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Abstract A bug tracking system provides a collaborative platform for the developer crowd. After a bug

report is submitted, developers can make comments to supplement the details of the bug report. Due to the

large number of developers and bug reports, it is hard to determine which developer (also called commenter) is

able to comment on a particular bug report. We refer to the problem of recommending developers for commenting

on bug reports as commenter recommendation. In this paper, we perform an empirical analysis on commenter

recommendation based on five-year bug reports of four open source projects. First, we preliminarily analyze

bug comments and commenters in three categories, the relationship between commenters and fixers, the data

scale of comments, and the collaboration on bug commenting. Second, we design a recommendation approach

via ranking developers in the crowd to reduce the manual effort of identifying commenters. In this approach,

we formulize the commenter recommendation problem as a multi-label recommendation task and leverage both

developer collaboration and bug content to find out appropriate commenters. Experimental results show that

our approach can effectively recommend commenters; 41% to 75% of the recall value is achieved for top-10

recommendation. Our empirical analysis on bug commenting can help developers understand and improve the

process of fixing bugs.
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1 Introduction

Fixing bugs is a common and expensive task in software development. In modern software projects,

dealing with bugs is an activity of the developer crowd rather than individual ones [1]. To support

the collaboration of bug fixing, bug tracking systems are deployed to facilitate bug management. A

newly submitted bug report contains a basic description about the failure, but may not provide sufficient

information for bug fixing [2, 3]. Therefore, developers who have knowledge about this bug, can make
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comments on the bug report to supplement helpful information, such as how to reproduce, localize, or

fix the bug [4–6].

Bug comments enrich the content of bug reports; meanwhile, developers can leverage bug comments

to collaborate with each other and share their understandings [7]. The process of commenting on a bug

report is an instance of development among the developer crowd, which leverages collective intelligence

of developers during the whole life cycle of the bug [8]. In a bug tracking system, such as Bugzilla, each

bug report is associated with an email list [9]. Developers in the email list can receive a notification

email if the bug-related information is updated; on the other hand, during the process of fixing the bug,

developers can manually modify the email list to involve other potential developers, who have expertise

in commenting on the bug. However, if the size of the email list is set too large, many developers have

to pay effort to read irrelevant bug reports; if the size of the email list is too small, relevant developers

would be missed. The manual effort of identifying developers for commenting on bugs should be reduced.

This leads to the necessity of recommending developers for commenting on bug reports. We refer to

such recommendation as commenter recommendation1). In contrast to assigning one fixer for each bug

report in bug triage [4, 10], multiple commenters can add comments to one bug report in commenter

recommendation.

In the community of mining software repositories, much work has focused on the bug reports themselves,

e.g., bug quality [2], defect prediction [11], and bug triage [4]. Few prior results, however, can be found

for bug comments and commenters. Many questions can be raised. For example, what is the relationship

between commenters and fixers? How do developers collaborate for bug commenting? Can we leverage

bug comments and developer collaboration to recommend developers to add more comments? This paper

addresses these questions, which can benefit collaborative development and help developers understand

the process of bug commenting.

In this paper, we propose a ranking approach to automatic commenter recommendation for bug reports

based on the developer crowd. Our empirical analysis is conducted on five-year bug reports of four open

source projects, including Eclipse IDE, JDT, Firefox, and Thunderbird. Our work mainly contributes in

two parts, analyzing bug comments with commenters and recommending developers on bug commenting.

First, we preliminarily investigate three problems to analyze the characteristics of comments and

commenters, namely the relationship between commenters and fixers, the data scale of comments, and

the collaboration on bug commenting. For commenters, we find out that there is an overlap between

commenters and fixers; for comments, we show that there exist a large amount of bug comments by

commenters; for collaboration on commenting, we examine the collaboration patterns of commenters.

Second, based on our analysis, we address the problem of commenter recommendation, i.e., to recom-

mend expertise developers to comment on bug reports. We formulize such a recommendation problem as a

multi-label recommendation task and propose ReComm, a ReCommendation approach on Commenting

via ranking for the developer crowd. This approach ranks developers based on recommendation techniques

by leveraging both the collaborative patterns and the specific bug content of developers. Experimental

results show that 41% to 75% of the recall value is achieved for top-10 recommendation. Our approach

can effectively recommend developers for bug commenting, which is helpful to understand and to improve

the process of bug resolution.

The major contributions of this paper are as follows:

(1) We propose a ranking approach for the developer crowd, ReComm, to address the problem of com-

menter recommendation. This approach leverages both collaboration and bug content to rank developers

for bug commenting.

(2) We analyze the characteristics of bug commenting and illustrate our recommendation results with

five-year bug reports of four open source projects.

The remainder of this paper is organized as follows. Section 2 presents the background and the data

collection. Section 3 shows the preliminary study on analyzing comments and commenters. Section 4

1) In this paper, to avoid ambiguity, a developer refers to a contributor in software development, in a board sense. When

comparing the roles of bug commenting and fixing, we use the terms “commenter” and “fixer”. A commenter denotes a

developer who makes comments on a bug report while a fixer denotes a developer who fixes a bug.
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Figure 1 (Color online) A part of bug report for bug 597930 in Firefox and its two comments. This bug describes an

error about a regular expression for the location bar.

proposes an approach to commenter recommendation and Section 5 empirically examines its performance.

Section 6 shows the threats to validity and Section 7 lists the related work. Section 8 concludes this paper.

2 Background and data sets

2.1 Background

In open source software projects, bug tracking systems are widely deployed to maintain bug reports and

to assist developer collaboration. A bug report is a textual form of a software bug, which is stored for

reproducing and fixing the bug. In software maintenance, automatic techniques employ bug reports to

cope with software tasks. For example, duplicate bug detection (e.g., [12, 13]) searches for similar bugs,

which have the same root causes to the given bugs; bug triage (e.g., [4, 10]) aims to assign a bug report

to an appropriate developer, who can fix the bug; reopened bug prediction (e.g., [14]) identifies whether

bugs will be correctly fixed in the future.

Figure 1 shows a bug report of bug 597930 in Firefox, an open source web browser2). Once a bug report

is submitted to the bug tracking system, two items, “summary” and “description”, are used to indicate

the basic content of the bug; another item, “status”, records the progress of bug resolving (e.g., a value

“fixed” indicates that the bug has been fixed). To facilitate the process of bug fixing, developers make

comments to add information to the bug report. For a bug report, developers can manually update an

item, email list, to involve other developers who have potential knowledge to add the comments. Figure

1 shows that six developers in the email list and two of comments by two of these developers.

2.2 Data collection

Our experiment is conducted on five-year bug reports of four open source projects, including Eclipse

IDE3), Eclipse Java Development Tools (JDT, for short)4), Firefox5), and Thunderbird6). For each

2) See the bug report of bug 597930 in Firefox. http://bugzilla.mozilla.org/show bug.cgi?id=597930.
3) Eclipse Integrated Development Environment. http://wiki.eclipse.org/Platform/.
4) JDT. http://www.eclipse.org/jdt/.
5) Firefox. http://www.mozilla.org/en-US/firefox/.
6) Thunderbird. http://www.mozilla.org/en-US/thunderbird/.
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Table 1 Data sets for fixed bugs in four open source projects

Project Description #Bugs

Eclipse IDE An integrated development environment for Java 38189

JDT A tool suite for Java development 20891

Firefox A multiple-platform web browser 11575

Thunderbird An email, news, and chat client 4060

project, we extract all the fixed bug reports from Jan. 1, 2006 to Dec. 31, 2010. We do not use recent

bug reports because recent bugs are not stable and updated by developers in daily development [4,15,16].

All the bugs with a status of new, invalid, or will-not-fix are removed. The reason for only selecting fixed

bugs is that such fixed bugs are well handled by developers and are more reliable than unfixed bugs [10].

Table 1 lists the details of data sets in the four projects.

For each bug report, we extract its bug ID, commenters, comments, and their associated timestamps.

For further experiments (see Section 5), we extract the bug content (summary and description) as well as

the bug fields (including reporter, component, priority, and severity). We convert the bug content into a

vector of terms based on three steps (namely tokenization, stemming, and stop-word removal [4]). After

these three steps, the bug content of each bug report is formed as a vector of terms.

3 Preliminary analysis on bug commenting

In this section, we investigate the characteristics of bug comments and commenters based on an empirical

analysis of four open source projects. In a bug tracking system, a commenter makes comments via

commenting. This paper explores bug commenting in two categories, namely an empirical analysis of

bug comments and commenters (Section 3) and commenter recommendation for bug reports (Sections 4

and 5).

To conduct our preliminary analysis, Subsections 3.1 and 3.2 examine the commenters and comments,

respectively; Subsection 3.3 investigates the behavior between commenters and comments (i.e., the process

of commenting). These results motivate our approach to developer recommendation on commenting.

3.1 Commenters and fixers: what is the relationship between commenters and fixers?

Commenters add comments to bug reports. In this way, they join the discussion and supplement infor-

mation for bug fixing. In this section, we examine the contributions of commenters and fixers in open

source projects.

A fixer plays an important role in bug fixing. Existing work has investigated the behavior of fixers,

such as empirical studies of social networks [2,17] and automatic recommendation techniques [4,10]. One

bug report can be commented by many commenters, but can have only one or zero final fixer. In this

section, we find out the relationship between commenters and fixers based on their contributions recorded

in bug reports.

First, we show the numbers of commenters and fixers in four open source projects in Table 2. We

define the similarity between a set of commenters and a set of fixers using a widely-used similarity

metric, Jaccard index [18]. Given a set of commenters and a set of fixers, the similarity of these two sets

is defined as similarity = |Commenters∩Fixers|
|Commenters∪Fixers| , where |Commenters∩Fixers| and |Commenters∪Fixers| are the

sizes of the intersection and the union of two given sets, respectively. Among these four projects, Firefox

has the largest numbers of commenters and fixers. In Eclipse IDE and JDT, all the fixers also play a

role of commenters; 50 out of 837 fixers do not make comments in Firefox and 3 out of 218 fixers do

not make comments in Thunderbird. Moreover, Firefox has the highest similarity, i.e., 0.1264, between

commenters and fixers among these projects. Such similarity in the other three projects is less than

0.0700. On one hand, there exists an intersection between bug commenters and fixers. This indicates

that commenters share similar knowledge with fixers; meanwhile, techniques for recommending fixers,

such as bug content [4], can be used for recommending commenters (will be shown in Subsection 4.4).
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Table 2 Number of commenters and fixers in four projects

Project #Commenters #Fixers |Commenters ∩ Fixers| |Commenters∪ Fixers| Similarity

Eclipse IDE 5303 319 319 5303 0.0602

JDT 2513 69 69 2513 0.0275

Firefox 6174 837 787 6224 0.1264

Thunderbird 3087 218 215 3090 0.0696
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Figure 2 (Color online) Illustration of the number of bugs with a specific number of commenters or comments for Firefox.

For example, a point in the illustration with 5 comments (x-axis) and 800 bugs (y-axis) denotes that there exist 800 bugs

in Firefox, each of which consists of 5 comments.

Table 3 Comments of bugs in four projects

Project #Comments in total
#Comments in one bug report

Min. Max. Average Std.

Eclipse IDE 236414 0 194 6.19 7.63

JDT 120669 1 121 5.78 6.00

Firefox 172800 0 548 14.93 22.73

Thunderbird 54556 0 312 13.44 18.23

On the other hand, in Subsection 5.4, we will show that the high similarity in Firefox may increase the

difficulty to commenter recommendation.

Then, taking the project Firefox as an example, we present the distributions of bugs in Figure 2. Each

point in this figure denotes the number of bugs with a specific number of commenters or comments.

Meanwhile, we mark the boundaries of 80% of bugs in the projects. As shown in Figure 2, 80% of bugs in

Firefox have 0 to 20 comments and 80% of bugs are commented by 0 to 8 commenters. This observation

shows the difficulty of commenter recommendation, i.e., one bug report relates to multiple commenters

as well as multiple comments.

Summary. In open source projects, the sets of commenters and fixers have an overlap. Meanwhile,

commenters contribute different among the four projects in our work. For example, Firefox owns more

commenters than Eclipse IDE and commenters in Firefox make more comments than those in Eclipse

IDE.

3.2 Comments in bug reports: what is the data scale of comments in open source projects?

A bug tracking system accumulates a large amount of bug comments over time. This question explores

the scale of bug comments, as well as the number of comments contributed by each commenter. Large-

scale projects accumulate bugs in software development. As shown in Tables 1 and 2, in Firefox, the bug

tracking system stores 11575 fixed bugs from 2006 to 2010, which are contributed by 6174 developers. In

this section, we show the scale of bug comments for all the four studied projects.

Table 3 lists the number of comments in four open source projects. We present the minimum, maximum,

average, and standard deviation for the number of bugs in each project. Among the four projects, Eclipse
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Figure 3 Illustration of comments for top 100 developers in five-year bugs in Firefox. Diameter of a circle denotes the

average number of comments per bug for each developer. For example, the largest circles denote developers who contribute

to over four comments per bug. Note that the vertical axis is on a log scale. Top 100 developers refer to the 100 developers

who make comments on the largest numbers of bug reports.

IDE has the largest number of comments in total while Firefox has the largest average number of comments

in one bug report. Firefox also has the highest standard deviation for the number of bugs. That is, the

variation from the average in Firefox is the highest. We also manually check the bug reports, which

receive the largest number of comments. For example, in Eclipse IDE, bug 67384 has 194 comments,

which are contributed by 75 commenters during the discussion over 28 months. As shown in Table 3,

the deviation among bug reports is large. That means, it is hard to know how many developers work on

one bug; this also leads to our major evaluation measure of commenter recommendation, i.e., Recall@k,

which will be shown in Subsection 5.1.

In Figure 3, we take Firefox as an example to illustrate the number of comments, which are made by

top 100 developers. Among the top 100 developers, over 30 developers have made over 1000 comments

and over 15 developers have contributed to more than 4 comments for each relevant bug. The top 10

developers make 44635 comments (25.83% of total 172800 comments in Table 3) while the following ten

developers (from top 11 to top 20) make 19839 comments (11.48% of total comments). A large number

of bug comments can facilitate the bug fixing by developers; on the other hand, such large-scale data will

add workload to developers. Figure 3 further shows that the number of comments per bug is hard to be

predicted.

Summary. Open source projects consist of a large number of comments on bug reports. The deviation

of the number of comments per bug is high. The deviation and the large number of comments add the

complexity to commenter recommendation.

3.3 Collaboration for commenting: how do commenters collaborate based on comments?

One bug report can be commented by multiple commenters. Thus, commenters naturally collabo-

rate during the process of commenting. We investigate the collaboration patterns among commenters.

Bug commenting is a collaborative activity. When commenting on a bug report, developers cooperate

with each other to supplement information. Such cooperation is similar to a pairwise based clustering

process [19].

In this paper, we regard commenting on the same bug as developer collaboration. To examine the

collaboration in bug reports, we use a collaboration pattern to denote a set of developers, who made

comments on over 10 same bugs; we use pattern size to denote the size of the set of developers in a

collaboration pattern. Table 4 shows the number of collaboration patterns in each size in four projects.

Note that collaboration patterns are exclusive. For example, if three commenters A, B & C form a size-3
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Table 4 Collaboration pattern size in four projects

Project
Pattern size

2 3 4 5 6 7

Eclipse IDE 999 903 80 18 4 0

JDT 249 291 157 26 0 0

Firefox 1382 2321 1460 331 25 3

Thunderbird 267 390 261 61 8 0

pattern, we do not count the size-2 pattern of A & B (or B & C, or C & A) again. As shown in Table 4,

in Firefox, 2321 patterns exist in the collaboration among 3 developers while 1460 patterns exist among

4 developers. Moreover, 3 patterns in Firefox have a size of 7 commenters. As shown in Table 4, there

exist many collaboration patterns. This motivates us to apply collaborative filtering to rank developers.

Summary. In open source projects, commenters collaborate with each other in the process of bug

commenting. We identify many collaboration patterns in all the four projects. Such collaboration patterns

can be leveraged to recommend commenters.

4 Commenter recommendation approach

In this section, we leverage the results in Section 3 to recommend developers for bug commenting. As

mentioned in Subsection 2.1, developers can manually invite other developers to make comments on a bug

report through an associated email list. This section explores the approach to automatically recommend-

ing developers for commenting. Based on the above analysis, we design an automatic recommendation

approach for bug commenting.

4.1 Problem formulization

Problem. Given existing bug reports and their comments, commenter recommendation aims at ranking

candidate developers for making future comments on bug reports to supplement information for bug

processing.

Formally, given a historical set RH of bug reports and a set D of developers, for each rH ∈ RH, let

DH ⊆ D be a set of relevant developers who have commented on rH. Given a current (newly submitted)

bug report r, let Tr denote an unknown set of developers who will comment on r in the future (called

the truth in the recommendation for r).

The goal of commenter recommendation is to recommend a set Mr ⊆ D of developers to match Tr

based on each historical bug report rH and its DH. In practice, instead of directly comparing Mr to

Tr, we assign a score fd,r for each developer d ∈ D to form a detailed comparison between Mr and Tr.

That is, each d in D is ranked to match the truth Tr based on the score fd,r, which is generated by a

recommendation approach.

Commenter recommendation is a complex and multi-label recommendation task. In software main-

tenance, most of existing tasks are formulized as the single-label classification or recommendation. For

example, in bug triage [4], each new bug report can be mapped to only one fixer (only one label for each

bug report). In contrast to single-label tasks, commenter recommendation is formed as a multi-label

recommendation task. That is, in this task, each bug report is commented by multiple developers, i.e.,

multiple labels.

Application scenario. As mentioned in Subsection 2.1, during the whole life cycle of a bug re-

port, developers can make comments to supplement information. For a new bug report r (which needs

comments), we recommend commenters, i.e., Mr, based on historical bug reports in RH. In this paper,

such recommendation approach is designed via learning from developer collaboration and capability on

existing bug reports.
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Figure 4 (Color online) Illustration of commenter recommendation via ranking for the developer crowd. In collaboration

ranking, developers are ranked based on historical collaboration; in capability ranking, developers are ranked based on

specific capability on bug reports. The final recommendation is formed by integrating the above two developer rankings.

4.2 Framework of our approach

In this paper, to solve the problem of commenter recommendation, we propose ReComm, a

ReCommendation approach on Commenting via ranking for the developer crowd, in particular devel-

oper collaboration and capability. Figure 4 illustrates the framework of ReComm, which integrates

recommendation techniques based on two ranking methods.

As shown in Figure 4, our approach ranks developers for given bug reports based on historical bug

reports and comments. This approach consists of four phases. First, we extract bug reports and their

comments from bug tracking systems; second, collaboration ranking leverages developer collaboration

since developers collaboratively make comments on the same bugs; third, capability ranking leverages

bug content to measure the capability of developers on specific bugs; fourth, developer rankings obtained

by above two phases are combined into a final developer ranking.

4.3 Collaboration ranking

Two developers comment on the same bug report since they share common interest in handling bugs. As

shown in Table 4, such developer collaboration widely occurs in bug commenting. Thus, we recommend

collaborative developers to a bug if one developer in the collaboration makes a comment on the bug

report.

Collaborative filtering is a typical recommendation technique based on the analysis of user-item behav-

ior [20,21]. As its name suggests, collaborative filtering explores historical data to find the collaboration

among users, which is used to recommend users or items in the future. An example of applying collabo-

rative filtering is the book recommendation in online bookstores.

In this paper, we employ collaborative filtering to identify developer collaboration in bug commenting.

However, for a new bug report, no developer has made comments. Thus, we cannot identify which

collaboration is helpful. In our approach, instead of knowing existing developers, we use bug fields to

bridge the historical collaboration and the new bug report. A bug field refers to a specific item in a bug

report. We extract four bug fields: reporter, component, priority, and severity. Each bug field has several

values. For example, a reporter could be any developer who submits a bug report while a severity could

be several pre-defined levels (e.g., in Eclipse IDE, a severity consists of six pre-defined values). Figure 5

illustrates our bug field based collaboration ranking method.

In our work, collaboration ranking consists of two main steps. In modeling, we explore historical bug

comments and model developer collaboration on bug fields based on Pearson correlation coefficient. In

recommendation, if a new bug report contains a specific bug field, developers, who have collaborated on
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Bug report

Field

Developer

Bug report 1 Bug report 2 Bug report 3

Reporter Component Priority Severity

A B C D E

Figure 5 (Color online) Example of bug field based collaborative filtering for developer ranking.

the field, are ranked to add comments for the same bug report. In collaboration ranking, no bug content

(such as summary or description) is needed.

Modeling. A set E denotes the set of all bug field values, e.g., a value e ∈ E could be a severity value

of a bug report r. For all the historical bug reports, let a rate zd,e be the number of bug reports on a

field value e ∈ E commented by a developer d. Especially, zd,e = 0 indicates no comments by d on e.

For historical bug reports, based on the rates of each developer on each bug field value, we define

the similarity between two developers as Pearson correlation coefficient, which is a typical method to

measure the linear dependency between two variables in collaborative filtering [22]. In our work, Pearson

correlation coefficient of two developers is defined as the covariance of their rates divided by the product

of the standard deviations. Given a set of historical bug reports, the similarity between two developers

a and b is defined as

sim(a, b) =

∑

e∈E(za,e − za)(zb,e − zb)
√
∑

e∈E(za,e − za)
√
∑

e∈E(zb,e − zb)
, (1)

where za and zb denote the average rates by a and b over historical bug field values in E. The value of

sim(a, b) is between +1 and −1 (inclusive). A value +1 denotes a perfect positive correlation for the rates

by a and b while −1 denotes a perfect negative correlation. Intuitively, a positive similarity indicates

that two developers tend to make similar numbers of comments on the same bugs; a negative similarity

indicates that two developers tend to make different numbers of comments.

Recommendation. Let V be a set of θ most similar developers to d ∈ D and θ is an input parameter.

For each v ∈ V , we define the predicted rate of a developer d as

sd,r = zd +

∑

v∈V sim(d, v)×
∑

e∈Er
(zv,e − zv)

∑

v∈V |sim(d, v)|
, (2)

where Er is a set of all the bug field values of r. Thus, given a bug report and a set of its bug field values,

the predicted rates of developers on this bug report can be calculated. A candidate developer with a

higher predicted rate is more possible to comment on this bug report.

4.4 Capability ranking

Handling a bug report needs a set of specific skills [10]. A developer is competent to handle specific bugs

if he/she has historically handled similar bugs. Existing work in bug triage has proposed content-based

capability [10] or expertise [23] to model how competent a developer is. In contrast to training classifiers in

machine-learning based approaches, capability or expertise based approaches directly compare developers

based on historical data. In this paper, we follow the work by Tamrawi et al. [10], which uses capability

to denote the degree of a capable developer with respect to specific bugs.

Capability ranking is based on the fact that developers are capable to fix bugs according to their

expertise. We measure the capability between a developer and a bug report to determine whether this

developer is able to comment on the bug. In our work, we employ capability ranking to rank developers

by measuring the capability rather than train classifiers in machine learning.

Similar to collaborative filtering, capability ranking also consists of two main steps. In modeling, the

content of each bug report is viewed as a set of terms. The capability between each developer and each
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Table 5 Measurement for the capability

Capability, cd,t Capability, cd,r

Jaccard index, cd,t =
nd,t

nd+nt−nd,t
Sum representation, cd,r =

∑

t∈r cd,t

Ochiai coefficient, cd,t =
nd,t√
ndnt

Product representation, cd,r = 1−

∏

t∈r(1− cd,t)

Dice coefficient, cd,t =
2nd,t

nd+nt

term is generated based on historical bug reports. A “term” in our approach is a word after preprocessing

(see Subsection 5.1). In recommendation, given a new bug report, we calculate the capability between

each developer and this bug report by counting the capability of each term in the bug report. Then we

rank developers based on their capabilities on the bug report.

Modeling. In our work, we extract the summary and the description in bug reports as the bug content.

The capability of developers can be defined by different methods. For example, Tamrawi et al. [10] show

that Jaccard index and a product representation (combined as a fuzzy set approach) are effective to

measure the capabilities of developers. In this paper, besides Jaccard index in [10], we employ two other

methods, i.e., Ochiai coefficient and Dice coefficient, to measure the capability between a developer and a

term. Ochiai coefficient and Dice coefficient are two measurements of correlation in information retrieval,

which were first introduced in biology [24] and ecology [25], respectively. Given a developer d and a

term t in historical bug reports, we use nd, nt, and nd,t to denote the number of bug reports that d has

commented on, the number of bug reports that contain t, and the number of bug reports for both. Table

5 lists the three methods of measuring capability cd,t between a developer d and a term t.

Recommendation. Besides the product representation in [10], we employ another method (called a

sum representation in our work) to measure the capability between a developer and a bug report. Given a

bug report r and a developer d ∈ D, we obtain each term t in bug content of r and calculate the capability

cd,r based on cd,t. The two methods of calculating cd,r can be found in Table 5. Then, developers with

high capabilities to the given bug report are recommended to make comments.

The measurements of the capability in Table 5 can form six combinations. In Subsection 5.2, we will

compare these six combinations for capability ranking and show that Ochiai coefficient with the sum

representation is the most effective one.

4.5 Approach integration

In Subsections 4.3 and 4.4, we design a collaboration ranking approach and a capability ranking approach

by leveraging developer collaboration and bug content, respectively. For a given bug report r, either

approach can assign one score (a predicted rate sd,r or a capability cd,r) to each candidate developer

d ∈ D.

In real-world bug tracking systems, both developer collaboration and developer capability are helpful to

identify relevant developers. Thus, we consider integrating collaboration ranking and capability ranking.

First, we respectively normalize the predicted rate sd,r and the capability cd,r to the range 0 to 1.

Then, we combine the values of sd,r and cd,r to generate a final score fd,r. The final score is defined as

fd,r = (1−ω)sd,r+ωcd,r, where 0 6 ω 6 1. Actually, ω is a weight factor to determine the contribution of

sd,r and cd,r in the final score. Thus, fd,r is a weighted average of sd,r and cd,r. This integrated approach

takes advantages of both collaboration and capability ranking. Based on fd,r, we rank all the developers

in D and recommend them to make comments on r.

5 Experiments and results

We examine the results of our approach based on data sets in four open source projects. Our approach

ReComm is implemented in Java 1.7.
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Table 6 Average scale of data sets in ten rounds

Average scale of 10 rounds
Average scale in training sets Average scale in test sets

#Bug #Commenter #Comment #Bug #Commenter #Comment

Eclipse IDE 5198.3 224.4 40484.9 914.2 145.8 7567.1

JDT 2513.0 73.7 18076.3 462.4 50.1 3596.2

Firefox 3767.3 337.9 52430.7 676.3 234.8 10721.4

Thunderbird 1019.4 122.9 12860.8 216.8 81.9 2848.3

5.1 Data preparation and evaluation measures

To evaluate the performance of commenter recommendation, we employ a 10-round incremental frame-

work for experiments [26]. First, we chronologically sort all the bug reports in a project; then, these bug

reports are cut into 11 equally-sized folds. We form 10 rounds evaluation with these 11 folds. In the ith

round, the first i folds are formed as a training set and the (i + 1)th fold is used as a test set7). We run

one approach on each round and calculate the average results of all the 10 rounds. In each round, inactive

developers who comment on less than five bug reports are removed since such inactive developers make

little contribution to bug handling. Table 6 shows the average scale of 10 rounds for training sets and

test sets.

As shown in Subsection 4.1, the commenter recommendation is a multi-label recommendation problem.

This leads to a complicated evaluation. In our work, we employ Recall@k [6] as evaluation measures,

where k equals to 5 or 10. The value range for each evaluation measure is from 0 to 1. A value equals to

1 denotes that a recommendation approach generates perfectly matched results to the truth in the test

set.

Recall@k aims to measure how many of actual developers (that make comments) are hit by the top k

recommended developers [6,20]. Meanwhile, another evaluation measure, Precision@k is also considered;

Precision@k aims to measure how many of the top k recommended developers are correct. Given a test

set R of m bug reports, let Tr be the set of developers in truth for a bug report r ∈ R. Recall@k and

Precision@k are defined as

Recall@k =
1

|R|

∑

r∈R

|Pr ∩ Tr|

|Tr|
, (3)

Precision@k =
1

|R|

∑

r∈R

|Pr ∩ Tr|

k
, (4)

where Pr denotes a set of top-k developers based on a recommendation approach. Note that in Precision@k,

the k value in the denominator is the same for all bug reports. Since in commenter recommendation, the

number of commenters that are involved in each bug is different (Table 3), it is better to use Recall@k

to consider the variable number of commenters. Hence, in this paper, we employ Recall@k as the major

evaluation measure and list Precision@k as reference. Based on Recall@k, all the top k developers by

recommendation are compared with developers in truth.

5.2 Performance in capability ranking

In Subsection 4.4, we propose three methods to measure the capability between a developer and a

term, namely Jaccard index, Ochiai coefficient, and Dice coefficient. We also propose two methods to

count the capability between a developer and a bug report, namely a sum representation and a product

representation. These methods (see Table 5) can be formed into six combinations. In this section, we

take Firefox as an example to examine the results of these six combinations of measurement methods.

Figure 6 shows the results of two evaluation measures, Recall@5 and Recall@10, on the data set of

Firefox. We can find out that either Recall@5 or Recall@10 does not change much. The changes of

Recall@5 and Recall@10 are less than 2.0%. Based on Figure 6, Ochiai-Sum achieves the best results on

Recall@5 while Dice-Sum and Jaccard-Product achieve the best results on Recall@10.

7) We use training sets and test sets to simplify the statement, although our approach ReComm does not train classifiers.
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Figure 6 (Color online) Measurement comparison in capability ranking on Firefox based on Recall@5 and Recall@10.

Each result is an average of results in ten rounds.
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Figure 7 (Color online) Performance of Recall@5 in the integrated approach when changing the weight factor on four

projects. Each result is an average of results in ten rounds.

5.3 Performance of the integrated approach

In this paper, our approach to commenter recommendation is the integration of collaboration and capa-

bility ranking. In Subsection 4.5, we employ a weight factor ω to combine two ranking approaches.

We investigate the performance of the integrated approach based on the value of the weight factor, ω.

Figure 7 presents Recall@5 on four projects. This figure shows that most of results with ω from 0.1 to 0.4

are better than those with ω equals to 0 or 1. In other words, the integration of two filtering approaches

can obtain good results by leveraging both developer collaboration and bug content. When ω changes

from 0 to 1, Recall@5 on four projects varies around 10%. This result show that the integrated approach

is sensitive to the value of the weight factor ω .

As shown in Figure 7, to obtain the best results of Recall@5, the values of ω for Eclipse IDE, JDT,

Firefox, and Thunderbird are 0.1, 0.2, 0.4, and 0.3, respectively. The average of these four values is 0.25.

In the following experiments, we identically set ω = 0.3 for all the projects to avoid changing ω among

projects.

5.4 Comparison with existing approaches

We compare our commenter recommendation approach ReComm on the data sets of four projects with

four existing approaches: Drex-Frequency, Drex-Outdegree, Bugzie, and Dretom.

Drex, Developer Recommendation with k-nearest-neighbor search and EXpertise ranking, by Wu et

al. [27] is originally proposed for commenter recommendation. In Drex, bug reports are converted into

term vectors via a vector space model based on tf-idf weighting; then a k-nearest-neighbor classifier is

trained to detect similar bugs. Among different criteria, Drex obtains the best performance if related

developers are ranked in frequency or out-degree (called Drex-Frequency and Drex-Outdegree for short)

in a developer social network [27].
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Table 7 Recall@5 and Recall@10 of five approaches on four projects

Project
Recall@5

ReComm Drex-Frequency Drex-Outdegree Bugzie Dretom

Value Value Impr (%) Value Impr (%) Value Impr (%) Value Impr (%)

Eclipse IDE 41.95 37.36 12.28 36.24 15.74 17.08 145.65 14.70 185.39

JDT 53.41 52.63 1.48 50.92 4.89 35.01 52.55 41.48 28.77

Firefox 26.99 22.95 17.61 22.03 22.50 14.87 81.48 14.89 81.21

Thunderbird 39.74 32.48 22.37 32.18 23.51 23.77 67.21 30.79 29.06

Project
Recall@10

ReComm Drex-Frequency Drex-Outdegree Bugzie Dretom

Value Value Impr (%) Value Impr (%) Value Impr (%) Value Impr (%)

Eclipse IDE 56.41 47.98 17.58 47.75 18.14 30.39 85.66 24.45 130.69

JDT 74.53 72.72 2.49 72.36 3.01 60.82 22.54 62.64 19.00

Firefox 40.63 35.56 14.25 35.95 13.00 25.02 62.39 24.99 62.57

Thunderbird 57.75 50.68 13.96 51.93 11.21 39.81 45.05 45.23 27.67

To our knowledge, besides Drex, no other approaches are directly proposed for commenter recommen-

dation. We compare our approach with two other related approaches. Bugzie, Bug Triage based on

Fuzzy Set and Cache, by Tamrawi et al. [10], is originally proposed for bug triage. This approach models

developer expertise with the fuzzy set theory and optimizes the approach with a cache based method.

Dretom, Developer REcommendation based on TOpic Models, by Xie et al. [28] is originally proposed

for bug resolution. In Dretom, a topic model is trained based on historical bug reports; then developers

are associated with topics via bug reports. Given a new bug, Dretom calculates probabilities for all

the topics and rank developers based on these topics [28]. According to [10, 27, 28], we retune the

parameters on data sets. Note that both Bugzie and Dretom are not originally designed for commenter

recommendation. Then the data in commenter recommendation may hurt their performance because

of the adaption of them to this new problem. Our experiment will use these algorithms as references,

without deeply exploring their computational ability in commenter recommendation.

In our proposed approach, ReComm, we set ω = 0.3 according to the tuning experiment in Subsection

5.3; we use Ochiai coefficient and the sum representation in capability ranking, according to the experi-

ment in Subsection 5.2. For θ, we manually tune the value of θ and find out that collaborative filtering

is insensitive to θ. In the following experiments, we set θ = 11 as a default value.

In Table 7, we compare average results in 10 rounds for five approaches on four projects with Recall@5

and Recall@10. Besides directly presenting results, we evaluate the percentage of improvement between

ReComm and other approaches. The term “Impr%” between ReComm and an approach X is defined

as Impr% = pReComm−pX

pX
× 100% where pReComm and pX denote the recall values of ReComm and X ,

respectively.

As shown in Table 7, ReComm achieves the best results out of five total approaches. In most of

projects, ReComm can improve over 10% of the recall values. One exception is JDT. That is, ReComm

on JDT is less than 5% than Drex-Frequency and Drex-Outdegree. The major reason is JDT is not in

a large scale, comparing with other projects. According to Table 6, the average number of commenters

in training sets and test sets are 73 and 50, respectively. Thus, each of ReComm, Drex-Frequency, and

Drex-Outdegree can obtain a good result.

Among the four projects, the recall values in Firefox are worse than the other three projects. For

example, Recall@10 by ReComm in Firefox is much lower than that in any other projects. Based on

our analysis in Subsections 3.1 and 3.2, we consider two possible reasons. One is Firefox has the highest

similarity between the sets of commenters and fixers among the four projects (Table 2); the other is

Firefox has the largest number of commenters (Table 2) and the largest average number of comments

for one bug report (Table 3). The similarity between commenters and fixers may lead the complex

relationship among developers while the large numbers of commenters and comments in Firefox may lead

to the difficulty of recommendation.
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Table 8 Precision@5 and Precision@10 of five approaches on four projects

Project
Precision@5

ReComm Drex-Frequency Drex-Outdegree Bugzie Dretom

Value Value Impr (%) Value Impr (%) Value Impr (%) Value Impr (%)

Eclipse IDE 16.91 16.79 0.70 15.27 10.74 9.80 72.59 7.97 112.22

JDT 25.78 25.61 0.69 24.78 4.04 20.52 25.62 23.75 8.57

Firefox 21.17 20.87 1.41 20.21 4.74 14.44 46.63 14.18 49.23

Thunderbird 24.11 22.48 7.21 24.16 −0.22 18.41 30.94 22.49 7.20

Project
Precision@10

ReComm Drex-Frequency Drex-Outdegree Bugzie Dretom

Value Value Impr (%) Value Impr (%) Value Impr (%) Value Impr (%)

Eclipse IDE 11.82 10.23 15.54 10.17 16.22 8.69 35.99 6.68 76.82

JDT 17.94 18.03 −0.52 17.94 −0.01 17.78 0.87 18.09 −0.83

Firefox 16.34 15.16 7.83 15.00 8.92 12.24 33.50 11.97 36.48

Thunderbird 18.66 16.43 13.63 17.05 9.49 15.80 18.09 17.06 9.43

In Table 8, we show the comparison of Precision@k values on four projects. ReComm can achieve better

precision values in most of comparisons. Note that for one project, the value of Precision@5 should be no

less than the value of Precision@10 because the definition of Precision@k is based on the total number k

of recommended developers. However, the improvement on precision values is lower than that on recall

values. In the project Thunderbird, ReComm on Precision@5 is worse than Drex-Outdegree by 0.22%; in

JDT, ReComm on Precision@10 is worse than Drex-Frequency, Drex-Outdegree, and Dretom by 0.52%,

0.01%, and 0.83%, respectively. One possible reason is that Precision@k is not designed to compare the

number of recommended developers and the number of actual developers that make bug comments; the

difference between the number of recommended developers and the number of actual developers may lead

to the current result. For example, for one bug that is commented by 8 developers, a Precison@10 value

is not suitable since the maximum of correctly recommended developer is 8 (a precision value of 0.8, less

than 1). We leave this as one threat to our work.

ReComm can obtain better results on most of projects than other approaches under evaluation. This

derives from the design of combining ranking based on developer collaboration and bug content. With

developer collaboration, commenters who have similar behaviors of commenting will be identified; with

bug content, developers who have similar expertise will be identified. Then developers based on both

collaboration and bug content can be selected as candidates in the recommendation. These selected

developers are ranked according to their combined scores as the final solution. Hence, the combination

of these rankings will benefit future commenter recommendation.

Summary. Experimental results show that our approach ReComm can effectively recommend devel-

opers for commenting on bugs. This approach integrates collaborative filtering and capability ranking to

rank developers by leveraging both developer collaboration and bug content. ReComm can obtain better

results than the other four approaches on most of projects. In three out of four projects, the Recall@10

value of ReComm is over 50%.

6 Threats to validity

In this paper, we propose an recommendation approach on bug commenting. We list three potential

threats to the validity in our work as follows.

For the analysis of bug comments and commenters, we pay much effort to explore the numerical

characteristics based on the data in bug tracking systems. We design a series of experiments to analyze

bug commenters and comments. However, further investigation should be conducted. For example, what

are the differences between the comments made by a bug fixer and the comments made by an ordinary

commenter? How does source code change after new comments [29]? This question should be empirically

answered. It is helpful to manually examine the content of comments made by the bug fixers. We will
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investigate such issues in our future work.

In collaboration ranking, we recommend a developer to a bug, if his/her collaborative developers make

comments on the same bug. However, this approach is limited by the number of known developers, who

have already collaboratively made comments on historical bugs. Such limitation is a typical problem in

collaborative filtering, called data sparsity [22], e.g., the sparsity of historical comments by developers

in our work. Another typical problem in recommendation systems is cold start [21], which is caused

by insufficient known information. To weaken the impact of data sparsity and cold start in commenter

recommendation, it is helpful to design a new recommendation algorithm to augment the results by

collaborative filtering.

In experiment, we follow existing work (e.g., [6]) to leverage Recall@k as the major evaluation measure;

then we use Precision@k as reference. The major reason for this choice is that the deviation of the number

of comments is high (as shown in Table 3); Recall@k can measure the correctly recommended developers

based on the different number of actual commented developers. Hence, Recall@k is chosen as the major

measure, rather than Precision@k. However, we have not provide any quantified evidence for this choice.

A further discussion about the measures for multi-label recommendation would be helpful to this issue.

7 Related work

7.1 Bug comments

Bug report summarization selects representative sentences in the bug description and the comments

to support the understanding of bug reports. Rastkar et al. [30] address bug report summarization

by recognizing the similarity between bug commenting and email threads. They collect 24 features to

generate an extractive summary for each bug report. By estimating the attention of developers, Lotufo

et al. [7] model the reading process of bug comments to create summaries.

Besides bug report summarization, bug comments are employed to analyze the developer behavior

in software development. Hong et al. [17] build a social network with bug comments to discover sub-

communities of developers in open source projects. In the above work, bug comments provide a platform

to support the communication among developers.

In this paper, we propose an integrated approach to solve the problem of commenter recommendation.

To our knowledge, three pieces of existing work have focused on this problem with content-based recom-

mendation, i.e., Drex by Wu et al. [27], Dretom by Xie et al. [28], and recent work of DevRec by Xia

et al. [31]. The differences between our work and existing work ( [27, 28, 31]) are as follows. First, the

approach in our work combines collaborative filtering with capability ranking to leverage both developer

collaboration and bug content while existing work focuses on bug content. We believe the collaboration

among developers is important to identify relevant developers. Second, we conduct experiments on five-

year bug reports in four open source projects. Experimental results show that our work achieves much

better results than exiting work.

7.2 Recommendation for the crowd

A widely-used approach to modeling the collaboration is social network analysis. Bird et al. [32] discover

the latent structure among developer collaboration in an email list database and find out that developer

communities arise spontaneously Pinzger et al. [11] build a developer-module network to model the

collaboration and predict module failures with social network metrics. Meneely & Williams [5] empirically

investigate the reliability of such metrics for software failures. To face with bug data, Hu et al. [15] build an

predictive model for predicting developers who can fix bugs; Xuan et al. [33] investigate the collaboration

on bug reports and transfer the collaboration on bug data to requirements data, which are used to solve

requirements optimization with heuristics [34]. Recent work by Mao et al. [35] and Wang et al. [36] deeply

investigate the collaboration in the crowd and developer recommendation.
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In contrast to the above work, in this paper, we empirically analyze the developer collaboration based

on bug commenting and model such collaboration with collaborative filtering. To our knowledge, existing

work by Park et al. [37] has employed collaborative filtering on bug reports to optimize the time cost

of fixing bugs. In our work, we use collaborative filtering on comments to predict the behavior of

commenting.

Capability or expertise is a kind of measurement to quantify the specific knowledge of a developer

in software development. Anvik and Murphy [9] explored the implementation expertise in check-in logs

and bug reports. Matter et al. [23] used vocabulary-based expertise to assign bug reports to relevant

developers. Focusing on the same problem, Tamrawi et al. [10] proposed the Jaccard-index based method

to model the capability of developers. To distinguish experts and non-experts, Huo et al. [38] conducted

an empirical study of the effects of expert knowledge on developer recommendation and feature location.

For further understanding developer capability, Meyer et al. [39] designed a questionnaire to analyze the

productivity of developers while Fritz et al. [40] used a psycho-physiological tracking system to measure

the task difficulty for developers. For characterizing bug reports, Shihab et al. [41] used developer

capability to predict re-opened bugs; Xia et al. [42] made a further improvement on re-opened bug

prediction.

In our work, we follow [10] to model the capability but propose Ochiai coefficient instead. Experiments

show that Ochiai coefficient can achieve better results. To our knowledge, this is one of the first work

that applies Ochiai coefficient to model the capability on bug reports.

8 Conclusion

In this paper, we describe a ranking approach on bug commenting using five-year bug reports of four open

source projects. We investigate the characteristics of comments, commenters, and the recommendation

of commenters for bug reports. The analysis results in our work can help developers better understand

the process of bug commenting. Meanwhile, our approach to commenter recommendation can effectively

recommend multiple developers for commenting on bugs. Automatic commenter recommendation can be

integrated into open source projects to facilitate collaborative development.

In future work, we plan to design a new mechanism to further model the developer collaboration in

bug commenting. For example, we consider that historical sequences of comments are helpful to indicate

comments in the future. Another future work is to explore the changes of developer collaboration on bug

commenting and to further understand the factors of such changes.
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