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Abstract This paper considers the problem of semi-global leader-following consensus of a multi-agent system

whose agent dynamics are represented by linear systems. The input output characteristics of the follower agent

actuators, such as those of saturation and dead-zone, are imperfect, not precisely known, and subject to the

effect of disturbances. Two consensus control algorithms, of the low-and-high gain feedback type and the low

gain based variable structure control type, are proposed for solving the consensus problem. It is shown that

both of these control algorithms achieve semi-global leader-following practical consensus in the presence of the

imperfectness of the actuators when the communication topology among the follower agents is represented by

a strongly connected and detailed balanced directed graph and the leader agent is a neighbor of at least one

follower agent. The theoretical results are illustrated by numerical simulation.
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1 Introduction

Multi-agent systems, inspired by the phenomenon of cluster in nature, have found applications in many

fields, including computer science, physics, biology, and control engineering. Through the information

interaction among agents, cooperative control can be achieved in multi-agent systems. As a fundamental

problem in cooperative control, the consensus problem has attracted a large amount of attention. Numer-

ous results are available in the literature (see, e.g., [1–7]). Consensus means that all agents in the group

converge to an agreement state by using only their neighbors’ information. Among the many applications

of the consensus problem are mobile robots [8, 9], autonomous underwater vehicles [10], unmanned air

vehicles [11–13] and sensor networks [14].
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Because of the ubiquity of actuator nonlinearities and uncertainties in control systems, it is necessary

to study the consensus problem in the presence of the imperfectness of the actuator input output char-

acteristics. Indeed, much effort has been made to address this theoretical challenge and much progress

has been made (see, e.g., [15–20]).

Ref. [16] studied the global leader-following consensus problem for two classes of linear systems in the

presence of actuator saturation. For multi-agent systems whose agent dynamics are neurally stable or are

those of double integrators, global leader-following consensus is shown to be achievable for both a fixed

and a switching communication topology. The extension of the results in [16] to the discrete-time setting

was made in [17]. The global leader-following consensus problem for a group of general linear systems

was solved in [18]. The only assumption made on the linear systems is that they are asymptotically null

controllable with bounded controls (ANCBC). A linear system is ANCBC if it is stabilizable and its poles

are located in the closed left-half plane. Distributed nonlinear feedback control laws were constructed

and shown to achieve global leader-following consensus as long as the communication topology among

follower agents is a strongly connected and detailed balanced directed graph and the leader agent is a

neighbor of at least one follower agent.

Ref. [15] considered the semi-global leader-following consensus problem of a group of general linear

ANCBC systems in the presence of actuator saturation and on either a connected or jointly connected

network. The low gain feedback design technique [21] was adopted to construct a consensus algorithm,

parameterized in the low gain parameter, that achieves semi-global leader-following consensus. Ref. [19]

investigated the semi-global leader-following consensus problem for a group of general linear ANCBC

systems that are simultaneously subject to actuator position and rate saturation. Both a family of linear

low gain state feedback control laws and a family of linear low gain output feedback control laws, both

parameterized in the low gain parameter, were constructed for each agent. These feedback laws were

shown to achieve semi-global leader-following consensus as along as the communication topology among

follower agents is a connected undirected graph and the leader agent is a neighbor of at least one follower

agent.

In the literature on the multi-agent consensus problem, actuator nonlinearity, when taken into consid-

eration, is usually represented by a standard saturation function. In the real world, actuator nonlinearity

is often more complex than a standard saturation function and is also often not precisely known. It could

reflect the characteristics of both a saturation function and a deadzone function. The actuator might

also be subject to disturbances that are superimposed on the input signal. As a result, it is important

to account of such imperfectness of the actuator input output characteristics and input additive distur-

bances in considering the consensus problem. In fact, the imperfectness of the actuator input output

characteristics and input additive disturbances have been considered in the context of semi-global sta-

bilization [22]. As seen in [22], the main challenge in dealing with such imperfectness of the actuator

input output characteristics is due to the possible co-existence of saturation nonlinearity, dead-zone non-

linearity and disturbances. To meet this challenge, two control design approaches, the low-and-high gain

feedback design approach [23,24] and the low gain based variable structure control design approach, were

proposed to achieve robust semi-global practical stabilization, which requires the state of the system be

driven, in a finite time, into a pre-specified arbitrarily small neighborhood of the origin and remain there.

In the situation when the actuator nonlinearity is represented by a standard saturation and dead-zone

functions and is precisely known, the low-and-high gain feedback design proposed in [22] was adopted

to achieve semi-global leader-following consensus for a group of linear systems linked by an undirected

graph [25]. Both semi-global stabilization and semi-global leader-following consensus require the systems

to be asymptotically null controllable with bounded controls.

In this paper, we study the problem of semi-global leader-following consensus of a group of general

linear ANCBC systems in the presence of imperfect actuator input output characteristics. Two consensus

control algorithms, the low-and-high gain based consensus algorithms and the low gain based variable

structure consensus algorithms, are proposed for each follower agent. We will show that these consen-

sus algorithms achieve robust semi-global leader-following practical consensus when the communication

topology among follower agents is a strongly connected and detailed balanced directed graph and the
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leader agent is a neighbor of at least one follower agent.

The organization of the remainder of the paper is as follows. Section 2 contains preliminaries, which

include the basic definitions and notations in graph theory. Section 3 describes the properties of the im-

perfect actuator input output characteristics and states the problem of robust semi-global leader-following

practical consensus. Sections 4 and 5 construct two different consensus algorithms for the follower agents

and show that these consensus algorithms achieve robust semi-global leader-following practical consensus

under certain assumptions on the communication topology. Section 6 contains simulation results for the

two consensus algorithms proposed in Sections 4 and 5 to illustrate the theoretical results. Section 7

draws a brief conclusion to the paper.

2 Preliminaries

A multi-agent system consisting of N agents can be represented by a directed graph G = {V , E}, where

V = {ν1, ν2, . . . , νN} is a finite, non-empty set of nodes, each representing a follower agent, and E ∈ V×V

is a set of edges, each representing an ordered pair of nodes. An edge (νi, νj) in a directed graph represents

that agent νj has access to the information of agent νi. Let A = [aij ] ∈ R
N×N be the adjacency matrix

associated with G. If (νj , νi) ∈ E , then aij > 0, otherwise aij = 0. We also assume that aii = 0 for all

i = 1, 2, . . . , N . Let L = [lij ] ∈ R
N×N be the Laplacian matrix associated with A, where lii =

∑N

j=1 aij

and lij = −aij when i 6= j.

A directed graph is strongly connected if there exists a directed path between any pair of distinct

nodes [26]. A directed graph is said to be detailed balanced if there exist some real numbers ωi > 0,

i = 1, 2, . . . , N , such that the coupling weights of the graph satisfy ωiaij = ωjaji for all i, j = 1, 2, . . . , N .

We call these numbers ω1, ω2, . . . , ωN the detailed balance parameters associated with G [27].

In addition to the N follower agents, there is also a leader agent, denoted as ν0. The communication

between the follower agents and the leader agent is represented by ai0, where ai0 > 0, if agent i has access

to the information of the leader agent, and ai0 = 0 otherwise.

3 Problem statement

Consider a network of N agents, each described by the following linear system in the presence of actuator

nonlinearity and input additive disturbances,

ẋi = Axi +Bσ (ui + di(t)) , i = 1, 2, . . . , N, (1)

where xi ∈ R
n is the state of agent i, ui ∈ R

m is the control input of agent i, di(t) is the disturbance

superimposed on the input of agent i and σ is a function that represents actuator nonlinearities.

Assumption 1. The matrix pair (A,B) is asymptotically null controllable with bounded controls

(ANCBC), that is, it is with all eigenvalues of A located on the closed left-half plane.

Assumption 1 is necessary for the solution of the robust semi-global consensus problem to be formulated

below. Such an assumption is known to be necessary even for semi-global stabilization of an individual

system subject to actuator saturation [21].

Next, we will list the properties of the function σ.

Definition 1. A function σ: Rm → R
m is called an actuator nonlinearity function if

1. σ(u) is decentralized, i.e., σ(u) = [σ1(u1), σ2(u2), . . . , σm(um)]T;

2. σj , j = 1, 2, . . . ,m, is locally Lipschitz;

3. sσj(s) > 0, ∀s ∈ R;

4. lim inf |s|→∞ |σj(s)| > 0.



Shi L R, et al. Sci China Inf Sci July 2017 Vol. 60 072201:4

σj(s)

∆
k

−b

b S

∆k

Figure 1 The actuator input-output characteristics.

Remark 1. 1. The actuator nonlinearity function σj(s) lies in the shaded area in Figure 1, which is

characterized by the constants ∆ > 0, b > 0 and k > 0. Among these three constants, ∆ represents the

saturation level, b the dead-zone break points and k is the slope. Without loss of generality, we assume

that k = 1. Let sat∆(s) = sgn(s)min{∆, |s|}. Then, for each σj(s),

s [σj(rs) − sat∆(s)] > 0, (2)

whenever |rs| > b+ |s|, r ∈ R
+, s ∈ R.

2. Because σj is locally Lipschitz, there exists a continuous and nondecreasing function ̟ : R+ → R+

such that

|σj(s)| 6 ̟(|s|), j = 1, 2, . . . ,m. (3)

Remark 2. The standard saturation functions, the ideal deadzone functions, the standard saturations

with ideal dead-zone characteristics and functions σ(t) = t, tanh(t) and arctan(t) all satisfy the definition

of the actuator nonlinearity special cases of the actuator nonlinearity, as defined in Definition 1.

The function di(t), i = 1, 2, . . . ,m, is the input additive disturbance. Only an upper bound on the

norm of the disturbance di is required.

Assumption 2. The di(t), i = 1, 2, . . . , N , is a bounded piecewise continuous function, that is,

‖di(t)‖ 6 D0, t > 0, (4)

where D0 is a known nonnegative constant.

Definition 2. The set of all functions σ : R
m → R

m that satisfy properties (2) and (3) for some

constants ∆, b and k = 1, and a function ̟(s) : R+ → R+ that satisfies ̟(s) 6 ̟0(s), ∀s ∈ R+ with a

nondecreasing ̟0 : R+ → R+, is denoted by S (∆, b,̟0).

Definition 3. The set of data (∆, b,̟0, D0, χ, χ0) is said to be admissible if ∆ > 0, b > 0,̟0 : R+ → R+

is a nondecreasing function, D0 > 0, χ ⊂ R
n is a bounded set and the origin is an interior point of χ0 ⊂ R

n.

The following autonomous linear system represents the dynamics of the leader agent,

ẋ0 = Ax0, (5)

where the state x0 ∈ R
n.

The communication topology G among the follower agents satisfies the following assumption.

Assumption 3. The graph G is directed, strongly connected and detailed balanced, and ai0 > 0 for at

least one i, i = 1, 2, . . . , N .

Let M = L+ diag{a10, a20, . . . , aN0} and diag{ω} = diag{ω1, ω2, . . . , ωN}.

Lemma 1. Under Assumption 3, the matrix diag{ω}M is symmetric and positive definite.

The above lemma can be easily derived based on the analysis given in the proof of Lemma 4 in [28].

Let λ1, λ2, . . . , λN be the eigenvalues of diag{ω}M , and λ = min{λ1, λ2, . . . , λN}. By Lemma 1, λ > 0.

Let the error between follower agent i and the leader agent be denoted as x̃i = xi − x0. Then, we have

˙̃xi = Ax̃i +Bσ (ui + di(t)) .
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Let x̃ =
[

x̃T
1 , x̃

T
2 , . . . , x̃

T
N

]T
∈ R

nN . Then,

˙̃x = (IN ⊗A) x̃+ (IN ⊗B)σ (u+ d(t)) ,

where u = [uT
1 , u

T
2 , . . . , u

T
N ]

T
and d(t) = [dT1 , d

T
2 , . . . , d

T
N ]

T
.

We now state the problem to be studied in this paper as follows.

Problem 1 (Robust semi-global leader-following practical consensus). Consider the multi-agent system

that consists of N follower agents (1) and a leader agent (5). Let the communication topology satisfy

Assumption 3. Given the admissible set of data (∆, b,̟0, D0, χ, χ0), construct, for each follower agent i,

a state feedback law ui = Fi(x0, x1, . . . , xN ), which uses the information of agent i’s neighbors obtained

through the communication network, such that, under these feedback laws, the trajectories of all error

states x̃i, i = 1, 2, . . . , N , with any σ ∈ S (∆, b, ω0), any disturbances di(t), i = 1, 2, . . . , N , that satisfy

Assumption 2 with D0, and any initial conditions xi(0) ∈ χ, i = 0, 1, . . . , N , will enter χ0 and remain in

it in a finite time.

4 Low-and-high gain feedback based consensus algorithms

In this section, we construct the following consensus algorithms based on the low-and-high gain feedback

design technique for each of the follower agents,

ui = −ωi(1 + ρ)BTP (ε)

(

N
∑

j=1

aij (xi − xj) + ai0 (xi − x0)

)

, i = 1, 2, . . . , N, (6)

in which ωi is a detailed balance parameter, aij is the (i, j)th entry of the adjacency matrix A, ai0 is the

communication weight between follower agent i and the leader agent, ε ∈ (0, 1] and ρ > 0 are respectively

the low gain parameter and the high gain parameter, and P (ε) is the unique solution to the following

parametric algebraic Riccati equation (ARE),

ATP (ε) + P (ε)A− 2γP (ε)BBTP (ε) + εI = 0, (7)

where the low gain parameter ε ∈ (0, 1] and γ is any scalar such that γ ∈ (0, λ].

Lemma 2 ([21, Lemma 2.2.6]). Under Assumption 1, there exists a unique matrix P (ε) > 0, for each

ε ∈ (0, 1], that solves the ARE (7). Moreover, limε→0 P (ε) = 0.

The following result establishes that the low-and-high gain feedback consensus algorithms (6) solve

Problem 1.

Theorem 1. There exists an ε∗ ∈ (0, 1], and for any ε ∈ (0, ε∗], there exists a ρ∗(ε) > 0 such that, for

any ρ > ρ∗(ε), ε ∈ (0, ε∗], the consensus algorithms (6) solve Problem 1.

Proof. Notice that, the controller (6) can be rewritten as

ui = −(1 + ρ)BTP (ε)ωi





N
∑

j=1

aij (x̃i − x̃j) + ai0x̃i



 , i = 1, 2, . . . , N,

or, in a compact form, as

u = −(1 + ρ)
(

diag{ω}M ⊗BTP (ε)
)

x̃.

Consequently, we have the following the closed-loop system,

˙̃x = (IN ⊗ A) x̃+ (IN ⊗B)σ
(

−(1 + ρ)
(

diag{ω}M ⊗BTP (ε)
)

x̃+ d(t)
)

.

Consider the following Lyapunov function

V (x̃) = x̃T (diag{ω}M ⊗ P (ε)) x̃,
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which is positive definite since both diag{ω}M and P (ε) are positive definite matrices. Choose a c > 0

such that

sup
ε∈(0,1],xi∈χ,i=0,1,2,...,N

x̃T (diag{ω}M ⊗ P (ε)) x̃ 6 c.

Such a c exists since limε→0 P (ε) = 0, by Lemma 2, and χ is a bounded set. Let ε∗ ∈ (0, 1] be such that,

for any ε ∈ (0, ε∗], x̃ ∈ LV (c) := {x̃ ∈ R
nN : V (x̃) 6 c} implies that

‖
(

diag{ω}M ⊗BTP (ε)
)

x̃‖ 6 ∆.

Again, such an ε∗ exists since limε→0 P (ε) = 0.

According to Lemma 1, diag{ω}M is a positive definite matrix. Thus, there exists an orthogonal

matrix C ∈ R
N×N such that

diag{ω}M = CTdiag{λ1, λ2, . . . , λN}C.

For notational brevity, we will hereafter denote Λ = diag{λ1, λ2, . . . , λN}.

The evaluation of the derivative of V (x̃) along the closed-loop trajectory inside the level set LV (c) is

carried out as follows,

V̇ = ˙̃xT (diag{ω}M ⊗ P (ε)) x̃+ x̃T (diag{ω}M ⊗ P (ε)) ˙̃x

= x̃T
(

diag{ω}M ⊗
(

P (ε)A+ATP (ε)
))

x̃

+2x̃T (diag{ω}M ⊗ P (ε)B) σ
(

−(1 + ρ)
(

diag{ω}M ⊗BTP (ε)
)

x̃+ d(t)
)

= x̃T
((

CTΛC
)

⊗
(

P (ε)A+ATP (ε)
))

x̃

+2x̃T
((

CTΛC
)

⊗ P (ε)B
)

σ
(

−(1 + ρ)
((

CTΛC
)

⊗BTP (ε)
)

x̃+ d(t)
)

= x̃T
(

CT ⊗ In
) (

Λ⊗
(

P (ε)A+ATP (ε)
))

(C ⊗ In) x̃

+2x̃T
(

CT ⊗ In
)

(ΛC ⊗ P (ε)B)σ
(

−(1 + ρ)
((

CTΛ
)

⊗BTP (ε)
)

(C ⊗ In) x̃+ d(t)
)

.

Let x̂ =
[

x̂T
1 , x̂

T
2 , . . . , x̂

T
N

]T
= (C ⊗ In)x̃. Then, the evaluation of V̇ is continued as

V̇ = x̂T
(

Λ⊗
(

P (ε)A+ATP (ε)
))

x̂+2x̂T((ΛC)⊗P (ε)B)σ
(

−(1 + ρ)
((

CTΛ
)

⊗BTP (ε)
)

x̂+ d(t)
)

= x̂T
(

Λ⊗
(

P (ε)A+ATP (ε)
)

−2Λ2⊗P (ε)BBTP (ε)
)

x̂

+2x̂T (ΛC ⊗ P (ε)B)
(

σ
(

−(1 + ρ)
(

CTΛ⊗BTP (ε)
)

x̂+ d(t)
)

+ (CTΛ⊗BTP (ε))x̂
)

= x̂T (Λ⊗ In)
(

IN ⊗
(

P (ε)A+ATP (ε)
)

− 2Λ⊗ P (ε)BBTP (ε)
)

x̂

+2x̂T (ΛC ⊗ P (ε)B)
(

σ
(

−(1 + ρ)
(

CTΛ⊗BTP (ε)
)

x̂+ d(t)
)

+ (CTΛ⊗BTP (ε))x̂
)

=

N
∑

i=1

λix̂
T
i

(

P (ε)A+ATP (ε)−2λiP (ε)BBTP (ε)
)

x̂i

+2x̂T (ΛC ⊗ P (ε)B)
(

σ
(

−(1 + ρ)
(

CTΛ⊗BTP (ε)
)

x̂+ d(t)
)

+ (CTΛ⊗BTP (ε))x̂
)

.

Since γ 6 λ, according to (7), we have

ATP (ε) + P (ε)A− 2λiP (ε)BBTP (ε)

6 ATP (ε) + P (ε)A− 2γP (ε)BBTP (ε) = −εI, i = 1, 2, . . . , N. (8)

Define

Υ = −
(

diag{ω}M ⊗BTP (ε)
)

x̃ = −
(

CTΛ⊗BTP (ε)
)

x̂, (9)

and Υ ∈ R
mN . Let υl and dl, l = 1, 2, . . . ,mN , be the lth element of Υ and d(t), respectively. Then, the

evaluation of V̇ is further continued as

V̇ 6

N
∑

i=1

λix̂
T
i

(

ATP (ε)+P (ε)A−2γP (ε)BBTP (ε)
)

x̂i − 2ΥT (σ ((1 + ρ)Υ + d(t)) −Υ)
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= −

N
∑

i=1

ελix̂
T
i x̂i − 2

mN
∑

l=1

υl (σl ((1 + ρ)υl+dl)− υl) .

If |ρυl| > |dl| + b, we first consider the case υl > 0. When υl > 0, let (1 + ρ)υl + dl = rυl, and r > 1.

Thus,

|rυl| = rυl = υl + ρυl + dl > υl + |dl|+ b+ dl > υl + b = |υl|+ b.

Inview of (2), a property of σ, we have

−υl (σl ((1 + ρ)υl + dl)− υl) = −υl (σl ((1 + ρ)υl + dl)− sat∆(υl)) 6 0.

It can be shown in a similar way that the above inequality also holds when υl < 0.

If |ρυl| < |dl|+ b, then, for all x̃ ∈ LV (c) and ε ∈ (0, ε∗],

|υl (σl ((1 + ρ)υl + dl)− υl)| 6
1

ρ
(|dl|+ b) (̟0(2|dl|+ b+∆) +∆) .

Thus, we have, for all x̃ ∈ LV (c) and ε ∈ (0, ε∗],

V̇ 6 −

N
∑

i=1

ελix̂
T
i x̂i + 2

mN
∑

l=1

1

ρ
(|dl|+ b) (̟0(2|dl|+ b+∆) +∆)

6 −

N
∑

i=1

ελix̂
T
i x̂i +

2mN

ρ
(D0 + b) (̟0(2D0 + b+∆) +∆) .

Choose a c0(ε) ∈ (0, c] such that LV (c0(ε)) := {x̃ ∈ R
nN : V (x̃) 6 c0(ε)} ⊂ χN

0 = χ0 × χ0 × · · · × χ0.

The existence of such a c0(ε) is due to the fact that the origin is an interior point of χ0. Also, let

ρ∗(ε) =
3mNλmax(P (ε))

εc0(ε)
(D0 + b) (̟0(2D0 + b+∆) +∆) .

When ρ > ρ∗ and c0(ε) 6 V (x̃) 6 c,

V̇ 6 −
N
∑

i=1

ελix̂
T
i x̂i +

2εc0(ε)

3λmax(P (ε))

6 −

N
∑

i=1

ελix̂
T
i x̂i +

2ε

3λmax(P (ε))

N
∑

i=1

λix̂
T
i P (ε)x̂i

6 −
ε

λmax(P (ε))

N
∑

i=1

λix̂
T
i

(

λmax(P (ε))In −
2

3
P (ε)

)

x̂i

< 0.

In summary, we have shown that, for any ρ > ρ∗(ε), ε ∈ (0, ε∗],

V̇ < 0, x̃ ∈ LV (c) \ L
o
V (c0(ε)),

where Lo
V (c0(ε)) := {x̃ ∈ R

nN : V (x̃) < c0(ε)}. As a result, every trajectory that starts from LV (c) will

enter LV (c0(ε)) and remain in it in a finite time.

Remark 3. It is clear in the proof above that, as χ0 decreases to {0}, the high gain parameter ρ is

required to increase to infinity. In the limit case when χ0 = {0}, robust semi-global leader-following

consensus, instead of robust semi-global leader following practical consensus, will be achieved.
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5 Low gain based variable structure consensus algorithms

In this section, low gain based variable structure consensus control algorithms for the follower agents will

be constructed to solve Problem 1.

Recall the definition in (9),

Υ = −
(

diag{ω}M ⊗BTP (ε)
)

x̃,

where Υ ∈ R
mN , υl, l = 1, 2, . . . ,mN , is the lth element of Υ, ε ∈ (0, 1], and P (ε) > 0 is the unique

positive definite solution to the ARE (7). Then, the low gain based consensus control algorithms are

given by

u = [u1, u2, . . . , umN ]T, (10)

where

ul =

{

ρ υl

|υl|
, if |υl| > µ,

ρυl

µ
, if |υl| 6 µ,

with ρ > 0 and µ > 0.

Remark 4. The variable structure consensus control algorithms (10) can be considered as soft switching

consensus control laws since they are globally Lipschitz and reduce to the ideal switching consensus control

laws as µ → 0. It will be illustrated below that, when χ0 decreases to {0}, µ will decreases to 0. When

µ = 0, an infinitely fast switching results, and robust semi-global leader-following consensus, instead of

robust semi-global leader-following practical consensus, will be achieved.

The following result establishes that the low gain based variable structure consensus control algorithms

(10) solve Problem 1.

Theorem 2. There exists an ε∗ ∈ (0, 1] and a ρ∗ > 0, and for any ε ∈ (0, ε∗] and ρ > ρ∗, there exist a

µ∗(ε, ρ) > 0, such that, for any µ ∈ (0, µ∗(ε, ρ)], ε ∈ (0, ε∗], ρ > ρ∗, the consensus control algorithms (10)

solve Problem 1.

Proof. Consider the following Lyapunov function

V (x̃) = x̃T (diag{ω}M ⊗ P (ε)) x̃,

which is a positive definite function since diag{ω}M and P (ε) are both positive definite matrices. Let

c > 0 be such that

sup
ε∈(0,1],xi∈χ,i=0,1,2,...,N

x̃T (diag{ω}M ⊗ P (ε)) x̃ 6 c.

The existence of such a c is guaranteed since limε→0 P (ε) = 0, by Lemma 2, and χ is a bounded set. Let

ε∗ ∈ (0, 1] be such that, for each ε ∈ (0, ε∗], x̃ ∈ LV (c) implies that

‖
(

diag{ω}M ⊗BTP (ε)
)

x̃‖ 6 ∆.

Such an ε∗ exists since limε→0 P (ε) = 0. For each ε ∈ (0, ε∗], let ρ∗ > 0 be such that D0 +∆+ b < ρ∗.

The evaluation of the derivative of V (x̃) along the closed-loop trajectory inside the level set LV (c) is

then carried out as follows,

V̇ = x̃T
(

diag{ω}M ⊗
(

P (ε)A+ATP (ε)
))

x̃+ 2x̃T (diag{ω}M ⊗ P (ε)B)σ (u+ d(t))

=

N
∑

i=1

λix̂
T
i

(

ATP (ε)+P (ε)A−2λiP (ε)BBTP (ε)
)

x̂i − 2ΥT (σ (u+ d(t)) −Υ) .

6 −

N
∑

i=1

ελix̂
T
i x̂i − 2

mN
∑

l=1

υl (σl (ul + dl)− υl) ,

where υl and dl, l = 1, 2, . . . ,mN , are the lth elements of Υ and d(t), respectively.
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When |υl| > µ, we first consider the case υl > µ. Because υl > µ, ul = ρ. Then, for any x̃ ∈ LV (c),

ρ > ρ∗ and ε ∈ (0, ε∗], by Property (2) of σ and Assumption 2, υl (σl (ul + dl)− υl) > 0. By similar

reasoning, we can prove that the above inequality also holds when υ < −µ.

If |υl| 6 µ, by (3) and Definition 2, we have

−υl (σl (ul + dl)− υl) 6 µ (̟0(2ρ) + ∆) .

Thus, we have, for all x̃ ∈ LV (c), ε ∈ (0, ε∗] and ρ > ρ∗,

V̇ 6 −
N
∑

i=1

ελix̂
T
i x̂i + 2mNµ (̟0(2ρ) + ∆) .

Choose a c0(ε) ∈ (0, c] such that LV (c0(ε)) := {x̃ ∈ R
nN : V (x̃) 6 c0(ε)} ⊂ χN

0 = χ0 × χ0 · · · × χ0.

Such c0(ε) can be chosen since the origin is an interior point of χ0. Also, let

µ∗(ε, ρ) =
εc0(ε)

3mNλmax(P (ε)) (̟0(2ρ) + ∆)
. (11)

In summary, we have shown that, for any µ ∈ (0, µ∗(ε, ρ)], ε ∈ (0, ε∗] and ρ > ρ∗,

V̇ 6 −

N
∑

i=1

ελix̂
T
i x̂i +

2εc0(ε)

3λmax(P (ε))
< 0, x̃ ∈ LV (c) \ L

o
V (c0(ε)),

where Lo
V (c0(ε)) := {x̃ ∈ R

nN : V (x̃) < c0(ε)}.

Consequently, every trajectory starting from LV (c) will enter LV (c0(ε)) and remain in it in a finite

time.

6 Numerical simulation

Consider a multi-agent system of 5 follower agents and a leader agent, whose dynamics are described

respectively by (1) and (5) with

A =









0 1 0

0 0 1

0 0 0









, B =









0

0

1









.

Clearly, the matrix pair (A,B) is asymptotically null controllable with bounded controls and hence

Assumption 1 is satisfied.

The communication topology is represented by a directed graph as shown in Figure 2, with its adjacent

matrix

A =



















0 8 0 0 0

10 0 12 0 0

0 16 0 4 0

0 0 6 0 10

0 0 0 20 0



















,

and a30 = 10, a10 = a20 = a40 = a50 = 0. The detailed balance parameter matrix diag{ω} =

diag{0.5, 0.4, 0.3, 0.2, 0.1}. It is easy to verify that the directed graph is strongly connected and de-

tailed balanced, and diag{ω}M is a positive definite matrix. Thus, Assumption 3 holds. Pick γ = 0.3 <

λ = 0.33161.

For the purpose of running simulation, let

σ(s) =















arctan(s+ 0.5), if s 6 −0.5,

0, if |s| < 0.5,

arctan(s− 0.5), if s > 0.5,

(12)
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M0

M2

M3

M4

M1 M5

 

Figure 2 The directed graph that represents the communication topology.

and di(t) = sin(t). Thus, by (12), ∆ = 1, b = 1.5, ̟0(s) = s and D0 = 1. In the simulation, the initial

states of the follower agents and the leader agent are set as

[x0(0), x1(0), x2(0), x3(0), x4(0), x5(0)] =









15 10 5 −5 0 10

−15 −10 −5 0 −5 −5

15 10 5 −10 10 0









.

6.1 Simulation for low-and-high gain feedback based consensus algorithms

In the simulation for low-and-high gain consensus algorithms, we adjust the values of the two parameters,

the low gain parameter ε and the high gain parameter ρ, to verify the theoretical result in Section 4.

Let us consider two different values of the low gain parameter, ε = 0.001 and ε = 0.0001. For these

two values of the low gain parameter ε, the solution of the ARE (7) results in

P (0.001) =









0.0070 0.0239 0.0408

0.0239 0.1262 0.2852

0.0408 0.2852 0.9759









, P (0.0001) =









0.0010 0.0051 0.0129

0.0051 0.0393 0.1314

0.0129 0.1314 0.6618









.

Simulation results are shown in Figure 3 (a)–(c). As seen in Figure 3(a), leader-following consensus

is not achieved with ε = 0.001, indicating that not all the agent initial states are within the region of

initial conditions within which robust leader-following practical consensus occurs. On the other hand, as

shown in Figure 3 (b) and (c), leader-following practical consensus is achieved with ε = 0.0001, indicting

that the the region of the agent initial conditions where robust consensus occurs becomes bigger as the

value of ε decreases. Figure 3 (b) and (c), which show the simulation results for two different values of

the high gain parameters, ρ = 50 and ρ = 200, also demonstrate the theoretical conclusion that, for a

given set χ and a given value of ε, a smaller set χo can be allowed by increasing the value of the high

gain parameter ρ.

6.2 Simulation for low gain based variable structure consensus algorithms

We now simulate the multi-agent system under the low gain based variable structure consensus algorithms.

In the simulation, we fix the parameter ρ = 100, and adjust the low gain parameter ε and the switching

threshold value µ to achieve the robust consensus control.

For the same two values of the low gain parameter, ε = 0.001 and ε = 0.0001, the matrices P (0.001)

and P (0.0001) have been solved in the simulation of the low-and-high gain based consensus algorithms.

Simulation results are shown in Figure 4 (a)–(c). The simulation results shown in Figures 4 (a) and (b)

illustrate that the region of the agent initial conditions within which robust consensus occurs becomes

bigger as the value of ε decreases.

Figure 4 (b) and (c), which show the simulation results for two different values of the switching

parameter, µ = 1 and µ = 0.1, demonstrate that, for a given set χ and a given value of ε, a smaller χo

can be allowed by decreasing the value of µ.
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Figure 3 (Color online) The evolution of the agent dynamics under the low-and-high gain feedback based consensus

algorithms. (a) ε = 0.001 and ρ = 50; (b) ε = 0.0001 and ρ = 50; (c) ε = 0.0001 and ρ = 200.
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Figure 4 (Color online) The evolution of the agent dynamics under the low gain based variable structure consensus

algorithms. (a) ε = 0.001 and µ = 1; (b) ε = 0.0001 and µ = 1; (c) ε = 0.0001 and µ = 0.1.

7 Conclusion

We studied the problem of robust semi-global leader-following practical consensus of a group of general

linear systems where the actuators of the follower agents are imperfect, that is, their input output

characteristics are not precisely known and include a broad range of nonlinearities. The follower agents

are also subject to the effect of input additive disturbances. We constructed two kinds of consensus

algorithms, the low-and-high gain feedback consensus algorithms and the low gain based variable structure

consensus algorithms, for the follower agents. These consensus algorithms were shown to achieve robust

semi-global leader-following practical consensus when the communication topology among the follower

agents is a strongly connected and detailed balanced directed graph and the leader agent is a neighbor

of at least one follower agent. The generalization of the results to a more general directed graph seems

to be a difficult task and is a topic of our on going research.
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