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Abstract The stability of gene regulatory networks has attracted substantial research efforts in the field of

systematic biology. Actual gene regulatory networks are always subject to noise interference and disruption to

the organism either internally or externally. Specifically, the special case of instantaneous mutation may exist

in gene regulatory networks at the mRNA or protein level. Compared with other existing models, a Lévy noise-

driven gene regulatory network model has been proved to be more realistic, since it is a powerful tool to describe

the above special case. On the basis of previous studies, we developed a theoretical proof of the Lévy noise-

driven gene regulatory network, and carried out a large number of numerical simulations for validation. Based

on adequate analysis of the simulation examples, the sufficient conditions were investigated and are presented

herein to obtain the global asymptotic stability of gene regulatory networks with time-varying delays and Lévy

noise.
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1 Introduction

Gene regulatory networks are composed of DNA, RNA, proteins, and other small molecules as well as the

interactions among them [1]. For example, when a gene is transcribed, a group of transcription factors

in the gene promoter system regulate the transcription process. These transcription factors can be the

product of other gene transcription processes, which in turn shape a complex network system [2]. Main-

tenance of the stability of the network system is essential to sustain the life of the organism. Accordingly,

the stability of gene regulatory networks is one of the primary core issues of biological research. To study

a gene expression regulatory network, it is first necessary to establish a model of regulation network, and

then analyze the relationships between genes in the model. Several models on gene regulation are well-

documented, such as the Boolean model [3, 4], Bayesian networks model [5], Petri net model [6, 7], and

differential equation model [8]. Among them, the differential equation model is widely adopted since it

can describe the concentration changes of proteins and mRNA, and also accurately reflects the nonlinear

dynamic behavior of a biological system.
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In recent years, stability analysis of gene regulatory networks with time delays has attracted the

attention of many scholars worldwide. Chen & Aihara [9] first proposed a gene regulatory network model

with constant time delays, and obtained the necessary and sufficient conditions for the stability of the

model. Wu [10] studied the stability of the ring topology of gene regulatory networks with constant time

delays, and presented the necessary and sufficient conditions for the local stability of gene regulatory

networks with independent time delays. The multiple stability criteria for gene regulatory networks with

a class of multiple differentiable time-varying delays are presented in Pan et al. [11]. Moreover, many

studies have contributed to the analysis of the Lévy process [12–15]. Zhu [13] provided the sufficient

conditions for the asymptotic stability of the p-order moments of the stochastic differential equation with

Lévy noise and the detailed proof. Li [14] presented a complete proof of the asymptotic stability of the

exponential function of the Lévy process, and divided the exponential functions of the Lévy process into

five different types according to their convergence speeds. Curry et al. [15] defined a numerical integration

scheme of stochastic differential equations with the Lévy process, which outperformed the random Taylor

series with smaller error coefficients.

For practical problems, investigations are usually carried out for gene regulatory networks with sta-

bility, thus highlighting the primary importance of stability analysis for investigations of gene regulatory

networks [16, 17]. On the one hand, a cell is first transformed into RNA under the action of the tran-

scription enzymes, and then the RNA is transformed into a new DNA in the organism. This two-step

process inevitably leads to time delays. Mouse and zebra-fish experiments [18] have shown that there is a

10–20-min time delay in the cytoplasm from transcription to mRNA maturation, and an approximately

1–3-min delay from translation initiation to protein maturation with complete function. Therefore, there

is a very urgent and necessary need to establish a gene regulatory network model with time delays. On

the other hand, gene expression is often affected by the internal and external noise caused by the random

birth and death of individual molecules [19–25]. Because it is difficult to precisely determine how such

noise affects the performance of the networks, the simplest way is to add random effects to the model

by assuming that the random fluctuations occur within the gene regulatory networks [26]. To this end,

researchers have adopted specific properties such as the strong Markov property of Wiener noise. For

example, Wu [27] investigated the problem of the robust stability of a gene regulatory network model with

parameter uncertainty and random disturbance. In addition, the stability of gene regulatory networks

with interval time delays and stochastic noise was studied by Wu [28]. Wiener noise was used to represent

the random disturbance in gene networks, and the Wiener noise-driven networks model could accurately

describe the random disturbance of gene regulation networks as well as most of the dynamic behaviors.

Note that in [29], long-chain non-coding RNA (lncRNA) regulated many important biological processes.

In the steady state, lnc13 (a type of lncRNA) inhibited the expression of some inflammatory genes by

binding to hnRNPD, a heterogeneous nuclear ribosomal protein. The lnc13 concentration was reduced

when simulated, which led to the increase of the expression ability of the inhibited gene. Lnc13 levels in

small bowel biopsy specimens from patients with celiac disease were found to be significantly decreased,

indicating a concentration mutation, which can be described by the Wiener noise-driven networks model,

although with low accuracy. The jump part of Lévy noise can be used to express the mutation concen-

tration in some areas of the body; thus, a network model can be established to describe gene regulation

to more accurately reflect real biological processes.

On the one hand, gene regulatory networks analysis is not only helpful to understand the formation

and regulation of the organization of genes and transcription products, but can also provide a benefit of

gaining an overall understanding of gene function, which can be applied to the search and identification

of human pathogenic factors. For example, in most cancer studies, almost all of the experimental tools

focus on the dominant oncogene, leading to neglect of the potential synergistic effects of the non-dominant

oncogenes. In fact, in most cases, it is the interaction of several genes other than the target gene that

leads to tumor formation. Substantial information is required to identify the synergistic effect of the non-

dominant oncogene through experiments, and then the complex gene networks and their relationships to

gene regulation must be analyzed with a powerful computer. Indeed, a gene regulatory networks model

has been proposed to identify drug targets for cancer treatment. On the other hand, gene networks
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analysis is also an effective approach for life information mining. Gene regulatory networks are analyzed

with various methods, which is helpful for information mining and the determination of gene function

based on collaborative information of the interactions and transmission processes in the gene networks.

Accordingly, the information obtained can be used for practical applications with several potential benefits

for improving mankind human quality of life.

In view of the above background, in this paper, we present a differential equation model of gene

regulatory networks with time-varying delays and Lévy noise, and analyze its stability. Furthermore,

the sufficient conditions for obtaining global asymptotic stability of the gene regulatory networks with

time-varying delays and Lévy noise are obtained, and the conditions for the stochastic stabilization of

gene regulatory networks with time-varying delays and Lévy noise are evaluated. Finally, a numerical

example is presented to demonstrate that the proposed gene regulatory networks can achieve stochastic

stability.

2 Preliminaries

A gene regulatory network consists of a large number of genes, which regulate the expression of other

genes through protein-to-protein interactions. Gene expression is modified through the processes of

transcription, translation, and post-translation via protein activation and inhibition. Here, we take the

Hill function as an example to discuss gene regulatory networks. If the transcription factor is an activator

of a gene, then this system is a positive feedback loop, which tends toward one of the two steady states.

If the transcription factor is a suppressor of a gene, then this system is a negative feedback loop, which

can be close to a steady state or around a steady state. Combined with [30], the following gene regulatory

networks model is considered:






ṁ(t) = −Am(t) +Wf(p(t− τ1(t))) + Γ,

ṗ(t) = −Cp(t) +Dm(t− τ2(t)).
(1)

m(t) = [m1(t),m2(t), . . . ,mn(t)]
T, p(t) = [p1(t), p2(t), . . . , pn(t)]

T, where mi(t) and pi(t) denote the mR-

NA concentration and protein concentration in a node i at time t, respectively. A = diag{a1, a2, . . . , an}
and C = diag{c1, c2, . . . , cn} denote the mRNA and protein degradation rate, respectively. D = diag{d1,
d2, . . . , dn} denotes the translation rate, and W = (wij) ∈ R

n×n is defined as follows:

(wij)















> 0, if the transcription factor j is an activator of the gene i,

= 0, if the gene j is not connected to the gene i,

< 0, if the transcription of j is a suppressor of the gene i.

Remark 1. mRNA is a class of single-stranded RNA that is the product of DNA transcription with

genetic information, and functions as a template for protein synthesis on the ribosome, which determines

the amino acid sequence of the peptide chain. A protein is composed of α amino acids in a certain order

that are combined to form a polypeptide chain, and then one or more of the polypeptide chains form a

combination of high-molecular-weight compounds in accordance with the specific encoded conformation.

Proteins are the scaffold and main substance of human tissues and organs that play an important role in

sustaining human life.

The organism has automatical ability: it can resist external interference, and at the same time, has

mechanisms to maintain its structure and function in stable state. This automatic adjustment capability

is realized through an internal feedback mechanism of the organism. f(·) denotes the feedback regulation

of proteins to transcription factors, where f is a monotone saturated function of the Hill form. τ1(t) and

τ2(t) denote the unknown time-varying delays, where 0 6 τ1(t) 6 h1, 0 6 τ2(t) 6 h2, 0 6 τ̇1(t) 6 d1, and

0 6 τ̇2(t) 6 d2, in which h1, h2, d1, and d2 are constants. In addition, Γ = [Γ1,Γ2, . . . ,Γn]
T
, where Γi

is the basic transcription rate of the suppressor genes. According to [31], the system model (1) can be
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transformed into the following form:







ṁ(t) = −Am(t) +Wg(p(t− τ1(t))),

ṗ(t) = −Cp(t) +Dm(t− τ2(t)),
(2)

where g(·) satisfies the condition g(x)(g(x) − V x) 6 0, and V is a constant.

From a biological point of view, mRNA and protein can result from the synthesis of different parts, and

therefore their transport or diffusion will lead to time delays. In addition, gene regulation is a process

full of noise. In this paper, such stochastic perturbation and time-varying delays are introduced into the

gene regulatory networks as follows:







dm(t) = [−Am(t) +Wg(p(t− τ1(t)))]dt+ σ1(t, p(t), p(t− τ1(t)))dL1(t),

dp(t) = [−Cp(t) +Dm(t− τ2(t))]dt+ σ2(t,m(t),m(t− τ2(t)))dL2(t),
(3)

where σ1(t, p(t), p(t−τ1(t))), σ2(t,m(t),m(t−τ2(t))) are local Lipschitz continuous parameters and satisfy

linear growth conditions, and there exist four proper dimensional constant matrices X0, X1, X2, and X3

satisfying:

trace[σT
1 (t, p(t), p(t− τ1(t)))σ1(t, p(t), p(t− τ1(t)))]

6 pT(t)XT
0 X0p(t) + pT(t− τ1(t))X

T
1 X1p(t− τ1(t)), (4)

trace[σT
2 (t,m(t),m(t− τ2(t)))σ2(t,m(t),m(t− τ2(t)))]

6 mT(t)XT
2 X2m(t) +mT(t− τ2(t))X

T
3 X3m(t− τ2(t)). (5)

L1(t), L2(t) denote Lévy processes so that:

L1(t) = B1(t) +

∫

|y|<c

H1(m(u−), p(u−), y)Ñ(du, dy),

L2(t) = B2(t) +

∫

|y|<c

H2(m(u−), p(u−), y)Ñ(du, dy),

where B1(t) = (b1, b2, . . . , bm)T and B2 (t) = (b′1, b
′
2, . . . , b

′
m)

T
capture the Brown motion of the indepen-

dent m dimension, defined on the complete probability space (Ω, F, P ). N is a Poisson random measure

defined on R+ × (Rd − {0}) with compensator Ñ and intensity ν. We assume that N is independent of

B, and ν is a Lévy measure such that Ñ(dt, dy) := N(dt, dy)− ν(dy)dt and
∫

Rn−{0}(|y|2 ∧ 1)ν(dy) < ∞,

and H : Rd × R
d × R

d → R
d and the constant c ∈ (0,∞].

Remark 2. Generally speaking, the Wiener noise only considers the part of the Brown motion, whereas

the Lévy noise increases the jump part on the basis of the Wiener noise. This paper mainly focuses on

the effect of the jump part of the Lévy noise for the gene regulatory networks.

To analyze the network stability, we refer to the following assumptions and lemmas:

Lemma 1 ([32]). For any matrices X,Y ∈ R
n, matrix Q > 0, the following inequality is established:

2XTY 6 XTQX + Y TQ−1Y. (6)

.

Lemma 2 ( [33]). For any constant matrix M ∈ R
n×n,M = MT > 0 and constant γ > 0, vector

function ω : [0, γ] → R
n, so the integral satisfies the following inequality:

[
∫ γ

0

ω(s)ds

]T

M

[
∫ γ

0

ω(s)ds

]

6 γ

∫ γ

0

ωT(s)Mω(s)ds. (7)
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Lemma 3 (Schur Complement [34]). Given constant matrices X = XT, Y = Y T. If
[

X Z
ZT Y

]

> 0, it

leads to the condition that

X > 0, Y − ZTX−1Z > 0,

or

Y > 0, X − ZTY −1Z > 0. (8)

Assumption 1 ([35]). There exists a positive constant K, for any x ∈ R
n, q > 0, such that

∫

|y|<c

|H(x, y)|qν(dy) 6 K|x|q. (9)

3 Results

In this section, we analyze the stability of the stochastic gene regulatory networks with time-varying

delays driven by Lévy noise. When the time-varying delays satisfy the above-mentioned conditions, a

new criterion for the expected stability criterion is obtained.

Theorem 1. System (3) is globally asymptotically stable. If there exist matrices P11, P12, P22,

S1 > 0, S2 > 0, S3 > 0, R1, R2, Q1 > 0, Q2 > 0, Q3 > 0, Q4 > 0, U1 > 0, U2 > 0, MT
1 =

[MT
11,M

T
12,M

T
13,M

T
14,M

T
15,M

T
16,M

T
17,M

T
18], MT

2 = [MT
21,M

T
22,M

T
23,M

T
24,M

T
25,M

T
26,M

T
27,M

T
28], diagonal

matrices K1 > 0, K2 > 0, K3 > 0, K4 > 0, positive constants α, β, ρ1, ρ2, ρ3, ρ4, c1, c2, and sat-

isfies the following LMIs:

Π =







































Ω
√
h1Φ

T
1

√
h2Φ

T
2

√
h1M1

√
h2M2 M1 M2 M1 M2√

h1Φ1 −Q3 0 0 0 0 0 0 0
√
h2Φ2 0 −Q4 0 0 0 0 0 0

√
h1M

T
1 0 0 −Q3 0 0 0 0 0

√
h2M

T
2 0 0 0 −Q4 0 0 0 0

MT
1 0 0 0 0 −R1 0 0 0

MT
2 0 0 0 0 0 −R2 0 0

MT
1 0 0 0 0 0 0 −U1 0

MT
2 0 0 0 0 0 0 0 −U2







































< 0,

P =

[

P11 P12

PT
12 P22

]

> 0, (10)

P11 6 ρ1I, P22 6 ρ3I,

U1 6 ρ2I, U2 6 ρ4I,

2c1K3U1 −Q1 < 0, 2c2K4U2 −Q2 < 0,

where Φ1 =
[

−A 0 0 0 0 W 0 0
]

, Φ2 =
[

0 −C 0 D 0 0 0 0
]

,

Ω =



































γ11 γ12 −MT
13 Ψ1 −MT

15 Ψ2 −MT
17 −MT

18

∗ γ22 −MT
23 Ψ3 −MT

25 Ψ4 −MT
27 −MT

28

∗ ∗ γ33 0 0 0 0 0

∗ ∗ ∗ γ44 0 0 0 0

∗ ∗ ∗ ∗ γ55 0 0 0

∗ ∗ ∗ ∗ ∗ γ66 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ξ1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ2



































,
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γ11 = −P11A−ATP11 + S3 + R1 + h2Q2 +K1 + (ρ3 + 2h2ρ4)X
T
2 X2 −MT

11 −M11,

γ12 = −P12C −ATP12 −MT
12 −MT

21,

γ22 = −P22C − CTP22 + S1 +R2 + h1Q1 +K2 + αV TV + (ρ1 + 2h1ρ2)X
T
0 X0 −MT

22 −M22,

γ33 = (ρ1 + 2h1ρ2)X
T
1 X1 − (1 − d1)S1 + βV TV ,

γ44 = (ρ3 + 2h2ρ4)X
T
3 X3 − (1 − d2)S3, γ55 = S2 − αI, γ66 = −βI − (1 − d1)S2,

Ξ1 = −h−1
1 (Q1 − 2c1K3U1), Ξ2 = −h−1

2 (Q2 − 2c2K4U2), Ψ1 = P12D −MT
14, Ψ2 = P11W −MT

16,

Ψ3 = P22D −MT
24, Ψ4 = PT

12W −MT
26.

Proof. Given the gene regulatory networks:






dm(t) = [−Am(t) +Wg(p(t− τ1(t)))]dt+ σ1(t, p(t), p(t− τ1(t)))dL1(t),

dp(t) = [−Cp(t) +Dm(t− τ2(t))]dt+ σ2(t,m(t),m(t− τ2(t)))dL2(t).

Using the Lyapunov-Krasovskii functions, we get

V (m(t), p(t), t) =

5
∑

i=1

Vi(m(t), p(t), t),

where

V1(m(t), p(t), t) =

[

m(t)

p(t)

]T

P

[

m(t)

p(t)

]

,

V2(m(t), p(t), t) =

∫ t

t−τ1(t)

(pT(θ)S1p(θ) + gT(p(θ))S2g(p(θ)))dθ +

∫ t

t−τ2(t)

mT(θ)S3m(θ)dθ,

V3(m(t), p(t), t) =

∫ t

t−h

mT(θ)R1m(θ)dθ +

∫ t

t−h

pT(θ)R2p(θ)dθ,

V4(m(t), p(t), t) =

∫ 0

−h1

∫ t

t+θ

{pT(η)Q1p(η) + [−Am(η) +Wg(p(η − τ1(η)))]
TQ3[−Am(η)

+ Wg(p(η − τ1(η)))]}dηdθ +
∫ 0

−h2

∫ t

t+θ

{mT(η)Q2m(η)

+ [−Cp(η) +Wm(η − τ2(η))]
TQ3[−Cp(η) +Wm(η − τ2(η))]}dηdθ,

V5(m(t), p(t), t) = 2

∫ 0

−h1

∫ t

t+θ

trace[σT
1 (η, p(η), p(η − τ1(η)))U1σ1(η, p(η), p(η − τ1(η)))]dηdθ

+ 2

∫ 0

−h2

∫ t

t+θ

trace[σT
2 (η,m(η),m(η − τ2(η)))U2σ2(η,m(η),m(η − τ2(η)))]dηdθ.

Using the generalized Itô formula [13], the Lyapunov-Krasovskii functions along the system (3) to the

trajectory of the differential can be obtained as follows:

LV1(m(t), p(t), t) = −2mT(t)P11Am(t) + 2mT(t)P11Wg(p(t− τ1(t))) + trace[σT
1 (t, p(t), p(t− τ1(t)))

P11σ1(t, p(t), p(t− τ1(t)))] +

∫

|y|<c

[V1(m(t), p(t) +H1(m(t), p(t), y), t)− V1(m(t), p(t), t)

−H1(m(t), p(t), y), t)V1p(m(t), p(t), t)]ν(dy)− 2pT(t)PT
12Am(t) + 2pT(t)PT

12Wg(p(t− τ1(t)))

−2mT(t)P12Cp(t) + 2mT(t)P12Dm(t− τ2(t))− 2pT(t)P22Cp(t) + 2pT(t)P22Dm(t− τ2(t))

trace[σT
2 (t,m(t),m(t− τ2(t)))P22σ2(t,m(t),m(t− τ2(t)))] +

∫

|y|<c

[V1(m(t) +H2(m(t), p(t), y),

p(t), t)− V1(m(t), p(t), t) −H2(m(t), p(t), y), t)V1m(m(t), p(t), t)]ν(dy),

LV2(m(t), p(t), t) 6 pT(t)S1p(t) + gT(p(t))S2g(p(t))− (1− d1)p
T(t− τ1(t))S1p(t− τ1(t))

−(1− d1)g
T(p(t− τ1(t)))S2g(p(t− τ1(t))) +mT(t)S3m(t)− (1− d2)m

T(t− τ2(t))S3m(t− τ2(t)),

LV3(m(t), p(t), t) = mT(t)R1m(t)−mT(t− h)R1m(t− h) + pT(t)R2p(t)− pT(t− h)R2p(t− h),
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LV4(m(t), p(t), t) 6 h1p
T(t)Q1p(t)−

∫ t

t−τ1(t)

pT(θ)Q1p(θ)dθ + h1[−Am(t) +Wg(p(t− τ1(t)))]
T

Q3[−Am(t) +Wg(p(t− τ1(t)))] −
∫ t

t−τ1(t)

[−Am(θ) +Wg(p(θ − τ1(θ)))]
TQ3[−Am(θ)

+Wg(p(θ − τ1(θ)))]dθ + h2m
T(t)Q2m(t)−

∫ t

t−τ2(t)

mT(θ)Q2m(θ)dθ + h2[−Cp(t)

+Dm(t− τ2(t))]
TQ4[−Cp(t) +Dm(t− τ2(t))]−

∫ t

t−τ2(t)

[−Cp(θ) +Dm(θ − τ2(θ))]
T

Q4[−Cp(θ) +Dm(θ − τ2(θ))]dθ,

LV5(m(t), p(t), t) 6 2h1trace[σ
T
1 (t, p(t), p(t− τ1(t)))U1σ1(t, p(t), p(t− τ1(t)))]

−2

∫ t

t−τ1(t)

trace[σT
1 (θ, p(θ), p(θ − τ1(θ)))U1σ1(θ, p(θ), p(θ − τ1(θ)))]dθ

+2h2trace[σ
T
2 (t,m(t),m(t− τ2(t)))U2σ2(t,m(t),m(t − τ2(t)))]

−2

∫ t

t−τ2(t)

trace[σT
2 (θ,m(θ),m(θ − τ2(θ)))U2σ2(θ,m(θ),m(θ − τ2(θ)))]dθ.

By the Leibniz-Newton formula, for the appropriate dimension of the matrices M1, M2 such that

−2ξT(t)M1{m(t)−m(t− h)−
∫ t

t−h

[−Am(θ) +Wg(p(θ − τ1(θ)))]dθ

−
∫ t

t−h

σ1(θ, p(θ), p(θ − τ1(θ)))dL1(θ)} = 0,

−2ξT(t)M2{p(t)− p(t− h)−
∫ t

t−h

[−Cp(θ) +Dm(θ − τ2(θ))]dθ

−
∫ t

t−h

σ2(θ,m(θ),m(θ − τ2(θ)))dL2(θ)} = 0,

where h = max{h1, h2} and ξT(t) = [mT(t), pT(t), pT(t− τ1(t)),m
T(t− τ2(t)), g

T(p(t)), gT(p(t− τ1(t))),

(
∫ t

t−τ1
p(θ)dθ)T, (

∫ t

t−τ2
m(θ)dθ)T].

From Lemmas 1 and 2, noting that τ1 6 h1 6 h, we obtain

2ξT(t)M1m(t− h) 6 ξT(t)M1R
−1
1 MT

1 ξ(t) +mT(t− h)R1m(t− h), (11)

2ξT(t)M1

∫ t

t−h

[−Am(θ) +Wg(p(θ − τ1(θ)))]dθ 6 h1ξ
T(t)M1Q

−1
3 MT

1 ξ(t)

+
∫ t

t−τ1(t)
[−Am(θ) +Wg(p(θ − τ1(θ)))]

TQ3[−Am(θ) +Wg(p(θ − τ1(θ)))]dθ, (12)

2ξT(t)M1

∫ t

t−h

σ1(θ, p(θ), p(θ − τ1(θ)))dL1(θ) 6 ξT(t)M1U
−1
1 MT

1 ξ(t) +

(
∫ t

t−τ1(t)

σ1(θ, p(θ),

p(θ − τ1(θ)))dL1(θ)

)T

U1

(

∫ t

t−τ1(t)
σ1(θ, p(θ), p(θ − τ1(θ)))dL1(θ)

)

. (13)

In the same way:

2ξT(t)M2p(t− h) 6 ξT(t)M2R
−1
2 MT

2 ξ(t) + pT(t− h)R2p(t− h), (14)

2ξT(t)M2

∫ t

t−h

[−Cp(θ) +Dm(θ − τ2(θ))]dθ 6 h2ξ
T(t)M2Q

−1
4 MT

2 ξ(t) +

∫ t

t−τ2(t)

[−Cp(θ) +

Dm(θ − τ2(θ))]
TQ4[−Cp(θ) +Dm(θ − τ2(θ))]dθ, (15)

2ξT(t)M2

∫ t

t−h

σ2(θ,m(θ),m(θ − τ2(θ)))dL2(θ) 6 ξT(t)M2U
−1
2 MT

2 ξ(t) +

(
∫ t

t−τ2(t)

σ2(θ,m(θ),
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m(θ − τ2(θ)))dL2(θ)

)T

U2

(
∫ t

t−τ2(t)

σ2(θ,m(θ),m(θ − τ2(θ)))dL2(θ)

)

. (16)

Noting that g(·) satisfies the condition g(x)(g(x) − V x) 6 0, it follows that

gT(p(t))g(p(t))− pT(t)V TV p(t) 6 0,

gT(p(t− τ1(t)))g(p(t− τ1(t)))− pT(t− τ1(t))V
TV p(t− τ1(t)) 6 0,

where V = diag{v1, v2, . . . , vn}.
Therefore, for any constants α > 0, β > 0, we obtain

− α[gT(p(t))g(p(t)) − pT(t)V TV p(t)] > 0, (17)

− β[gT(p(t− τ1(t)))g(p(t − τ1(t))) − pT(t− τ1(t))V
TV p(t− τ1(t))] > 0, (18)

From conditions (4), (5) and the LMIs (10), we get

trace[σT
1 (t, p(t), p(t− τ1(t)))P11σ1(t, p(t), p(t− τ1(t)))]

6 λ(P11)[p
T(t)XT

0 X0p(t) + pT(t− τ1(t))X
T
1 X1p(t− τ1(t))]

6 ρ1[p
T(t)XT

0 X0p(t) + pT(t− τ1(t))X
T
1 X1p(t− τ1(t))], (19)

trace[σT
1 (t, p(t), p(t− τ1(t)))U1σ1(t, p(t), p(t− τ1(t)))]

6 λ(U1)[p
T(t)XT

0 X0p(t) + pT(t− τ1(t))X
T
1 X1p(t− τ1(t))]

6 ρ2[p
T(t)XT

0 X0p(t) + pT(t− τ1(t))X
T
1 X1p(t− τ1(t))], (20)

trace[σT
2 (t,m(t),m(t− τ2(t)))P22σ2(t,m(t),m(t− τ2(t)))]

6 λ(P22)[m
T(t)XT

2 X2m(t) +mT(t− τ2(t))X
T
3 X3m(t− τ2(t))]

6 ρ3[m
T(t)XT

2 X2m(t) +mT(t− τ2(t))X
T
3 X3m(t− τ2(t))], (21)

trace[σT
2 (t,m(t),m(t− τ2(t)))U2σ2(t,m(t),m(t− τ2(t)))]

6 λ(U2)[m
T(t)XT

2 X2m(t) +mT(t− τ2(t))X
T
3 X3m(t− τ2(t))]

6 ρ4[m
T(t)XT

2 X2m(t) +mT(t− τ2(t))X
T
3 X3m(t− τ2(t))]. (22)

According to Kunita’s estimate [35], we obtain

∫

|y|<c

[V1(m(t) +H2(m(t), p(t), y), p(t), t) − V1(m(t), p(t), t)

−H2(m(t), p(t), y), t)V1m(m(t), p(t), t)]ν(dy) 6 mT(t)K1m(t), (23)
∫

|y|<c

[V1(m(t), p(t) +H1(m(t), p(t), y), t) − V1(m(t), p(t), t)

−H1(m(t), p(t), y), t)V1p(m(t), p(t), t)]ν(dy) 6 pT(t)K2p(t). (24)

By the basic inequality, it follows that

E

(
∫ t

t−τ1(t)

σ1(θ, p(θ), p(θ − τ1(θ)))dL1(θ)

)T

U1

(
∫ t

t−τ1(t)

σ1(θ, p(θ), p(θ − τ1(θ)))dL1(θ)

)

= E

[
∫ t

t−τ1(t)

σT
1 (θ, p(θ), p(θ − τ1(θ)))dω1(θ)U1

∫ t

t−τ1(t)

σ1(θ, p(θ), p(θ − τ1(θ)))dω1(θ)

+ 2

∫ t

t−τ1(t)

σT
1 (θ, p(θ), p(θ − τ1(θ)))dω1(θ)U1

∫ t

t−τ1(t)

∫

|y|<c

H1(m(u−), p(u−), y)Ñ(du, dy)

+

∫ t

t−τ1(t)

∫

|y|<c

H1(m(u−), p(u−), y)Ñ(du, dy)U1

∫ t

t−τ1(t)

∫

|y|<c

H1(m(u−), p(u−), y)Ñ(du, dy)

]

,
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where

E

[
∫ t

t−τ1(t)

∫

|y|<c

H1(m(u−), p(u−), y)Ñ(du, dy)

]2

U1

6 c1E

[(
∫ t

t−τ1(t)

∫

|y|<c

(H1(m(u−), p(u−), y))2ν(dy)du

)

U1

]

6 c1E

[(
∫ t

t−τ1(t)

(

∫

|y|<c

(H1(m(u−), p(u−), y))2ν(dy))du

)

U1

]

6 c1K3E

[(
∫ t

t−τ1(t)

p2(u−)du

)

U1

]

.

Since the following inequalities are established [36]:

E

∫ t

t−τ1(t)

σT
1 (θ, p(θ), p(θ − τ1(θ)))dω1(θ)U1

∫ t

t−τ1(t)

σ1(θ, p(θ), p(θ − τ1(θ)))dω1(θ)

= E

∫ t

t−τ1(t)

trace[σT
1 (θ, p(θ), p(θ − τ1(θ)))U1σ1(θ, p(θ), p(θ − τ1(θ)))]dω1(θ),

we can obtain

E

(

∫ t

t−τ1(t)

σ1(θ, p(θ), p(θ − τ1(θ)))dL1(θ)

)T

U1

(

∫ t

t−τ1(t)

σ1(θ, p(θ), p(θ − τ1(θ)))dL1(θ)

)

6 2E

∫ t

t−τ1(t)

trace[σT
1 (θ, p(θ), p(θ − τ1(θ)))U1σ1(θ, p(θ), p(θ − τ1(θ)))]dω1(θ)

+ 2c1K3E





(

∫ t

t−τ1(t)

p(u−)du

)T

U1

(

∫ t

t−τ1(t)

p(u−)du

)



 . (25)

In the same way, we obtain

E

(

∫ t

t−τ2(t)

σ2(θ,m(θ),m(θ − τ2(θ)))dL2(θ)

)T

U2

(

∫ t

t−τ2(t)

σ2(θ,m(θ),m(θ − τ2(θ)))dL2(θ)

)

6 2E

∫ t

t−τ2(t)

trace[σT
2 (θ,m(θ),m(θ − τ2(θ)))U2σ2(θ,m(θ),m(θ − τ2(θ)))]dω2(θ)

+ 2c2K4E





(

∫ t

t−τ2(t)

m(u−)du

)T

U2

(

∫ t

t−τ2(t)

m(u−)du

)



 . (26)

Finally, we consider (11)–(26) together, and take the mathematical expectation to get

ELV (m(t), p(t), t) 6 EξT(t)Πξ(t),

where

Π =Ω + h1Φ
T
1 Q3Φ1 + h2Φ

T
2 Q4Φ2 + h1M1Q

−1
3 MT

1 + h2M2Q
−1
4 MT

2

+M1R
−1
1 MT

1 +M2R
−1
2 MT

2 +M1U
−1
1 MT

1 +M2U
−1
2 MT

2 .

4 Numerical examples

Example 1. As an example, we first consider a gene regulatory networks with three genes (lacl, tetR,

cl):






dm(t) = −Am(t) +Wp(t),

dp(t) = −Cp(t) +Dm(t),
(27)
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where A = diag{3.5, 3.5, 3.5}, D = diag{2.5, 2.5, 2.5}, C = diag{0.5, 2.5, 2.5}, W = {0, 2, 0; 2, 0, 0; 0, 2, 0},
and f(x) = x2/(1 + x2). Using the MATLAB system, we get the general solution of the following form






m(t) = c1 ∗ exp((t ∗ (17
1

2 − 6))/2) ∗ (17 1

2 /4− 1/4)− c2 ∗ exp(−(t ∗ (17 1

2 + 6))/2) ∗ (17 1

2 /4 + 1/4),

p(t) = c1 ∗ exp((t ∗ (17
1

2 − 6))/2) + c2 ∗ exp(−(t ∗ (17 1

2 + 6))/2).

Therefore, over time, m(t) and p(t) deviate from the 0 point at an exponential rate, so that the system

is not stable. The trajectories of the mRNA concentration m(t) and protein concentration p(t) are shown

in Figure 1.

As demonstrated in Figure 1, the mRNA and protein concentrations in the three nodes increase with

time from the 0 point, and are in divergent states. Thus, at this time, the system is not stable.

However, an actual gene regulatory network is affected by both internal factors and the external

environment. Based on the gene regulatory network defined above (27), we consider delay factors and

random factors, and obtain the following gene regulatory network model (28):






dm(t) = [−Am(t) +Wg(p(t− τ1(t)))]dt+ σ1(t, p(t), p(t− τ1(t)))dL1(t),

dp(t) = [−Cp(t) +Dm(t− τ2(t))]dt+ σ2(t,m(t),m(t− τ2(t)))dL2(t),
(28)

where A = diag{3.5, 3.5, 3.5}, D = diag{2.5, 2.5, 2.5}, C = diag{0.5, 2.5, 2.5}, X0 = X2 = diag{0.2, 0.2,
0.2}, X1 = X3 = diag{0.3, 0.3, 0.3}, V = diag{0.65, 0.65, 0.65}, K1 = diag{1.5, 1.5, 1.5}, K2 = diag{2, 2,
2}, W = {0, 2, 0; 2, 0, 0; 0, 2, 0}, and f(x) = x2/(1 + x2).

In the model (28), time-varying delays are used to represent the influence of time delays, and τ1(t) =

1 + 0.2 sin(t), τ2(t) = 1 + 0.1 sin(t). Moreover, we use Lévy noise to represent random factors. In this

case, the system is not stable because the parameters do not satisfy the conditions outlined in Theorem 1

and Ω is not a negative definite matrix. The trajectories of the mRNA concentration m(t) and protein

concentration p(t) of the gene regulatory network with time-varying delays and Lévy noise are shown in

Figure 2.

As shown in Figure 2, the mRNA and protein concentrations in the three nodes increase over time

from the 0 point, which are in divergent states. At this time, the system is still not stable.

However, when we control the parameters to meet the conditions proposed in Theorem 1, let A =

diag{3.5, 3.5, 3.5}, C = D = diag{2.5, 2.5, 2.5}, X0 = X2 = diag{0.2, 0.2, 0.2}, X1 = X3 = diag{0.3, 0.3,
0.3}, V = diag{0.65, 0.65, 0.65}, K1 = diag{1.5, 1.5, 1.5}, K2 = diag{2, 2, 2}, W = {0, 0.2, 0; 0.2, 0, 0; 0,
0.2, 0}, and f(x) = x2/(1+x2), and then Ω becomes a negative definite matrix, and the system is stable.

We can obtain the trajectories of the mRNA concentration m(t) and protein concentration p(t) of the

gene regulatory network with time-varying delays and Lévy noise, as shown in Figure 3. From Figure 3,

we can see that the gene regulatory network (3) is globally asymptotic stable. According to the above

time-delay functions τ1(t), τ2(t), we choose d1 = 0.2, d2 = 0.1, h1 = 1.2, h2 = 1.1, and the feasible

solution of the LMIs (10) can be obtained by using the LMI toolbox in MATLAB. The values of some of

the matrix variables are listed below:

P11 =









1.3087 0 −0.0010

0 1.3087 0

−0.0010 0 1.3096









, P12 =









0 0 0

0 0 0

0 0 0









, P22 =









0.3720 0 −0.0000

0 0.3720 0

−0.0000 0 0.3720









,

S1 =









5.6668 0 −0.0000

0 5.6668 0

−0.0000 0 5.6668









, S2 =









1.4027 0 −0.0000

0 1.4029 0

−0.0000 0 1.4029









, S3 =









3.4081 0 −0.0000

0 3.4081 0

−0.0000 0 3.4081









.

In this paper, we added Lévy noise control into model (28). Therefore, the system achieves a stable

state. In addition, we added a reasonable and effective control method to meet the inequality group (10).

By comparing Figure 2 and Figure 3, we find that in Figure 3, the protein concentration curve has three
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Figure 1 Trajectories of m(t) and p(t) of the gene regulatory network.
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Figure 2 Trajectories of m(t) and p(t) of the gene regulatory network with time-varying delays and Lévy noise.
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Figure 3 Trajectories of m(t) and p(t) of the gene regulatory network with time-varying delays and Lévy noise.

nodes at the mRNA levels and some moderate fluctuation around the 0 point, but finally converges to 0,

suggesting that it is in a generally steady state. At this time, the gene regulatory network achieves the

status of stochastic stabilization.

As a practical example, the models presented in this paper were used to analyze genes and their

regulatory mechanism related to idiopathic or isolated atrial fibrillation (AF) in AF patients [37–40].

The results showed that approximately 10 genes, including Connexin40, 10q22-q24, 6q14-q16, and 5p13,

were related to AF. Connexin40 is the main structural basis for the synchronization of the electrical
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activity of the myocardium and the impulse of the electrical activity in the heart. Abnormal contraction

of Connexin40 will lead to imbalance in regional myocardial electrical activity, and thus increase action

potential propagation anisotropy and conduction velocity heterogeneity. Connexin40 is associated with

atrial electrical remodeling and structural remodeling in AF, and is thus involved in the occurrence and

progress of AF. Therefore, mutation of the Connexin40 gene can induce idiopathic AF, which threatens

the life of a patient with AF. Usually, polymorphisms in the Connexin40 gene may result in changes in

connexin expression with respect to both quantity and distribution, leading to atrial electrical conduction

disturbance, resulting in the occurrence and progression of AF. The antiarrhythmic peptides can enhance

the conduction velocity of gap junctions, improve the electrical coupling between cells, and reduce atrial

vulnerability. Therefore, the use of antiarrhythmic peptides for AF patients can restore the cardinal

function and improve the patient’s quality of life.

5 Concluding remarks

In this paper, the stability of gene regulatory networks with time-varying delays and with Lévy noise is

investigated. In addition, the sufficient conditions for achieving stochastic stabilization are presented, and

a simulation example is provided to illustrate that system (3) is globally asymptotically stable. However,

in this paper, only time-varying delays of the gene regulatory networks are taken into consideration, and

thus the stability of the gene regulatory networks with Lévy noise needs to be further investigated in

future studies.
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