUI element. Otherwise, it is not the unique feature of a GUI element.

(3) ⟨γ⟩. This case means that OA3E cannot find the view ID and displayed text of a GUI element. But OA3E finds that

in this activity, no other GUI elements belong to this GUI element type. Namely, only GUI element type can identify this

GUI element. In this case, the GUI element type is the unique feature of a GUI element.

For activity a4 shown in Figure B2, the results of GUI feature search are shown in Table D2. All of the GUI feature

combinations are unique and can be used to identify the GUI elements in G+
a4 and G−

a4 .

Appendix D.5 Results of GUI Filtering

F+
a and F−

a built in Section Appendix D.4 are used by OA3E to judge that, in activity a, GUI elements possess what

features need to be exercised and what need not. With the help of the GUI feature combinations provided by F+
a and F−

a ,

OA3E’s Automatic Explorer can identify the GUI elements in G+
a and G−

a during the running process of an app. However,

not all GUI elements can be found their corresponding unique features. The reason is that the only feature combination

can be found of a GUI element is the same as another GUI element in an activity. Therefore, ∃g ∈ G+
a , f = F (g), but as f

is not unique, then f /∈ F+
a . In this case, it is incomplete for OA3E to only exercise the GUI elements that possess features

in F+
a . To solve this problem, OA3E creates a boolean variable “exerciseOther” for each activity, and if this case happens,

“exerciseOther” will be assigned to “true”. Otherwise, “exerciseOther” is assigned to “false”.

If the value of “exerciseOther” for an activity a is “true”, it means that except for the GUI elements whose feature

combinations are in F+
a , some other GUI elements in this activity also need to be exercised, but OA3E cannot identify

them. On this condition, OA3E needs to exercise any GUI elements in this activity except for the GUI elements that possess

features in F−
a . On the contrary, if the value of “exerciseOther” is “false”, it means that all the GUI elements in G+

a

can be found the corresponding feature combinations in F+
a , OA3E only needs to exercise the GUI elements that possess

features in F+
a for activity a.



8 Yue H Z, et al. Sci China Inf Sci

SCanDroid

App 

Bytecode

Static Taint 

Analysis Static Activity 

Transition Graph

Automatic 

Explorer

Exploration 

Results

Targeted and Oriented Exploration

App running on phone Debugging Bridge

3

1

4

2
6

7

5

8

GUI filtering  Activity filtering  

SCanDroid

ee

Static Taint 

Analysis Static Activity 

Transition Graph

3

1

4

2
6

7

5

8

GUI filtering  Activity filtering   
A+

Mapa

A+

Mapa
Target 

API file

Figure E1 Overview of the exploration process of OA3E

Average Number 

Statistics

Size:    10,322 K

Activities Number:  91

API1 Number:    32

API2 Number:    25

Figure E2 Basic information statistics of the 100 apps

After the process of GUI Filtering, OA3E builds a map Mapa =
{⟨

a,
(
F+
a , F−

a , exerciseOther
)⟩
| a ∈ A+

}
, “a” means

one of the activities in A+ and the three tuple
(
F+
a , F−

a , exerciseOther
)

is its corresponding GUI elements information

which can tells the Automatic Explorer that in this activity, which GUI elements need to be exercised and which need not.

Appendix E OA3E and GUI Exploration

In Section Appendix C and Appendix D, we had introduced that how OA3E implements Activity Filtering and GUI

Filtering to solve the problems proposed in Section Appendix B. Now we will give the overview structure of OA3E and its

GUI exploration algorithm.

Appendix E.1 Structure of OA3E

After the process of Activity Filtering and GUI Filtering, the following information can be obtained: A+, A− and the

map Mapa. With this information, the problem proposed in Section Appendix B can be solved. It can be considered that

activities in A+ need to be exercised and activities not in A+ need not to be exercised. For each activity a ∈ A+, OA3E

takes its corresponding three tuple
(
F+
a , F−

a , exerciseOther
)

from Mapa. If “exerciseOther = false”, OA3E considers

that GUI elements that possess features in F+
a need to be exercised. Else if “exerciseOther = true”, it considers that GUI

elements that do not possess features in F−
a need to be exercised.

At a result, we outline the overview structure of OA3E which is shown in Figure E1. It is based on A3E whose structure

is shown in Figure B1 and has been made some improvements on it. The target APIs is defined in the “Target API file”.

It is the input of Activity Filtering and GUI Filtering of OA3E. The outputs A+ and Mapa will guide Automatic Explorer

to explore an app which is running in the device or emulator. How Automatic Explorer is been guided will be introduced

in the next section.

Appendix E.2 Targeted and Oriented Exploration

We modified A3E’s targeted exploration algorithm described in Section Appendix A and proposed OA3E’s exploration

algorithm which is shown in Algorithm E1 and we call it “targeted and oriented exploration (TAOE)”. In this algorithm,

A+ and Mapa are defined as static objects which can be used in the whole process of the algorithm. In line 2, 6 and 18,

the same judgment is been added to judge whether the target activity is in A+. If the target activity is in A+, it needs to

be exercised. Otherwise, it needs not to be exercised. In this way, OA3E can avoid wasting time on exercising the activities

that cannot lead to the target API invocations.

In line 14, OA3E gets the three tuple
(
F+
a , F−

a , exerciseOther
)

corresponding to currentA from Mapa. It can tell

Automatic Explorer that which GUI elements in currentA need to be exercised and which need not. The Troyd tool

[10] which A3E’s Automatic Explorer mainly depends on can be used to extract the GUI information of the current

screen, including GUI coordinates, GUI type, view ID, displayed text, etc. OA3E compares this information with the GUI

features in F+
a or F−

a to identify the exact GUI element. The exploration strategy of OA3E is determined by the value of

“exerciseOther”. If “exerciseOther = false”, OA3E will exercise the GUI elements that possess features in F+
a . Else if

“exerciseOther = true”, OA3E will exercise the GUI elements that do not possess features in F−
a .

Appendix F Evaluation

Appendix F.1 Experiment Method and Preparation

We define 5 sets of APIs in Table F1 which are of interest to us. Each set of APIs needs different permissions to be invoked.

The last two columns list the class name and method name of each API. These APIs will be used as the inputs of OA3E

(see the “Target API file” introduced in Section Appendix E.1). 100 apps were randomly selected and downloaded from



Yue H Z, et al. Sci China Inf Sci 9

Algorithm E1 OA3E’s targeted and oriented exploration

Input: SATG S = (A,E), A+,Mapa;

1: Procedure TAOE(S)

2: for each node ai in A that is entry activity and ai is in A+ do

3: switch to activity ai;

4: currentA← ai;

5: for each edge ai → aj in E do

6: if aj is an exported activity and aj is in A+ then

7: switch to activity aj ;

8: currentA← aj ;

9: S′ ← get subgraph of S from aj ;

10: TAOE(S′);

11: end if

12: end for

13: Ga ← extract GUI elements of currentA;

14: Get (F+
a , F−

a , exerciseOther) from Mapa;

15: for each gi in Ga do

16: if (exerciseOther is false and F (gi) ∈ F+
a ) or (exerciseOther is true and F (gi) /∈ F−

a ) then

17: exercise gi;

18: if the current activity jumps to a not-yet-explored activity ak and ak is in A+ then

19: S′ ← get subgraph of S from ak;

20: currentA← ak;

21: TAOE(S′);

22: end if

23: end if

24: end for

25: end for

Wandoujia 1), a famous Android app store in China. These apps are distributed in 12 different categories and each of them

is among the top 100 popular apps in their own categories according to the download ranking of Wandoujia. The left part

of Figure E2 shows these categories and the number of apps in each category.

We mainly do two experiments to evaluate OA3E’s effectiveness and efficiency in triggering the target API invocations.

These two experiments will be introduced in Section Appendix F.2 and Appendix F.3 respectively. In the first experiment,

we use APIs in set API1 and API2 of Table F1 as the target APIs to test these 100 apps. Set API1 contains 13 APIs

and the invocations of these APIs require permission “INTERNET”. Set API2 contains 8 APIs and the invocations of

these APIs require permission “READ PHONE STATE”. Our objective is to monitor app’s behavior of reading the basic

information of the phone and sending this information to the Internet. Sometimes these behaviors are related to privacy

leakage of the phone users [11] [12]. A3E and OA3E will be used to test each of the 100 apps once respectively, and a results

comparison between these two tools will be made. In the second experiment, one of the 100 apps will be used to test the

efficiency of OA3E. Factors that affect OA3E’s performance will be discussed, with the target APIs set being varied from

API1 to API5 in the form of accumulation.

OA3E’s main program runs in a desktop computer with Intel Core i7 CPU, 32G RAM and Windows 7 system. During

the period of dynamic exploring, the app under test would be installed and run in a Samsung G9280 mobile phone with

8-core CPU, 4 GB RAM and Android OS 5.1.

Appendix F.2 Results Comparison Between A3E and OA3E

The first experiment was testing the 100 apps using APIs in set API1 and API2 as the target APIs. Before the experiment,

we did an average number statistic for these 100 apps. The statistic results are shown in the right part of Figure E2. The

average size of the 100 apps is 10,322K and the average activities number is 91. The static analysis method of searching

along control flow graph (see the control flow graph introduced in Section Appendix C.2) was used to count the number of

target API invocations in API1 and API2 of these 100 apps. The average number of target API invocations in API1 is

32, and for API2, the number is 25.

For each of the 100 apps, we use A3E and OA3E to run once respectively. The Xposed framework [13] was used to

hook the targeted APIs in set API1 and API2. The API invocation information would be outputted to the log when the

target API invocations happened. This information includes API names, callers’ names (which can be obtained from the

call stack), etc. Then the number of the triggered API invocations can be counted by the log.

Table F2 shows the overall test results for the 100 apps. A3E spent an average of 4 minutes on static analysis and 92

minutes on dynamic exploration for each app, then the average time A3E spent on each app is 96 minutes. For OA3E,

the time costs are 13, 30 and 43 minutes for static analysis, dynamic exploration and the total time respectively. It can

be noticed that the static analysis time of OA3E is more than A3E’s. Obviously, it is because OA3E costs more time in

the process of Activity Filtering and GUI Filtering, which does not exist in A3E. On the contrary, the dynamic exploration

1) https://www.wandoujia.com/



10 Yue H Z, et al. Sci China Inf Sci

Table F1 The concerned target APIs

Set Count Permission Class Name API Name

API1 13 INTERNET

URL openStream, openConnection, getContent

URLConnection getInputStream, connect

DownloadManager getUriForDownloadedFile, addCompletedDownload, en-

queue

ServerSocket bind

HttpURLConnection connect

WebViewFragment onCreateView

DefaultHttpClient execute

WebSettings setBlockNetworkLoads

API2 8 READ PHONE

STATE
TelephonyManager getSubscriberId, getDeviceSoftwareVersion, listen,

getLine1Number, getSimSerialNumber, getVoiceMailAl-

phaTag, getVoiceMailNumber, getDeviceId

API3 13
ACCESS COARSE

LOCATION,

ACCESS FINE

LOCATION

LocationManager requestLocationUpdates, getProviders, requestSingleUp-

date, getProvider, getLastKnownLocation, isProviderEn-

abled, addProximityAlert, getBestProvider, sendExtra-

Command, addNmeaListener, addGpsStatusListener

TelephonyManager getNeighboringCellInfo, getCellLocation

API4 7 ACCESS

NETWORK

STATE

ConnectivityManager getNetworkInfo, getNetworkPreference, setNetworkPref-

erence, stopUsingNetworkFeature, startUsingNetworkFea-

ture, getActiveNetworkInfo, getAllNetworkInfo

API5 8
ACCESS WIFI

STATE

WifiManager getScanResults, getDhcpInfo, pingSupplicant, isWifiEn-

abled, getConnectionInfo, getWifiState, getConfigured-

Networks

WifiP2pManager initialize

Table F2 Statistics of test results for 100 apps

Statistical Content Result

Average time of A3E

(minutes)

Static time: 4

Dynamic time: 92

Total time: 96

Average time of OA3E

(minutes)

Static time: 13

Dynamic time: 30

Total time: 43

Average Size of A+ 38

OA3E’s accuracy of

triggering target APIs

compared to A3E

98.63%

(36,45,66)

(61,78,98)

(133,138,154)

(228,203,194)

(264,266,257)

Figure F1 The relationship between target APIs number, Size of

A+ and total test time for app ρ10

time of OA3E is much less than A3E’s. It is because OA3E does not need to exercise the activities and GUIs that cannot

lead to the target API invocations. It saves a lot of time for OA3E in its dynamic exploration of the apps. It can also be

clearly seen that the static analysis costs much less time than the dynamic exploration for each of the apps. Therefore, even

if OA3E costs more time in static analysis, the total test time of OA3E for each app is still less than A3E. The average test

time of OA3E is only 44.79% ( 43
96

) of A3E’s.

The average size of A+ shown in Table F2 means that, on average, only 38 activities in each app need to be exercised.

Compared with the average activities number shown in Figure E2, we found that OA3E’s Activity Filtering function could

filter out an average of 58.24% ( 91−38
91

) activities that need not to be exercised with the target APIs in set API1 and

API2 as inputs. Meanwhile, OA3E’s accuracy of triggering target APIs is 98.63% compared to A3E, it means that 98.63%

of the target APIs invocations that triggered by A3E can be successfully triggered by OA3E. According to our analysis,

why OA3E cannot achieve 100% were mainly caused by the inaccurate static analysis in the process of Activity Filtering

and GUI Filtering and the uncertain factors in dynamic exploration. These reasons will not be the focus of our discussion

because it can be considered that 98.63% is already an acceptable ratio and some related discussions will be left in Section

Appendix G.2. The reason why A3E and OA3E can trigger nearly the same proportion of the target API invocations is

that, A3E and OA3E share the same GUI exploration algorithm (besides the GUI Filtering part), and they generate the



Yue H Z, et al. Sci China Inf Sci 11

Table F3 Basic information of the 10 apps

APP

Id

Package Name Category Size

(K)

Activities

Number

Target APIs Num-

ber (API1 +API2)

ρ1 com.jiayuan Chat&Social 6,388 112 34 (11+23)

ρ2 com.fayi.law Life Service 8,543 86 204 (132+72)

ρ3 me.ele Life Service 6,676 76 86 (40+46)

ρ4 com.sohu.newsclient News&Reading 13,725 96 139 (105+34)

ρ5 com.tingwen News&Reading 2,735 15 43 (24+19)

ρ6 org.pingchuan.dingwork Telephony 9,463 88 85 (52+33)

ρ7 com.customer.taoshijie.com Shopping 7,216 68 75 (28+47)

ρ8 com.thestore.main Shopping 10,483 172 75 (36+39)

ρ9 com.zlianjie.coolwifi System Tool 5,596 55 101 (52+49)

ρ10 com.dp.android.elong Travel 22,524 351 61 (36+25)

Table F4 Test results of A3E and OA3E to trigger API invocations in API1 and API2 of the 10 apps. “S”, “D” and

“T” mean the time costs of static analysis, dynamic exploration and the total test time respectively. “APIs Trigger” means

the number of target API invocations that be triggered.

APP

Id

A3E OA3E Time

Compare

OA3E/A3E

Time Cost (minutes) APIs

Trigger

A+

Size

Time Cost (minutes) APIs

TriggerS D T S D T

ρ1 7 176 183 19 47 23 49 72 19 39.34%

ρ2 5 133 138 136 54 18 52 70 134 50.72%

ρ3 3 84 87 57 32 11 26 37 57 42.53%

ρ4 6 163 169 80 45 12 73 85 79 50.30%

ρ5 1 25 26 25 13 4 15 19 25 73.08%

ρ6 5 145 150 46 35 19 30 49 43 32.67%

ρ7 3 75 78 41 37 8 28 36 41 46.15%

ρ8 8 228 236 50 53 19 51 70 50 29.66%

ρ9 2 42 44 59 39 10 26 36 58 81.82%

ρ10 11 317 328 39 78 28 70 98 39 29.88%

nearly same GUI events sequence for the GUI elements in G+
a for each activity a ∈ A+.

In order to better demonstrate the experimental results, we randomly selected 10 apps from these 100 apps and showed

their test results in Table F3 and F4 (We did not lists more apps due to limited space, and there is no need for this).

Table F3 lists the basic information of these 10 apps including their package names, the categories they belong to, sizes,

activities numbers they have and the numbers of the target API invocations of API1 and API2. The “App Id” shown in

the first column is what we used to identify each app. Table F4 shows the test results of A3E and OA3E for these 10 apps,

including test time (Static analysis time, dynamic exploration time and the total time), the numbers of API invocations

that be triggered of API1 and API2. In the last column, the total test time of OA3E for each app is compared with A3E

by a ratio of OA3E to A3E.

It can be seen from Table F3 and F4 that both A3E and OA3E cannot achieve the full coverage of the target API

invocations. It is caused by many reasons, such as the target API invocations in the other three components except for

activity do not depend on the GUI events, or the trigger of some API invocations depends on some particular conditions

that cannot be satisfied, such as the arrival of a specific time. As the main concern of this paper is how to make a GUI

exploration tool to avoid wasting time on exercising the activities and GUI elements that cannot lead to the target API

invocations, therefore how to make a GUI exploration tool to trigger as many API invocations as possible is not within the

scope of our consideration. This will be left as our future improvement work on OA3E.

Appendix F.3 Efficiency Analysis of OA3E

From Table F4, it can be seen that the ratios of total test time of OA3E to A3E vary from 29.88% to 81.82%. This is a big

span and it means that OA3E is not very efficient under any circumstances. This section we will discuss the factors that

affect OA3E’s efficiency.

Combine Table F3 with Table F4, it can be seen that OA3E can obviously reduce the time costs for apps that contain

more activities inside. For instance, in Table F3, apps ρ8 and ρ10 both have large activities numbers. But we can see from

Table F4 that both the ratios of total time costs of OA3E to A3E do not exceed 30%. On the contrary, if an app has a very

small activities number and the size of A+ is very near to the activities number, then OA3E has no obvious advantages.

For instance, it can be seen from Table F3 that apps ρ5 and ρ9 both have very few activities. Table F4 shows that their



12 Yue H Z, et al. Sci China Inf Sci

sizes of A+ are very near to the activities numbers and both the ratios of total time costs of OA3E to A3E exceed 70%.

We can see clearly another phenomenon that, with similar activities numbers, more target API invocations means more

activities need to be exercised and more time cost for each app. For instance, it can be seen from Table F3 that apps ρ2

and ρ6 have very similar activities numbers, but the number of target API invocations in ρ2 is more than ρ6. Accordingly,

ρ2 has a bigger size of A+ and more total test time than ρ6. On the contrary, the activities numbers of apps ρ3 and ρ7 are

also very similar, but the numbers of target API invocations in ρ3 and ρ7 are similar as well. Accordingly, their total test

time are very similar.

To better test the relationship between target APIs number, size of A+ and the total test time, we did our second

experiment. In this experiment, we chose app ρ10 in Table F3 which has a large activities number as the experimental object.

The target APIs varied from API1 to API5 in the form of accumulation (i.e., API1, API1+API2, API1+API2+API3,

· · · ). The test results are shown in Figure F1. From the test results, we can see that with the target API sets increased

from API1 to API1-5 (i.e., API1 + · · · + API5), the target APIs number, size of A+ and the total test time of ρ10 are

increasing. When OA3E only used the APIs in API1 as target APIs, the total test time is 66 minutes which is only 20.12%

of A3E’s ( 66
328

). However, when OA3E used all the APIs in the API sets from API1 to API5 as target APIs, the total test

time is 257 minutes which is 78.35% of A3E’s ( 257
328

). It can be concluded that OA3E’s total test time is positively related

to the target APIs number and size of A+ of each app. Therefore, if OA3E considers less APIs, or the distribution of these

APIs in the app under test is more concentrated (so OA3E can filter out more activities and the size of A+ is small), then

OA3E would cost less test time and be more efficient than A3E. This experiment also gives an important tip to the users

of OA3E that, in order to make full use of OA3E’s advantages in triggering the target API invocations, the input target

APIs must be reduced to a minimum set, without affecting the observation of the target program behaviors that the users

concerned about.

Appendix G Discussion

After the introduction of the experiments we had done on OA3E, we then introduce the possible usability of OA3E, its

limitation and the future work needs to be done for it.

Appendix G.1 Usability of OA3E

We can think of two important application scenarios that OA3E can be used in, but it is not limited to these scenarios:

(1) OA3E can be used to trigger sensitive behaviors of the apps, which is very useful in dynamic detecting of Android

malware. In the process of dynamic detecting Android malware, it is essential to trigger as many sensitive behaviors as

possible of the apps under test during their actual running process, so that the detection tools can capture and analyze

these behaviors to judge whether the apps under test are malicious apps. When we define all of the sensitive APIs which

the detection tools care about in the target API file of OA3E, OA3E would automatically drive the apps to trigger these

sensitive API invocations in them to expose their sensitive behaviors.

(2) OA3E can be used to trigger the possible vulnerabilities of the apps, which is useful for the security analyzers to

find and patch the security vulnerabilities of the apps. For example, in order to detect whether an app has privacy leakage

vulnerabilities [11] [12], it is often needed to analyze whether the data that be transmitted out of the phone contains privacy-

related data. But how to trigger app’s behavior of reading the sensitive data and sending this data outside the phone is a

big problem [11]. In this case, OA3E can be used to trigger these behaviors by defining the specific target APIs that related

to reading and sending sensitive data (such as the APIs sets API1 and API2 described in Section Appendix F.1) in the

target API file. Besides, Ravi Bhoraskar [14], et al introduced in their paper [14] that how to find the vulnerabilities in

third-party components by the method of triggering the target API invocations, which can be accomplished with the help

of OA3E as well.

Appendix G.2 Limitation and Future Work

OA3E can be used to guide an app to trigger the target API invocations that the testers interested in, and its effectiveness

and efficiency had been verified through experiments. However, it still has some limitations that need to be improved:

(1) Limitation of static analysis. Both A3E and OA3E use the method of static analysis, but sometimes the static

analysis method is not accurate enough, which will affects OA3E’s results of Activity Filtering and GUI Filtering. Two

typical problems are—the callback mechanism of Android framework affects the completeness of control flow graph of an

app [5] and the reflection and dynamic loading mechanism can be hardly analyzed by the method of static analysis [15]. For

the former problem, OA3E refers to the solution of FlowDroid [16], which models life-cycle related callbacks of Android by

means of a manually created list which lists all the callbacks and their registration methods in Android framework. Besides,

the results generated by EdgeMiner [5] are incorporated by OA3E to achieve a more complete control flow graph (which

had been introduced in Section Appendix C.2). For the latter problem, OA3E takes measures of defining the APIs that

related to reflection and dynamic loading mechanism (e.g., “invoke”, “loadClass”, etc.) in the target API file of OA3E to

trigger the behaviors of reflection and dynamic loading of an app. Although through these methods, OA3E had achieved

good results (look at the ratio 98.63% described in Section Appendix F.2), but OA3E’s static analysis method still needs

to be improved to achieve a higher performance.

(2) The GUI element features that OA3E uses are not strong enough. OA3E uses three features to identify a GUI

element—view ID, displayed text and GUI element type. Some combinations of them can uniquely identify a GUI element

which had been introduced in Section Appendix D.4. However, through the experiments, we found that too many GUI



Yue H Z, et al. Sci China Inf Sci 13

elements cannot be uniquely identified by the combinations of these features, such as the GUI elements that showed as

images. It will affect the effect of GUI Filtering, because the more GUI elements that cannot be found unique features in

an activity a, the smaller size of F+
a and F−

a , and the poorer effect of GUI Filtering.

(3) OA3E cannot find the relationship between user input and execution path of the program. The specific inputs affect

the flow of the program [17], but both A3E and OA3E cannot judge the right inputs that lead to a specific execution path

of the program. For example, a radio button should be set to a specified value to lead the program to trigger a target API

invocation. But OA3E cannot judge which value should be set to the radio button and it just sets a random value to it.

Some researchers used the method of symbolic execution to solve this problem [17] [18], but according to our survey and

study, we concluded that symbolic execution is far from a mature technology to be used in Android app analysis and it is

hard to strike a balance between the real valid inputs and the large time costs of symbolic execution. Therefore, whether

symbolic execution or any other methods should be used to generate the valid inputs for an app to trigger the target API

invocations will be left as our future work on OA3E.

In the future work, we will take measures to improve OA3E’s accuracy of static analysis. New features will be applied

to identifying a GUI element. Some heuristic mechanisms will be applied to find a GUI element and trigger its GUI event.

Besides, we will take measures to generate valid inputs to make OA3E to be more accurate to trigger the target API

invocations.

References

1 Azim T, Neamtiu I. Targeted and depth-first exploration for systematic testing of android apps. ACM SIGPLAN

Notices, 2013, 48(10): 641-660

2 Fuchs A P, Chaudhuri A, Foster J S. Scandroid: Automated security certification of android applications. Technical

Report CS-TR-4991. 2009

3 Android Developers. App Components. http://developer.android.com/guide/components/index.html

4 SourceForge. WALA. http://wala.sourceforge.net/wiki/index.php/Main Page

5 Cao Y, Fratantonio Y, Bianchi A, et al. EdgeMiner: Automatically Detecting Implicit Control Flow Transitions

through the Android Framework. In: Proceedings of the 22th Network and Distributed System Security Symposium,

San Diego, CA, USA, 2015

6 Tarjan R. Depth-first search and linear graph algorithms. SIAM journal on computing, 1972, 1(2): 146-160

7 Wang L. Encyclopedia of Systems Biology. New York: Springer, 2013. 574-574

8 Android Developers. Input Events. http://developer.android.com/guide/topics/ui/ui-events.html

9 Lhotk O, Hendren L. Scaling Java points-to analysis using Spark. In: Proceedings of the 12th International Conference

on Compiler Construction, Warsaw, Poland, 2003. 153-169

10 Jeon J, Foster J S. Troyd: Integration Testing for Android. Technical Report CS-TR-5013. 2012

11 Gibler C, Crussell J, Erickson J, et al. AndroidLeaks: automatically detecting potential privacy leaks in android

applications on a large scale. In: Proceedings of the 5th International Conference on Trust and Trustworthy Computing,

Pittsburgh, PA, USA, 2012. 291-307

12 Zhou Y, Zhang X, Jiang X, et al. Taming information-stealing smartphone applications (on android). In: Proceedings

of the 4th International Conference on Trust and Trustworthy Computing, Pittsburgh, PA, USA, 2011. 93-107

13 Xposed Module Repository. Xposed Installer. http://repo.xposed.info/module/de.robv.android.xposed.installer

14 Bhoraskar R, Han S, Jeon J, et al. Brahmastra: Driving apps to test the security of third-party components. In:

Proceedings of the 23th USENIX Conference on Security, San Diego, CA, USA, 2014. 1021-1036

15 Zhauniarovich Y, Ahmad M, Gadyatskaya O, et al. StaDynA: Addressing the problem of dynamic code updates in

the security analysis of Android applications. In: Proceedings of the 5th ACM Conference on Data and Application

Security and Privacy, San Antonio, TX, USA, 2015. 37-48

16 Arzt S, Rasthofer S, Fritz C, et al. Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for android apps. ACM SIGPLAN Notices, 2014, 49(6): 259-269

17 Yang Z, Yang M, Zhang Y, et al. Appintent: Analyzing sensitive data transmission in android for privacy leakage

detection. In: Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, Berlin,

Germany, 2013. 1043-1054

18 Schutte J, Fedler R, Titze D. Condroid: Targeted dynamic analysis of android applications. In: Proceedings of the

29th International Conference on Advanced Information Networking and Applications, Gwangju, Korea, 2015. 571-578


