Robot Assisted Rehabilitation After Stroke: Prototype Design and Clinical Evaluation

Liang Peng, Zeng-Guang Hou*, Long Peng,
Lincong Luo, Weiqun Wang
Institute of Automation, Chinese Academy of Sciences

^{*}Corresponding Author: Zeng-Guang Hou (Email: zengguang.hou@ia.ac.cn)

Neurological Injury —Stroke

http://www.who.int/mediacentre/factsheets/fs310/en/

According to the US National Stroke Association:

- 10% of stroke survivors recover almost completely.
- 25% recover with minor impairments.
- 40% experience moderate to severe impairments that require special care.
- 10% require care in a nursing home or other long-term facility.
- 15% die shortly after the stroke.
- Approximately 14% of stroke survivors experience a second stroke in the first year following a stroke.

Manual Therapy VS. Robot-aided Fraining

Manual Therapy	Robot-aided Training				
Depends more on therapist's skill	Precise and consistent assistance				
Tedious during long-term training	Interesting with video games				
Large burden on therapist effort	Be able to work continuously without sacrificing accuracy				
Rough notes after training by therapist	Real-time monitoring and recording during training				
High cost	Low cost in use				

VS

Upper-limb Rehabilitation Robot

Virtual Training Environment

Visual/Audio Feedback

Haptic Interface

Force Feedback

Robot-aided Training Scenario

CASIA-ARM Rehab Robot

Prototype Design

Prototype

Technical Specification

Degrees of freedom	2
Actuation	2 DC motors
Sensors	2 rotary encoders
Range of joint motion	$80^{\circ} \sim 220^{\circ}, -40^{\circ} \sim 100^{\circ}$
Workspace	500 mm * 416 mm
Motor Torque	$\sim 450~\mathrm{mNm}$
Reduction Ratio	20:1
Force Capability	>32.8 N

Features:

- 5-bar parallel structure (Compact, stiff joint)
- DC motor driven, steel cable transmission
 (Smooth torque regulation, no backlash, back-drivable)

Force Feedback Analysis

High Level Controller

—Reaching Task Example

Trajectory Planning (mimic normal human movement)

Minimum jerk trajectory between two points (x_i, y_i) and (x_d, y_d) :

$$\frac{x(t)-x_i}{x_d-x_i} = \frac{y(t)-y_i}{y_d-y_i}$$

$$= 10(t/\tau)^3 - 15(t/\tau)^4 + 6(t/\tau)^5$$

- "Assisted as Needed" Force Controller
- > Forward direction:

$$F_x = \begin{cases} -k_x (x - x_{ref}) - b_x x & x_{th} < x < x_{ref} \\ 0 & x < x_{th} or x > x_{ref} \end{cases}$$

Vertical direction:

$$F_{y} = \begin{cases} -k_{y} (|y| - |y_{wall}|) - b_{y} \dot{y} & |y| > w_{wall} \\ 0 & |y| < w_{wall} \end{cases}$$

Low Level Controller

□ Impedance Controller

$$\begin{cases} F = -K(X - X_{ref}) - B\dot{X} \\ T = J^T F \end{cases}$$

Impedance Control Loop

Clinical Trials

■ 20 min× 20 sessions (5 days/week × 4 weeks)

Experiment Group robotic therapy

Control Group conventional therapy

Results

- Fugl-Meyer score upper limb part (FMA-UE) is used to reflect the outcomes.
- Two evaluations are performed before trial and after trial, respectively.
- Both groups had significant gains in FMA-UE scores
- Robotic therapy group patients have more gains than those assigned to conventional therapy, but have no significant differences.

Table 2 Baseline sample characteristics and FMA-UE outcomes									
	Cases	Sex	Age (years)	Before trial	After trail	Z^*	p^*	Change	
Robotic therapy	12	M(10)F(2)	46.1 ± 15.8	$27.6 {\pm} 10.7$	$37.9 {\pm} 10.5$	-3.063	0.002	10.3 ± 6.3	
Conventional therapy	12	M(9) F(3)	$46.9 {\pm} 10.1$	$26.2 {\pm} 6.0$	$32.8 {\pm} 7.0$	-3.064	0.002	6.7 ± 3.1	
Z^{**}				-0.289	-1.245		L		
p^{**}				0.772	0.213				

^{*} Mann-Whitney U-test is used to analyze data in the same group.

^{**} Wilcoxon rank-sum test is used to analyze data between groups.

For more details please refer to the paper.

Thank you!