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Abstract The goal of this paper is to develop a preliminary plan for a multi-nanosatellite active debris

removal platform (MnADRP) for low-Earth-orbit (LEO) missions. A dynamic multi-objective traveling salesman

problem (TSP) scheme is proposed in which three optimization objectives, i.e., the debris removal priority,

the MnADRP orbital transfer energy, and the number of required nanosatellites are modeled respectively. A

modified genetic algorithm (GA) is also proposed to solve the dynamic multi-objective TSP. Finally, numerical

experiments involving partially real-world the debris data set are conducted to verify the efficacy of the proposed

models and the solution method.
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1 Introduction

Recent studies indicate that the debris population in the low Earth orbit (LEO) is growing at a dramatic

rate, despite of current international debris mitigation policies [1]. Because of the high impact speed,

debris items as small as 0.2 mm pose a realistic threat to human space activities and assets. To better

preserve LEO resources, active debris removal (ADR) of massive upper stages and spacecraft fragments

must be considered. Moreover, multiple items of debris should be removed in a single mission to reduce

launch costs and shorten the overall spacecraft manufacture and preparation process [2].

An ADR mission typically involves rendezvous between a spacecraft and the debris targeted for re-

moval. Hence, proximity operations, capturing, stabilization, and deorbiting maneuvers must be per-

formed successfully. Recently, the multi-nanosatellite ADR platform (MnADRP) has been proposed [3],

which consists of a mother spacecraft and a number of nanosatellites as its payloads. Under this scheme,

the nanosatellites are released when the MnADRP is near the target debris, then perform the capturing

and stabilization. Eventually, the mother spacecraft performs the main debris capturing, and the mother

spacecraft and nanosatellites deorbit together with the debris into the Earth’s atmosphere.
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Figure 1 Multiple space debris removal with MnADRP.

In this paper, the MnADRP is extended to facilitate the removal of multiple items of debris. The

task flow is as follows. The MnADRP is launched into an initial orbit. After receiving the mission

start command, it performs transfer, rendezvous and removal operations for a series of debris items, in

accordance with a certain preliminary plan uploaded from the ground or embedded before its launch. In

this plan the target debris, rendezvous sequence, and time-to-debris are specified, allowing the MnADRP

to obtain high removal efficacy, subject to its payload, energy, and time budgets. When approaching

each item of debris, the MnADRP mother spacecraft releases several nanosatellites, which can approach

and capture the debris, eventually detumbling and deorbiting the debris. Then the MnADRP progresses

to the next debris removal task, in according to the planned sequence. The entire mission process is

shown in Figure 1. The factors rendering the MnADRP suitable for this mission are as follows. First,

the mother spacecraft can transport sufficient energy for orbital transfer and nanosatellites for debris

deorbiting. Second, the nanosatellite number and type can be adapted based on the size, mass, or motion

of specific items of debris. Finally, following release from the mother spacecraft, nanosatellites can

construct a network to conduct multi-source measurements of the debris, so as to enhance the precision

of relative motion estimation. Moreover, the nanosatellites are low-cost because of the standardization

and modulation of their systems.

The preliminary planning is a critical procedure for the multi-debris removal mission design, as it

determines the target debris, the orbital transfer sequence, and the design requirements of the ADR

spacecraft, such as its energy and the number of transported nanosatellites. This problem is first regarded

as a single-objective optimization task. For example, in [4], the energy cost of an ADR spacecraft is

optimized using a series method. In [5, 6], the debris removal sequence with the lowest energy cost

is determined via brute force approach for four different scenarios. Moreover, in [7], this problem is

solved under time and energy constraints for the three satellite debris clouds, Iridium 33, Cosmos 2251,

and Fengyun 1C. Approaches to minimizing the energy cost for a chosen debris set, with consideration

of the rendezvous time for each particular transfer strategy, are presented in [8, 9]. In recent years,

multi-objective optimization has been introduced and has attracted considerable attention. For example,

in [10], the mission duration and energy cost are taken as two optimization objectives under a Lambert
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transfer strategy. Further, in [11], the same objectives are considered, but different deorbit scenarios are

examined using the branch and bound approach. The total duration and energy cost are also utilized

as optimization objectives in [12]; however, the time, energy, and nanosatellite budget are added as

constraints.

This paper proposes a multi-objective optimization scheme and GA-based solution method for the

preliminary planning of a multi-debris removal mission with an MnADRP, which maximizes the total

debris removal priority while minimizing the orbital transfer energy and the number of nanosatellites

required for debris removal. In the next section, the multi-objective optimization formulation and the

energy-cost, nanosatellite-quantity cost, and debris priority models are elucidated. Then, the GA-based

solving method is introduced. Finally, numerical experiments are conducted and the results are analyzed

to verify the efficacy of the proposed method.

2 Problem formulation

2.1 TSP-based optimization formulation

In accordance with the mission procedure shown in Figure 1, in the preliminary planning stage of the

multi-debris removal mission, all the data involved in the mission design can be modeled using the graph

G = {D,V (t) ,p,m} , (1)

where D denotes a set of vertices, where each vertex contains all the required parameters for each item

of debris; V (t) is the time-dependent weighted connection matrix representing the orbital transfer cost

for the MnADRP to move from one debris item to another; p is the vertex priority matrix representing

the benefit when each debris item is removed; and m is the vertex cost matrix representing the number

of nanosatellites expended on each debris item to accomplish the deorbit operation.

If the MnADRP is regarded as a moving node on G, the preliminary planning problem then becomes

the problem determining the optimal path on this graph. For multi-debris removal, the primary aim

is the removal of the most dangerous items of debris while generating minimal mission cost (including

the energy and nanosatellite-quantity costs). Therefore, a multi-objective optimization scheme can be

adopted to solve this problem, the details of which are as follows:

F
(

d1 d2 · · · dn

)

,
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)
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where the debris set D = {D1, D2, . . . , DN} contains the total number of debris items N requiring removal,

and each debris item Dj is modeled by
(

aDj
, eDj0, IDj

, ΩDj
, ωDj

,MDj0
,mDj

, BDj
, PDj

, AMR
Dj

, RCS
Dj

)

(j ∈
{1, 2, . . . , N}), where aDj

is the orbit altitude, eDj
is the eccentricity, IDj

is the orbit inclination, ΩDj
is

the right ascension of ascending node (RAAN), ωDj
is the argument of perigee, MDj0 is the mean anomaly

at epoch, mDj
is the dry mass, BDj

is the normalized drag term, PC
Dj

is the collision probability, AMR
Dj

is the area to mass ratio, RCS
Dj

is the radar cross section (rcs), all of Dj . Suppose that n (n < N) debris

items are chosen for removal and take di as the ith debris item to be removed (i ∈ {1, 2, . . . , n}). Further,
∆vi ∈ V (t) is the cost of orbital transfer to di at time ti, measured by the required velocity change (note

that the spacecraft mass is not included in this preliminary planning as it can eventually be determined
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from the velocity change), mi ∈ m is the number of nanosatellites required for removal of di, and Pi ∈ p

is the removal priority of di. The Pi, ∆vi, and mi models are elucidated in the next three subsections,

respectively; these models detail the dynamics and decision strategies. The total mission-time, energy-

cost, and nanosatellite budgets are labeled Tmax, ∆vmax, and mmax, respectively. The debris removal

sequence is {d1, d2, . . . , dn} and its corresponding time sequence is {t1, t2, . . . , tn}.
Before examination of the multi-objective optimization, we must confirm that these objectives are

coupled. As an increasing number of debris items are removed during a given mission, the overall

priority
∑n

i=1 Pi is summed, however, the transfer energy cost
∑n

i=1 ∆vi and the number of nanosatellites
∑n

i=1 mi also continue to increase. Thus, these three objectives are coupled. When n is fixed, the

coupling mainly lies in collecting n debris items such that the maximal debris priority summation value

is obtained. However, this is typically achieved without realization of the minimal transfer cost or minimal

nanosatellite quantity cost. That is a tradeoff exists between these factors.

2.2 Debris removal priority model

The debris removal priority Pi is the factor indicating the threat level of a certain debris item di. It also

reflects the gain from the removal of that debris item. However, the debris threat levels vary according

to different missions. For example, with regard to space environment protection, removal of the most

dangerous debris items in a given environment is the main objective. However, for the protection of a

single spacecraft, the debris posing the greatest threat to this orbit of that particular spacecraft should

be removed first. Therefore, the selection of debris for removal depends on each mission task, and the

ranking regime is set by the specific mission requirements. Examination of the ranking method is not

the purpose of this paper, but inclusion of a ranking scheme is essential based on the problem definition,

so the following scheme is a general version application to any debris set.

Typically, a simplified ranking regime is proposed focusing on the most significant debris parameters

relevant to the space environment of concern. According to [13, 14], besides the orbital parameters, the

debris mass, size, shape, ballistic coefficient term, area-to-mass ratio, rcs and material properties can be

recorded for consideration in this scheme. In addition, some software program indicate the collision risk

of each debris item. Here, we take the examples given in [2, 4, 5, 7] and analyze their potential risk to

the space environment. Then the debris characteristics of collision probability PC , mass m, area-to-mass

ratio AMR, and rcs RCS are utilized to construct the ranking scheme. In general, debris items having

higher m, RCS , and AMR produce a greater number of debris item after collision, and PC
dj

directly reflects

the threat of di to the space environment.

Using the simple multiple-attribute decision-making (MADM) method, a weighted normalized sum-

mation is used to represent the debris Pi. The ranking scheme used to optimize the Pi levels is

Pi = ω1 ×N i
P + ω2 ×N i

mass + ω3 ×N i
AMR + ω4 ×N i

rcs, (3)

where N i
P , N

i
mass, N

i
AMR, N

i
rcs are the normalized collision probability, the normalized mass, the normal-

ized area-to-mass ratio, and the normalized rcs of di respectively, and ω1, ω2, ω3, ω4 are the respective

weights of these attributes, satisfying ω1 + ω2 + ω3 + ω4 = 1. The normalization is performed using the

full range of these parameters in a single debris set, to redefine each parameter with a value from 0 to 1.

2.3 Transfer energy cost model

In the MnADRP scenario, the transfer strategy is used to complete the orbital maneuvers, specifying

the details of the optimization model and the experiment conducted in this study. Thus, the transfer

strategy is the method used to alter each orbital parameter. Based on recent research, the method using

the perturbing force of the Earth’s equatorial bulge is very efficient [8]. This bulge is modeled by the

J2 zonal term and causes precession of the orbit plane (the node of the plane to be detailed). This

transfer strategy was first applied to ADR by Cerf [15], and can dramatically reduce the energy cost ∆v.

However, this approach is passive and the mission duration is uncontrollable because, after each removal

process, the ADR spacecraft must wait until it meets the next debris item with identical RAAN. To
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manage the tradeoff between the mission duration and energy cost, Cerf proposed a drift orbit that uses

the natural precession of the Earth to change the RAAN [15]. The drift orbit is an intermediate circular

orbit between two debris orbits, which can adapt the RAAN variation rate to the debris-rendezvous time

sequence. The drift-orbit altitude a and inclination I are determined by the nonlinear optimization of

∆v, which ensures that each drift orbit exhibits the lowest energy consumption while completing the

RAAN adjustment.

The propulsion type is another important aspect of the transfer strategy. Chemical propulsion is

direct but has higher energy consumption that the alternative Electronic propulsion facilitates a steady

acceleration, but it is more complex [8, 16]. For this preliminary planning of the multi-debris removal

operation, it is reasonable to assume that the MnADRP employs chemical propulsion.

Therefore, in this article, the following transfer strategy is utilized to change the orbit parameters:

• I is achieved via a velocity change at the orbit node.

• a is achieved via Hohmann transfer. Here,



















∆v =

√

µ

r1
·
(√

2r2
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− 1

)

,

∆v′ =

√

µ

r2
·
(

−
√

2r1
r1 + r2

+ 1

)

,

(4)

where µ is the standard gravitational parameter, r1 and r2 are the radii of the initial and destination

orbits, respectively, and ∆v and ∆v′ are the two velocity changes induced by the Hohmann transfer.

• The RAAN Ω̇, which incorporates the J2 zonal term of the Earth’s equatorial bulge perturbing force,

is obtained, with

Ω̇ = −3

2
J2
√
µR2

T (a+RT )
− 7

2 cos I, (5)

where J2 = 1.08266× 10−3 is the first zonal term, RT = 6378137m is the Earth’s equatorial radius, a is

the orbital radius for circular orbits only, I is the inclination. The unit of the RAAN change is rad/s.

• Mean motion M is obtained. The difference in the M values of two objects is determined by the

the difference in their orbital periods. However, compared with the drift-orbit transfer duration, the

time required for the phase maneuver can be ignored, as this operation has a duration of only several

revolutions.

• The eccentricity e is obtained. In LEO, the majority of the orbits are near-circular. Therefore, in

this article, all the orbits are regarded as circular to facilitate a simple calculation.

• Argument of periapsis ω: The periapsis arguments are the same as those for circular orbits.

Here the I and amaneuvers are completed together, as in the study by Cerf [8]. However, the propulsion

with the smaller initial velocity in the Hohmann transfer is chosen as most appropriate. Therefore, in this

transfer strategy, all the energy cost is determined by the velocity change, i.e., ∆v which is determined

by the change of I and a. The adjustment of the other orbital elements does not consume any energy,

because a circular orbit and natural perturbing force are employed. The reduced energy consumption

obtained by a longer transfer duration is the main advantage of this transfer strategy.

Because the drift-orbit transfer strategy presented here is similar to that employed by Cerf [8], nonlinear

optimization is still employed to determine ∆v. The cost matrix is constructed by considering the

rendezvous time and transfer duration separately, thereby determining the required rapidity of the drift-

orbit RAAN change. This RAAN change rate is dependent on the drift orbit, as indicated by (5), and

determined by the orbit I and a. When the MnADRP must move to the debris item for removal, it must

move to the current debris orbit to derft orbit, before transferring from the drift orbit to the next debris

orbit. Therefore, the ∆v differ for different drift orbits. Hence, the redundancy of the RAAN change

rate requires nonlinear programming of the drift-orbit I and a, with the aim of selecting the drift orbit

with the lowest ∆v.

Meanwhile the Response Surface Method (RSM) is a rapid means of determining the energy cost,

i.e. ∆v. (this method has also been used by Cerf [8]. This cost matrix performs well with bilinear
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Figure 2 Relative error caused by RSM.

interpolation, and the relative error caused by the RSM is shown in Figure 2. The cost matrix indexes

correspond to a discrete rendezvous time and transfer duration, and the surface between them is regarded

as linear. Thus, the cost between its four vicinity indexes can be calculated via bilinear interpolation.

2.4 Nanosatellites quantity cost model

In this scenario the MnADRP performs orbital transfer and nanosatellite release only, whereas the deorbit

operation is one of the tasks completed by the nanosatellites. It is assumed that these nanosatellites

carry same propulsion kits to facilitate debris reentry following their attachment to the target debris.

Ideal nanosatellite constellation performance corresponds to zero energy waste during debris deorbiting.

Therefore, using the rocket equation [17], we propose that the number of nanosatellites mi required for

the removal of each debris item can be determined from

(mi − 1) · f∆v 6 mdi
·
(

1− e−
∆vd

i
ve

)

6 mi · f∆v, (6)

mi =

⌈

mdi

f∆v

·
(

1− e−
∆vdi
ve

)⌉

, (7)

where mdi
is the mass of di, ve is the effective exhaust velocity, f∆v is the fuel mass of the nanosatellites

(it is assumed that the nanosatellite mass correspond to its fuel mass), and ∆vdi is the velocity change

needed to deorbit di (corresponding to a transfer to a 100-km-altitude reentry orbit).

It is certain that the nanosatellites released in order to deorbit the debris must provide sufficient orbital

transfer ability, but this should not be excessive. Therefore, given that mi is an integer, this value, which

correspond the total provided fuel mass, should be more than the required fuel mass. Further, one less

nanosatellite will not complete the deorbit as Eq. (6). Note that in the rocket equation, the initial mass

is assumed to be mdi
, while the final mass is derived from the initial mass subtracting the mass of

nanosatellites attached to the debris.

3 GA-based solution method

As regards the preliminary design of the multi-debris removal mission, the mission plan must be decided

prior to launch, and the optimization must first be conducted on the ground. Thus, almost all methods

capable of TSP problem solution can be tailord to this dynamic optimization scheme. In previous



Liu Y, et al. Sci China Inf Sci July 2017 Vol. 60 072202:7

research on ADR missions, the branch and bound algorithm [15], simulated annealing [8], the ant colony

approach [18], the brute force approach [16], the series method [4], the inver-over algorithm [7], and the

genetic algorithm (GA) [19] have all been used for optimization.

The GA has the benefit of global search, and its mutation step is more likely to prevent local optima.

Thus, this approach is suitable for the dynamic TSP model considered in this study, if the removal time

can be encoded into the solution space. Therefore, in this article, the code and decode method is modified

and a multi-debris-removal modified GA is proposed.

3.1 Genetic algorithm design

The basic concept of the GA remains unchanged. That is, the initial-generation population is determined,

and selection, crossover, and mutation are employed to evolve this generation. The evolution is terminated

once fitness convergence or the maximal evolution time is attained. However, for the present problem the

state vector differs from the GA parameter optimization, being that defined in (8). It is assumed that,

once the MnADRP arrives at a target debris item, it completes the nanosatellite-release operation within

a single day. Therefore, if the time resolution corresponds to 1 d, the debris rendezvous time is identical

to the time at which the MnADRP departed the previous debris site. Therefore, the time sequence is a

set of integers from 1 to 365, representing the rendezvous time, and the total mission duration is 1 year.

The solution space x is represented as follows:

x =

(

d1 · · · dn
t1 · · · tn

)

, s.t.







{

d1 · · · dn
}

⊂
{

D1 · · · DN

}

,

t1 < · · · < tn.
(8)

Therefore, the feasible solution region can be regarded as being comprised of these two variants:

• The debris sequence simulated by the permutation of n integers fromN (the total number of elements

in the debris set);

• The rendezvous time sequence simulated by the ordered combination of n integers from 365 ren-

dezvous times (a 1-year total mission duration with 1-day accuracy).

3.2 Fitness function design

The fitness function is determined by the optimization objectives of the GA. This function is a scalar

variant representing the fitness of an individual solution for a task, and a higher fitness level corresponds

to a higher probability of natural selection. However, in the multiple-objectives case, the fitness of an

individual solution is not determined by a single objective. In [20], the benefit- and cost- type objectives

are employed as the fitness-function numerator, and denominator, respectively. The costs and benefits

are normalized to the 0 to 1 range, so as accommodate the unit difference. Hence, in this article, the

multiple objectives are transferred to a single objective in the form of a fitness function using (9), where

normalized (·) is the normalization operator (the scale of each objective is detailed in the subsequent

experiment), ωP , ωv, and ωm are the weights of the normalized
∑n

i=1 Pi, the normalized
∑n

i=1 ∆vi, and

the normalized
∑n

i=1 mi.

F

(

min
n
∑

i=1

∆vi min
n
∑

i=1

mi max
n
∑

i=1

Pi

)

= max

(

ωP × normalized (
∑n

i=1 Pi)

ωv × normalized (
∑n

i=1 ∆vi)× ωm × normalized (
∑n

i=1 mi)

)

. (9)

As for the constraints, implementing these restricts in the selection step is similar to filtering the

solution of each trial after the optimization. However, the latter approach is easier and the solution is

not bounding to a local optimum. Therefore, in this paper, the constraints were implemented after the

optimization, being employed as a filter to discount the solution out-of-boundary that.
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Table 1 Debris set

No. Alt.(km) Inc.( ◦) RAAN ( ◦) Mass (kg) AMR (m2/kg) Collision probability RCS (m2)

1 700 97 0 12 3 0.013 0.6756

2 710 97.3 90 12 2 0.014 2.5000

3 720 97.6 180 12 4 0.015 0.2201

4 730 97.9 270 12 5 0.016 4.5029

5 740 98.2 18 12 6 0.017 0.0710

6 750 98.5 108 12 7 0.018 0.0372

7 760 98.8 198 35 8 0.019 0.0563

8 770 97.1 288 77 9 0.020 0.0410

9 780 97.4 36 110 10 0.021 0.0606

10 790 97.7 126 48 11 0.022 0.3181

11 800 98 216 10 12 0.023 2.9784

12 810 98.3 306 12 13 0.024 0.1259

13 820 98.6 54 12 14 0.025 0.0579

14 830 98.9 144 12 15 0.026 0.0550

15 840 97.2 234 22 7 0.027 0.0363

16 850 97.5 324 53 8 0.028 0.0523

17 860 97.8 72 170 9 0.029 0.2321

18 870 98.1 162 50 10 0.030 0.0538

19 880 98.4 252 35 11 0.031 0.0414

20 890 98.7 342 48 12 0.032 0.0745

21 900 99 360 7 13 0.033 0.1090

4 Experiment and results

The optimization model is applied in experiment in order to test the solution. The RSM method utilized

by Cerf [8] is used to calculate the energy costs ∆vi, and it is assumed that the nanosatellites are identical

to each other and carry deorbit kits with some chemical propulsion.

4.1 Scenario settings

The debris set in [8], which was created to test the optimization method presented in that study, is

comprised of a set of LEO debris items with uniformly distributed RAAN. In the present study, other

parameters necessary to rank the di based on their Pi and to determine mi are added to the debris set.

Thus, further data elements are created in this study, based on the satellite catalog (SATCAT), the union

of concerned scientists (UCS) satellite database, the two-line element (TLE) sets data from space-track,

and studies researching the collision probability [21] and area-to-mass ratio [22]. This resultant data set is

comprised of partially realistic parameters as shown in Table 1, where “Alt” represents the orbit altitude

of debris, “Inc” represents the orbit inclination of debris. It is adequate for testing of the algorithm and

optimization model.

As in [2], the specific impulse Isp is set to 300 s, which is the average exhaust speed, and the nanosatellite

mass is taken as 10 kg. The weight of each parameter in the priority ranking is 0.25, and the normalizing

scale of each parameter is from its minimum to its maximum.

Based on the possible results for the three objectives (
∑n

i=1 Pi,
∑n

i=1 ∆vi, and
∑n

i=1 mi), all the

weights of the components in the fitness function are set to 1, the ∆vi normalization scale is 0 to 120000

m/s, the mi normalization scale is 5 to 47, and the Pi normalization scale is 0.1261 to 0.4140.

With regard to this GA optimization method, the maximum generation NGmax is set to 6000, the

population of each generation NP is 100, the probability of crossover Pc is 0.9, and the probability of

mutation Pm is 0.02. The termination condition is the mean of the population’s fitness function, and is

0.999 times the maximum fitness function.

We conducted 100 trials, and a trial with 1000 generation required a processing time of approximately

80 s on an Intel Core i7 processor computer.
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Table 2 Best individuals solutions according to each objective

Gene. Debris Seq. Time Seq. Fitness Fun. RSM cost
∑

n

i=1
mi

∑
n

i=1
Pi

958 11-4-21-2-13 23-107-246-339-355 407.3899 3088.42 8 0.3417

1857 3-11-15-7-19 3-163-171-234-361 169.0654 1076.72 14 0.2197

501 21-2-14-11-4 38-124-224-300-364 269.8589 4700.93 8 0.3435

682 2-11-19-4-12 1-129-191-239-362 181.5300 3522.46 11 0.3453

Table 3 Best individual solutions corresponding to each objective under constraints

Gene. Debris Seq. Time Seq. Fitness Fun. RSM cost
∑

mi

∑
pi

336 11-15-4-21-5 19-93-167-311-361 264.2767 2776.47 9 0.2938

1857 3-11-15-7-19 3-163-171-234-361 169.0654 1076.72 14 0.2197

149 2-7-11-19-4 29-126-166-256-347 159.4608 2963.87 13 0.3421

4.2 Results analysis

The best individual solution yielded by each trial was selected based on the highest fitness function in the

final generation. (The details of this process are not included here, because of the paper length restriction.)

For the best individuals solution determined from the 100 trials, each objective was evaluated. The most

fit individual solutions are listed in Table 2, where
∑n

i=1 mi represents the overall nanosatellite cost, and
∑n

i=1 Pi is the debris priority summation. The individual solution with the optimal fitness evolved in 958

generations, as the three objectives are all competitive. The lowest-
∑n

i=1 ∆vi individual solution evolved

in 1857 generations, with an RSM cost of only 1076.72 m/s. Again,
∑n

i=1 mi is an integer, and 40 solutions

spend eight nanosatellites. Based on the other two objectives, two comparatively good individuals were

chosen from these 40 solution, as they exhibited the lowest
∑n

i=1 ∆vi or removed the debris with the

highest
∑n

i=1 Pi in the eight-nanosatellite cost band. The result with the highest
∑n

i=1 Pi among the

100 trials is given in the final row of Table 2, where “Gene.” represents the number of generations of the

solution, “Debris Seq.” represents the removal debris sequence, “Time Seq.” represents the removal time

sequence, “Fitness Fun.” represents the fitness function value of each solution.

After the optimization, the true cost of the final solution for each trial was calculated, using the same

nonlinear programming as used to construct the cost matrix. Figure 2 shows the relative error between

the energy cost calculated using RSM and using nonlinear programming. Each point was calculated by

using

Er =

∑n

i=1 ∆vRSM
i −

∑n

i=1 ∆v
np
i

∑n

i=1 ∆v
np
i

, (10)

where Er is the relative error of the most fit individual solution in each trial, and ∆vRSM
i and ∆v

np
i are

the costs of orbital transfer to di at ti determined by RSM and nonlinear programming, respectively.

According to the above results, the majority of relative errors have values of approximately 0.2%, with

some of them are even less than 0.1%; this indicates that the error caused by the RSM is sufficiently low

for optimization. Therefore, the use of RSM to boost the process is appropriate.

As there are constraints to consider, the mission budgets employed here are 3-km/s chemical propulsion,

and a maximum of 20 nanosatellites. Among the 100 trials, 18 trials satisfy these constraints. From

these solutions, Table 3 shows the best individuals solutions according to the three objectives and the

constraints.

The individual with the lowest
∑n

i=1 ∆vi survived after the filter had been applied, whereas those with

best fitness function and the highest
∑n

i=1 Pi did not. However the new, most-fit individual solution

under constraints corresponds to the individual solution with the lowest
∑n

i=1 mi. Further, the iteration

for the highest-priority individual solution terminated after only 149 generations, indicating that this

objective can be matured easily.

The solution given by this multi-objective optimization model is more reasonable than other existing

models and, after 100 trials one individual solution with the best historic performance can be identified;

these results indicate that this method is suitable for the optimization model considered in this work.
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Note that other studies of multi-debris removal missions, have not considered debris prioritization during

the optimization, or the algorithms they employed are not adapted to the features of this time-variant

TSP problem. Finally, the application of filtering to the unconstrained solution and the RSM method

both work well in boosting the process.

5 Conclusion

A multi-objective optimization framework for preliminary planning of an MnADRP for a multi-LEO-

debris removal mission is proposed. A model incorporating debris removal prioritization with debris-

specific parameters is constructed and incorporated into the optimization formulation, together with

energy and nanosatellite-payload cost models. A modified GA algorithm is introduced to solve the

optimization problem. Numerical experiments conducted on partially real-world debris data confirm

the efficacy of the proposed method. Future work may include investigations of online planning for an

MnADRP in the context of mission recovery owing to unexpected mission failures, along with transfer

orbit design refinement for an MnADRP for multi-debris removal based on the preliminary plan.
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