
SCIENCE CHINA
Information Sciences

July 2017, Vol. 60 072104:1–072104:15

doi: 10.1007/s11432-015-1014-7

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

. RESEARCH PAPER .

Personalized gesture interactions for cyber-physical

smart-home environments

Yihua LOU1, Wenjun WU1*, Radu-Daniel VATAVU2 & Wei-Tek TSAI1

1State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China;
2MintViz Research Lab, Integrated Center for Research, Development, and Innovation in Advanced Materials,

Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD) & Department of
Computer Science, University Stefan cel Mare of Suceava, Suceava 720229, Romania

Received March 16, 2016; accepted April 22, 2016; published online October 13, 2016

Abstract A gesture-based interaction system for smart homes is a part of a complex cyber-physical environ-

ment, for which researchers and developers need to address major challenges in providing personalized gesture

interactions. However, current research efforts have not tackled the problem of personalized gesture recognition

that often involves user identification. To address this problem, we propose in this work a new event-driven

service-oriented framework called gesture services for cyber-physical environments (GS-CPE) that extends the

architecture of our previous work gesture profile for web services (GPWS). To provide user identification func-

tionality, GS-CPE introduces a two-phase cascading gesture password recognition algorithm for gesture-based

user identification using a two-phase cascading classifier with the hidden Markov model and the Golden Sec-

tion Search, which achieves an accuracy rate of 96.2% with a small training dataset. To support personalized

gesture interaction, an enhanced version of the Dynamic Time Warping algorithm with multiple gestural input

sources and dynamic template adaptation support is implemented. Our experimental results demonstrate the

performance of the algorithm can achieve an average accuracy rate of 98.5% in practical scenarios. Comparison

results reveal that GS-CPE has faster response time and higher accuracy rate than other gesture interaction

systems designed for smart-home environments.

Keywords gesture interaction, personalization, gesture recognition, user identification, event-driven architec-

ture

Citation Lou Y H, Wu W J, Vatavu R D, et al. Personalized gesture interactions for cyber-physical smart-home

environments. Sci China Inf Sci, 2017, 60(7): 072104, doi: 10.1007/s11432-015-1014-7

1 Introduction

Smart homes are intelligent environments where both physical home appliances and computing devices

are interconnected to deliver easy-to-access, convenient, and highly interactive experiences for residents.

For such hybrid cyber-physical smart-home environments, traditional input devices for human-computer

interaction, such as the keyboard and the mouse, are no longer suitable. Although remote controls still

represent the industry standard for interacting with household electrical appliances, these standard inter-

faces are sometimes difficult to control by users [1] and inappropriate for some tasks and contexts [2]. As

a suitable alternative, gestural interfaces can deliver natural and intuitive interactions to their users [3,4].

Despite many efforts on integrating gestural interfaces for smart-home environments [5–7], the following

challenges still hamper wider adoption of gestural interfaces:

*Corresponding author (email: wwj@nlsde.buaa.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-015-1014-7&domain=pdf&domain=pdf&date_stamp=2017-6-9
https://doi.org/10.1007/s11432-015-1014-7
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-015-1014-7

Lou Y H, et al. Sci China Inf Sci July 2017 Vol. 60 072104:2

1. Complexity of gesture recognition algorithms for system developers, especially for those who de-

velop systems for new environments with none or few software resources (e.g., gesture libraries) available.

2. Complexity of gesture training procedures for end users. It is a non-trivial task for average users

without technical backgrounds to train accurate gesture classifiers, and smart-home interfaces need to

provide transparent ways to reduce the need for and implications of complex training procedures.

3. Complexity of identification of personalized gesture commands. When performing gestures, users

may produce significant variations. Consequently, gesture recognition algorithms need to process user-

specific personalized gesture preference profiles to achieve accurate classification. It is also necessary to

have user identification mechanisms to make sure each user can be associated with his gesture preference

profile.

To address the first challenge, using service-oriented approaches is a promising option [8, 9], as it

hides the complex details of implementation while exposing clear ready-to-use services for the applica-

tion designers of smart-home interaction systems. Due to the fact that human gestures are naturally

event-driven, our previous work gesture profile for web services (GPWS) [9] has provided a good start

point in implementing service-oriented framework for gestural interfaces using stateless services and the

lightweight event-driven architecture. However, the other two challenges about the complexity of per-

sonalized gesture training and recognition remain unsolved. In this paper, we extend our previous work

on GPWS and propose a new service-based personalized gesture interaction framework for smart homes

called gesture services for cyber-physical environments (GS-CPE), which incorporates user identification

and personalized gesture recognition through an event-driven architecture to solve all three challenges.

Our new framework enables the residents of a smart home to control appliances in a natural and intuitive

way due to its new features. The major contributions of this paper include as follows:

1. We introduce GS-CPE as an integrated framework for supporting personalized gesture interac-

tion in cyber-physical smart-home environments. Previous gestural interfaces have not considered user

identification, which means such systems can neither be optimized for personalized interaction nor be

deployed in scenarios where user identity must be verified. GS-CPE addresses these aspects by inte-

grating the user identification service that identifies users through gesture passwords to associate a user

with the pre-stored gesture preference profile and the personalized gesture recognition service that rec-

ognizes personalized gestures through the gesture preference profile for an identified user. Through the

service-oriented and event-driven architecture, GS-CPE provides easy-to-use APIs for system developers

to implement a full-functional gesture interaction system.

2. We introduce a new gesture password recognition algorithm that adopts a two-phase cascading

classifier for user identification. In GS-CPE, user identification works by recognizing human gesture

motions as passwords consisting of symbols from a fixed user-independent symbol gesture set. Most

gesture systems employ statistical-model classifiers to handle gesture password recognition, which often

requires a large training dataset to ensure accurate performance. It is difficult for such a classifier to

achieve a high recognition accuracy through a relatively small training set in smart-home environments.

Therefore, we introduce a new cascading classifier by applying a template-matching classifier that requires

much fewer training samples to achieve a high recognition accuracy as the second-level classifier, so that

the overall recognition accuracy can be improved with less training.

3. We introduce a new personalized gesture recognition algorithm that supports multiple gestural input

sources and dynamic template adaptation. Previous gesture interaction frameworks mostly rely upon a

single input source to recognize human gestures, which often reject unreliable results merely based on

likelihood values. However, as the range of likelihood values varies in different situations, it is difficult to

determine an appropriate threshold for the rejection likelihood. To overcome this problem, we introduce

a new personalized gesture recognition algorithm that employs multiple input sources to remedy possible

bias caused by a single source. Instead of using a rejection likelihood threshold, our algorithm makes the

rejection decision by comparing the classification results from different sources. Also, to overcome the

problem that a sufficient training set is not always available for a specific user in a practical environment,

our algorithm uses dynamic templates adaptation during the recognition process.

Lou Y H, et al. Sci China Inf Sci July 2017 Vol. 60 072104:3

This paper is organized as follows: Section 2 proposes the GS-CPE framework along with its core

services. Sections 3 and 4 describe the two key algorithms adopted in GS-CPE. Section 5 discusses

related work and makes comparison between GS-CPE and other gesture interaction systems for smart

homes. Section 6 concludes the paper.

2 GS-CPE framework

2.1 Personalization requirement analysis

Although many researches, including our previous work in [10, 11], claimed personalized gesture inter-

actions, such previous work has not addressed the reasons why personalization should be considered as

an important factor in designing gesture interaction systems for smart-home environments. Although

researches in [12, 13] have revealed that users may have different preferences when performing gesture

commands, their final objectives were to design user-independent gesture sets rather than to analyze the

personalization requirements. Therefore, we start our work by answering this question following the same

methodology as [12,13]. We first conducted an experiment to collect a gesture motion dataset consisting

of 216 gesture instances for 8 camera-control commands from 27 participants (17 males and 10 females,

aging from 18 to 22 years old) without prior experience of using gestural interfaces. Then, we analyzed

the results using the normalized agreement rate AR ∈ [0, 1] proposed in our previous work [14]:

AR =
Ar −

1
|Pr|

1− 1
|Pr |

, (1)

where Ar ∈ [|Pr |
−1, 1] represents the absolute agreement rate calculated through the formula given in [15]

for referent r(1 6 r 6 8), and Pr represents the set containing all gesture motions for r. Because the

range of AR is independent of the number of participants, AR is directly comparable across results from

different datasets. Our experimental result shows an average AR of 0.21 (σ=0.05), which is smaller

than that of 0.36 (σ=0.30) in [12] and that of 0.28 (σ=0.30) in [13]. As a smaller AR indicates a larger

variance in gesture motion selection among different users, the result of our experiment suggests a stronger

personalization requirement of gesture interactions in real-world smart-home environments.

2.2 Overall architecture

The architecture of GS-CPE is illustrated in Figure 1(a) and includes three major components:

1. The ontology database (OD) is the central database of GS-CPE, which stores the information of all

objects in the system. For performance reasons, data from the OD is cached in the smart home controller

and updated asynchronously during runtime.

2. The service portal (SP) is the core component where the smart home controller obtains services and

applications. It uses the OD to collect information about objects and manage policies. It also provides

functionalities to allow users to simulate and test services before downloading and executing them.

3. The smart home controller (SHC), a low-cost controller installed at home, is the major component

at home-side. It acts as an intermediate agent between the cloud and the home-side devices, stores the

service software as well as ontology data downloaded from the SP, and communicates with sensors and

actuators through a lightweight event-driven architecture rather than a full-fledged service bus.

2.3 Core services and workflow

In the current version of GS-CPE, the gesture services, object management services and the event dispatch

service are considered as “core services” as they implement the gesture recognition functionalities. Most

APIs exposed by the core services are asynchronous methods. When invoked, each method generates an

event with a unique transaction ID that is returned to the caller for further reference. In addition, the

invocation generates a status code that indicates the execution status. The relationships among all core

services and corresponding events are illustrated in Figure 1(b).

Lou Y H, et al. Sci China Inf Sci July 2017 Vol. 60 072104:4

Sensor

control

services

Ontology

database

Object management services

Gesture recognition service
(Personal ized gesture recognit ion algorithm)

User identificat ion service

(Gesture password recognit ion algorithm)

User tracking service

Read/Write

Call

Call

Call

Call

Use

Use

Event dispatch

service

User_Identified

Use

Gesture control
service

Object_Registered

Object_Disposed Object_Activated

Object Deactivated

Use

Dispatch

Object Updated

Gesture_Recognized

User_Tracked

Object_Command

No_ Gesture_Mapping

Gesture_Sequence_Pending

Not_Gesture

Actuator control

services

Subscribe event

Send notificat ion

G
en

er
at

e

Generate

Generate

Generate

Generate

Gesture

manage

service User identificat ion

service

Gesture recognition

service

User

tracking

service

Event

dispatch

service

Gesture

control

service

Workflow

service

TV control

service

Kinect

service

Light

control

service

Object management

services

Command

manage

service

Profile

manage

service

Sensor

manage

service

Event

manage

service

Gesture services

Leap

motion

service

Pol icy

service

Test & simulat ion service

Ontology

database

service

Service portal

Ontology database

Sensors Actuators Mappings Profiles

Workflows Services

Gestures Templates Commands Events

Application services

Actuators

Smart home control ler

Users

Downloaded services
Cached ontologies

Home

Sensors

Cloud
(a) (b)

Subscribe

event

Subscribe

event

Send

notificat ion

Send

notificat ion

Read/
Write

Figure 1 GS-CPE framework. (a) Architecture; (b) services and events.

Event dispatch service (EDS). In order to implement a lightweight event-driven architecture, GS-

CPE adopts the EDS as the role of a publisher-subscriber of intermediate messages to disseminate events

to their destinations correctly and efficiently. It exposes three synchronous methods: SubscribeEvent

that allows a listener to subscribe to a specific event from an event generator, UnsubscribeEvent that

allows a listener to unsubscribe from a previously subscribed event, and DispatchEvent that dispatches

an activated event to all subscribers and write event logs into the OD.

Object management services (OMSs). The OMSs are collected services that maintain the

registry of objects in GS-CPE, such as commands, gestures, devices, and user profiles, with each type

of object having its own specific management service. The OMSs enable other services in GS-CPE to

handle different types of objects using the same API set, which provides better dynamic extensibility

and command management. Each object is identified by a unique object ID. All services in this group

expose five asynchronous methods: Register that generates the Object Registered event, Dispose that

generates the Object Disposed event, Activate that generates the Object Activated event, Deactivate

that generates the Object Deactivated event, and Update that generates the Object Updated event.

Sensor control services (SCSs). A SCS is a device-dependent service that converts raw data

from a gesture acquisition device into filtered and quantified feature data. By designing a specific SCS

for a specific type of gesture acquisition device, GS-CPE is able to support different gesture acquisition

devices without modifying the core recognition algorithms.

Actuator control services (ACSs). An ACS is a device-dependent service that converts device-

independent commands into actuator-specific commands. By designing different ACSs for different actu-

ators, GS-CPE is able to support different actuators without modifying the other components.

Gesture recognition service (GRS). The GRS is responsible for recognizing personalized gestures

produced by an identified user through the personalized gesture recognition algorithm discussed later in

Section 4. The service exposes the Recognize method that generates the Gesture Recognized event.

User identification service (UIS). To deliver smooth and personalized recognition experience

Lou Y H, et al. Sci China Inf Sci July 2017 Vol. 60 072104:5
U

se
r

S
C

S E
D

S

(1) Location
(2) (3) Generate User_Tracked

(4) Dispatch User_Tracked

(5) Gesture

(6)

(8) Dispatch User_Identified

Identified user?

No

Yes

UIS
Gesture password

recognition algorithm

UTS

ACS

GCS
GRS

Personalized gesture
recognition algorithm

(7) Generate

User_Identified

(9) Generate

Gesture_Recognized

(12) Dispatch
Object_Command

(11) Generate

Object_Command

(10) Dispatch

Gesture_Recognized

Figure 2 Typical workflow of GS-CPE.

for users, each user should be identified before they can perform gesture commands. An unidentified

user needs to perform a series of single-handed writing gesture motions so that the UIS can classify the

gesture motions into pre-defined symbol classes as a password through the gesture password recognition

algorithm described in Section 3. Next, the UIS will search for a match in the OD to retrieve the user’s

gesture preference profile. When the authentication succeeds, the gesture preference profile’s ID will be

sent to the corresponding SCS through an event, so that the SCS can then call the GRS with the ID to

make sure the user’s consecutive gesture commands can be recognized through his own gesture preference

profile for personalization. The service exposes the Identify method that generates the User Identified

event.

User tracking service (UTS). If a user’s location can be continuously tracked, the framework can

skip the identification process for the user after he roams to a new gesture acquisition device, which

provides more seamless interaction experience. For example, given the limited sensing scope of a single

Kinect sensor, a large room often needs multiple Kinect sensors to cover its entire space for continuous

tracking. However, as each Kinect sensor performs tracking independently, a user may be assigned with

different sensor-specific tracking IDs by multiple Kinect sensors. Therefore, it is the responsibility of the

UTS to fuse the tracking data from multiple Kinect sensors so that the same user will be assigned with a

unique global tracking ID. The tracking process is done by an improved version of the tracking algorithm

described in our previous work [16], which will not be discussed in depth in this paper. UTS exposes the

Track method that generates the User Tracked event.

Gesture control service. The GCS handles classified gestures, converts them into device-

independent commands, and generates corresponding events (Object Command, Not Gesture, Gesture

Sequence Pending and No Gesture Mapping) to notify their subscribers (mostly ACSs).

Figure 2 illustrates a typical workflow of GS-CPE, where the Steps (1) to (4) (dotted lines) represent the

optional user tracking workflow, Steps (5) to (8) (dashed lines) represent the user identification workflow,

and Steps (5) and (6) along with Steps (9) to (12) represent the gesture recognition workflow. Note that

the tracking process is optional for personalized gesture recognition to work properly, so that GS-CPE

can also be deployed in places where tracking is not allowed because of privacy concerns or other reasons.

3 Gesture password recognition algorithm

In this section, we introduce the algorithm for gesture password recognition.

3.1 Feature preprocessing

In the algorithm, we choose the trajectory of a user’s right hand as the gesture feature. Because the raw

data from a Kinect sensor are 3-D floating-point position sequences, preprocessing can be applied in order

to achieve higher recognition accuracy. First, as a gesture password is composed of symbols that are 2-D

drawings articulated mostly in the x-y plane, the data of the z-axis can be safely discarded. Second,

previous work [17, 18] found that the direction quantization approach offers both higher recognition

accuracy and lower computational cost than simply using the raw data. Therefore, we preprocess the

raw data in two steps: we first remove the z-axis data and then quantify the 2-D position sequence into

an integer direction sequence using the direction quantization scheme proposed in our previous work [11]

Lou Y H, et al. Sci China Inf Sci July 2017 Vol. 60 072104:6

0

1

7

6

4

5

3
2

(a) (b) (c) (d)

10−14 10−12 10−10 10−8 10−6 10−4 10−2 100

Correct

classifications

Incorrect

classifications

Figure 3 The direction quantization scheme, examples of trajectory sequences and likelihood comparison. (a) Quantiza-

tion scheme; (b) trajectory of “6”; (c) trajectory of “4”; (d) comparison of second maximum likelihood ratio.

which is shown in Figure 3(a). After the preprocessing phase, the trajectory sequence is represented as

an integer direction sequence {θ0, θ1, . . . , θn−1}.

3.2 Algorithm design

The purpose of gesture password recognition is to identify users by recognizing user-independent symbol

writing gestures from uncertain users, for which statistical-model classifiers are widely used. Among these

models, the Hidden Markov Model (HMM) [19] has been found to be an effective way to classify such

gestures. Therefore, we first tried to employ HMM as the main classifier of the recognition algorithm.

However, when evaluating the HMM classifier for our real-world digit symbol gesture dataset, we found

that its recognition accuracy was not as high as we were expecting. Our finding reveals that in a practical

environment the HMM classifier does not deal well with variations in the generation of symbol gesture

trajectories when the training dataset is not large enough. For example, Figure 3(b) and (c) show the

trajectories of two digit symbols. The start of both feature sequences (i.e., gray arrows) is the same,

and the difference occurs only at the trailing parts (i.e., black arrows). Although the two symbols

are visually distinguishable, the system may mistakenly regard them as the same symbol because the

likelihood values between the two symbols are extremely closer than others. Denote lg = (lg0 , l
g
1 , . . . , l

g
9)

is the vector containing likelihood values between input gesture g and HMM models “0” to “9”, we

compute the likelihood ratio vector lrg = (
l
g
0

max(lg) ,
l
g
1

max(lg) , . . . ,
l
g
9

max(lg)) for g and show values of the

secondary maximum likelihood ratio secmax(lrg) from some test cases in Figure 3(d). From Figure 3(d)

one can see that, the values of secmax(lrg) for incorrect classifications are much larger than those for

correct classifications, and we further found that more than half of the incorrect classifications have such

significantly large secmax(lrg). Therefore, it is reasonable to make the following assumptions:

1. For a given gesture input g, if ∃h ∈ H so that
l
g

h

max(lg) > ǫ, then we have
P (Hg 6=Lg|ǫ)
P (Hg=Lg|ǫ)

> 1;

2. For a given gesture input g, if ∄h ∈ H so that
l
g

h

max(lg) > ǫ, then we have
P (Hg 6=Lg|ǫ)
P (Hg=Lg|ǫ)

6 1,

where Hg denotes the classification result from HMM classifier, Lg denotes the real label, H denotes the

set of all HMM models, h denotes a HMM model, ǫ is a constant, and P (Hg 6= Lg|ǫ) and P (Hg = Lg|ǫ)

denote the probability of incorrect and correct classifications with respect to a given ǫ respectively.

Algorithm 1 The HMM-GSS algorithm

Input: Input trajectory g, threshold value ǫ, GSS standard template set ST;

Output: Label;

1: Hg, lr
g ← Classification result and likelihood ratio vector of input gesture g from the HMM classifier;

2: if secmax(lrg) < ǫ then

3: Label⇐ Hg;

4: else

5: R = {h|h ∈H ∧
l
g

h

max(lg)
> ǫ};

6: GT = {ti|ti ∈ ST ∧ i ∈ R};

7: Label⇐ Sg, which is the classification result of input gesture g from the GSS classifier according to ST;

8: end if

Based on the assumptions, we propose a two-phase cascading classifier described in Algorithm 1. During

the first phase, when secmax(lrg) < ǫ satisfies, the classifier accepts Hg as the final result for a gesture

input. Otherwise, the input should be sent to the second-level template-matching classifier for further

Lou Y H, et al. Sci China Inf Sci July 2017 Vol. 60 072104:7

Positive →
positive (PP)

Positive →
negative (PN)

Negative →
positive (NP)

Negative →
negative (NN)

HMM positive
(HP)

GSS positive
(GP)

HMM negative
(HN)

GSS negative
(GN)

Secmax (lr
g

lr
g)<ε ε

Proportion: 1−TP
Secmax (

)≥

Proportion: TP
Threshold position

(TP)

Win= NP Lost = PN Profit = NP−PN Accuracy= HP + GP

Figure 4 The relationship between indicators and TP.

classification, which may be helpful to mitigate some misclassifications introduced by HMM. Commonly

used template-matching classifiers include golden section search (GSS) [20], Hungarian [21] and dynamic

time warping (DTW) [22]. As GSS has good performance in recognizing unistroke gestures [23], which is

suitable to handle the shape information of a symbol writing gesture trajectory, we consider GSS as the

second-level classifier and denote the algorithm as HMM-GSS.

As GSS is a template-matching algorithm, template selection has direct impact on its recognition

accuracy. Thus the template set should be carefully selected in order to maximize the recognition accuracy

of the GSS classifier. Given a pre-collected training dataset T = {T k
i |k ∈ [1, n], i ∈ [1, nk]} (where n is

the number of different symbol gestures, T k
i is the ith data sample of symbol gesture k, and nk > 0 is

the amount of data samples for symbol gesture k), the standard template set ST is defined by (2):

ST =

{

STk = arg min
j∈[1,nk]

1

nk

nk
∑

i=1

Distance(T k
j , T

k
i)|k ∈ [1, n], T k

i ∈ T, T k
j ∈ T

}

, (2)

where STk is the standard template of symbol gesture k and Distance(T k
j , T

k
i) calculates the distance

between T k
j and T k

i according to some distance metric. Moreover, STk can be updated adaptively when

new data is available.

3.3 Parameter selection

According to Algorithm 1, the value of ǫ directly affects the number of inputs that should be classified by

the GSS classifier (GSS-set) or is only classified by the HMM classifier (HMM-set), and eventually impacts

on the final recognition accuracy. To find the best value for ǫ, we first define four indicators that are

illustrated in Figure 4: HP and HN that represent the percentages of correctly and incorrectly classified

gestures in the HMM-set respectively, and GP and GN that represent the corresponding percentages in

the GSS-set. Obviously, the four indicators satisfy that HP+HN+GP+GN=1 and the overall recognition

accuracy of the algorithm is HP+GP. Therefore, in order to maximize the overall recognition accuracy,

one should solve the following optimization problem:

arg max
ǫ∈[0,1]

(HP + GP). (3)

However, because the functional relationship between HP+GP and ǫ is unknown, the problem cannot

be directly solved, which means that ǫ should be adjusted according to the training dataset G with an

iterative method through the following steps:

1. ∀g ∈ G, calculate lrg and Hg, and construct LR = {lr|lr ∈ lrg, g ∈ G};

2. ∀lr ∈ LR, if lr satisfies
P (Hg 6=Lg|lr)
P (Hg=Lg|lr)

> 1, then add lr into the candidate set ǫ;

3. ∀ǫ′ ∈ ǫ, get all Sg that satisfies secmax(lrg) > ǫ′ and calculate the corresponding HP and GP;

4. Choose the ǫ′ ∈ ǫ that maximizes the value HP+GP as the best estimation for ǫ.

As the absolute value of the best estimation for ǫ depends on the given dataset and lacks of physical

significance and intuitiveness, it is better to choose a more intuitive parameter that has a functional

relationship with ǫ. One can notice that, each ǫ partitions a dataset into two groups: one group is sent

to the GSS classifier while the other group is not. Therefore one can define a threshold position (TP)

Lou Y H, et al. Sci China Inf Sci July 2017 Vol. 60 072104:8

0%

3%

6%

9%

12%

15%

18%

5% 20% 35% 50% 65% 80% 95%TP

(a)

Win Lost Profit

80%

84%

88%

92%

96%

100%

5% 20% 35% 50% 65% 80% 95%TP

(b)

HMM-GSS HMM GSS

Figure 5 The experiment results of HMM-GSS algorithm. (a) Average win/lost/profit; (b) average accuracy comparison.

that represents the percentage of data to be classified by the GSS classifier. Obviously, the functional

relationship between ǫ and TP exists, and TP is intuitive. We will use TP in the evaluation part.

3.4 Evaluation and analysis

The dataset we used contains 10 digit symbol writing gestures from 14 participants using Kinect sensors.

Each participant performs each writing gesture at least four times and the final dataset contains 525

valid samples after removing some invalid samples. Then the dataset was randomly split into five cross-

validation groups, with each group containing a training set of 60% samples and a test set of 40% samples.

For accurate evaluation of the algorithm, we define three indicators of win, lost and profit to reflect the

performance change between the HMM-only single-level classifier and the two-level classifier. To calculate

the three indicators, another four intermediate indicators of PP, NP, PN and NN are introduced and the

relationships of all indicators are illustrated in Figure 4. Figure 5 illustrates the relationships between

TP and win/lost/profit (Figure 5(a)) as well as the overall trend of accuracy (Figure 5(b)). The figure

illustrates that no matter how TP is set, the HMM-GSS classifier outperforms the HMM-only classifier

in terms of the benefit of a positive profit. Although both win and lost rise as TP increases, the win

(1.67%→13.95%) rises much faster than the lost (0.09%→0.65%) when TP is under 70%. Then the

rising rate of lost increases so that the profit shows as a unimodal function with the peak value (13.95%)

appearing when TP is set to 80%. At this point, the HMM-GSS classifier achieves a maximum accuracy

of 96.19%, which is not only higher than the HMM-only classifier (82.24%) but also higher than the GSS-

only classifier (93.02%). As the accuracy of GSS-only classifier is higher than the HMM-only classifier in

our dataset, the set of TP causes the algorithm to accept more GSS-classified results than HMM-classified

results. We also evaluate the time performance of the HMM-GSS classifier, and the results show that the

classifier produces the classification result for one gesture input in less than 4 ms in our dataset.

4 Personalized gesture recognition algorithm

In this section, we describe the personalized gesture recognition algorithm in detail.

4.1 Feature selection and preprocessing

The algorithm accepts two types of features for gesture recognition: the acceleration data and the position

data. The acceleration data are provided by sensors equipped with accelerometers such as a smartphone

or the Nintendo Wii Remote controller. Each data sample provided by an accelerometer is a 3-axis vector

(ax, ay, az) that contains acceleration values for each axis. Therefore, if a gesture is produced with only

one hand, the feature vector can be defined as fs
a = (alx, a

l
y, a

l
z) or f

s
a = (arx, a

r
y, a

r
z) for each data sample.

If a gesture is bimanual, the feature vector can be defined as fd
a = (alx, a

l
y, a

l
z, a

r
x, a

r
y, a

r
z), where (a

l
x, a

l
y, a

l
z)

and (arx, a
r
y, a

r
z) represent the acceleration data of the left hand and the right hand respectively.

The position data are provided by sensors equipped with video cameras, such as a Microsoft Kinect

sensor or a Leap Motion sensor. In this paper, we focus on the Kinect sensor. As each data sample from

the Kinect sensor contains 20 three-dimensional vectors, only a subset of the returned vectors with the

Lou Y H, et al. Sci China Inf Sci July 2017 Vol. 60 072104:9

most significant movements are chosen as the gesture feature to reduce the complexity of representation

and recognition process. Then the relative position between a hand position and the spine position is

used to remove the influence of user’s absolute standing position. The feature vector of each data sample

is defined as fs
p = (vlx − vsx, v

l
y − vsy, v

l
z − vsz) or f

s
p = (vrx − vsx, v

r
y − vsy, v

r
z − vsz) for a single-handed gesture

and fd
p = (vlx − vsx, v

l
y − vsy, v

l
z − vsz, v

r
x − vsx, v

r
y − vsy, v

r
z − vsz) for a bimanual gesture, where (vlx, v

l
y, v

l
z),

(vrx, v
r
y, v

r
z) and (vsx, v

s
y, v

s
z) represent the corresponding positions of the left hand, right hand and the

spine.

As the raw data may contain noise that can degrade the recognition accuracy, each sample is processed

with a moving average filter. Also, a quantization process is applied to the filtered data to reduce time-

consuming floating point calculation, which quantizes the floating-point values into integers within [−31,

+31] according to the technique proposed in our previous work [10].

4.2 Algorithm design

According to [24], a DTW classifier can achieve better recognition accuracy than a HMM classifier with

fewer training samples. As the DTW classifier employs the template-matching mechanism rather than a

statistics model, using a very small training dataset (even only one sample) for each gesture type may

lead to relatively high recognition accuracy if the templates are appropriately selected. Therefore, DTW

has been widely used for gesture recognition [25, 26]. However, conventional DTW has the following

limitations that prevent it from achieving higher recognition accuracy in many situations:

1. Conventional DTW adopts only fixed templates for each gesture type, which limits its performance

for gesture instances with large variations.

2. Implementing rejection is challenging for conventional DTW because only likelihood values can be

used to determine whether a recognition result should be rejected or not. However, choosing an appro-

priate rejection likelihood threshold is difficult because it may vary significantly for different datasets.

Therefore, to overcome these limitations, we proposed an enhanced DTW to implement the personalized

gesture recognition algorithm. The enhancements are summarized as follows:

1. We introduce a standard template selection process during the bootstrap phase, and a dynamic

template adaptation process for updating standard templates during the recognition phase;

2. We introduce a new rejection determination criterion using multiple input sources instead of the

rejection likelihood threshold.

When using multiple templates for each gesture type, there are several ways to select the best-matching

gesture. In this paper, we consider three template matching criteria: nearest neighbor (NN), K-nearest

neighbor (KNN) and nearest group (NG).

4.2.1 Standard template selection and adaptation

Before a DTW classifier can be used for classification, it is important to select the standard templates

for each gesture type to maximize the recognition accuracy. Suppose that each gesture type has l (l > 1)

templates and the initial sample set T = {T1, T2, . . . , Tm} of this gesture type containsm (m > l) samples,

we can construct a set d in which each element is the sum of DTW distances from one sample to all the

other samples calculated according to (4):

d =

{

dj =

m
∑

i=1

DTW(Ti, Tj)|j ∈ [1,m]

}

. (4)

Then the l gesture samples in T corresponding to the smallest l values from set d are the initial

standard templates of each gesture type. During the recognition process, when the number of rejected

inputs for a gesture type reaches a specific amount, the dynamic template adaptation process is invoked

to update the standard templates for this gesture type to reflect the user’s most recent gesture preference.

Lou Y H, et al. Sci China Inf Sci July 2017 Vol. 60 072104:10

4.2.2 Rejection determination

Previous research [25] has showed that rejecting unreliable recognition results can improve the recogni-

tion accuracy. However, it is not straightforward to determine whether a recognition result should be

rejected or not. Common criteria such as likelihood or distance values may vary significantly for different

datasets even when they are normalized. However, if a gesture motion is captured by multiple sensors

simultaneously, we can get one recognition result for each input source independently. If results from all

input sources are the same, the result can be accepted. Otherwise, results should be rejected or further

examined using other criteria. In this paper, for simplification purposes, the proposed algorithm only

considers two different input sources (position and acceleration).

4.2.3 Algorithm description

The details of the algorithm are described in Algorithm 2. Suppose there are n gesture types with

each type having l standard templates, then the algorithm takes the user-specific standard template set

Tu = {T u
i = {〈taik, tp

i
k〉|k ∈ [1, l]}|i ∈ [1, n]} (where u is the gesture profile ID of a specific user) and

the input gesture sample set G = {Ga,Gp} as input (postfix “a” means “acceleration” and postfix “p”

means “position”), and outputs the recognized gesture label (1 ∼ n) or 0 in case of rejection.

Algorithm 2 The multiple-source DTW (MS-DTW) algorithm

Input: Tu,G;

Output: L;

1: Initialize Da = {Daik = DTW(Ga, tai
k
)},Dp = {Dpik = DTW(Gp, tpi

k
)},Tri ← φ, where i ∈ [1, n], k ∈ [1, l];

2: //The template matching process;

3: if using the K-nearest neighbor criterion or nearest neighbor criterion then

4: da← {dai|i ∈ [1,K]} where dai belongs to the minimal K values in Da;

5: dp← {dpi|i ∈ [1,K]} where dpi belongs to the minimal K values in Dp;

6: Labela ← The majority class in da;

7: Labelp ← The majority class in dp;

8: else

9: da← {dai =
1
l

∑l
k=1 Daik |i ∈ [1, n] ∧Daik ∈ Da};

10: dp← {dpi =
1
l

∑l
k=1 Dpik|i ∈ [1, n] ∧Dpi

k ∈ Dp};

11: Labela ← argmini∈[1,n]{da1, da2, . . . ,dan};

12: Labelp ← argmini∈[1,n]{dp1, dp2, . . . , dpn};

13: end if

14: //The rejection determination process;

15: if Labela = Labelp then

16: L← Labela;

17: else

18: L← 0;

19: end if

20: //The dynamic template adaptation process;

21: if L 6= 0 then

22: TrL ← TrL ∪ {G}, rcL ← 0;

23: else

24: if received correct label g and |Trg| > 0 then

25: Update T u
g using Trg ∪ T u

g through the same way of selecting initial standard templates;

26: Trg ← φ;

27: end if

28: end if

If the average length of standard templates and input data are p and q respectively, then the time

complexity for calculating all DTW distances is O(pqnl). After calculation, the template matching

process normally takes O(nl), O(nl logK) and O(nl) for NN, KNN and NG criteria respectively (for large

datasets, hash-based methods [27, 28] may be used to speed up the NN or KNN process). The dynamic

template adaptation process takes O(pql+ l logK) to complete, while the rejection determination process

takes a constant time to complete. As l is normally a small integer no more than 5, while p and q have the

same magnitude, the time complexity for this algorithm can be simplified as O(np2 +n), which indicates

Lou Y H, et al. Sci China Inf Sci July 2017 Vol. 60 072104:11

99.00%

99.20%

99.40%

99.60%

99.80%

100.00%

DHMG DHMG-S 6DMG
NN-1 NN-3 NG-3 KNN-3

(a)

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

DHMG DHMG-S 6DMG
NN-1 NN-3 NG-3 KNN-3

(b)

0.00%
1.00%
2.00%
3.00%
4.00%
5.00%
6.00%
7.00%
8.00%
9.00%

10.00%

DHMG DHMG-S 6DMG
NN-1 NN-3 NG-3 KNN-3

(c)

96.50%
97.00%
97.50%
98.00%
98.50%
99.00%
99.50%

100.00%

DHMG (w/o

adaptation)

DHMG (w/

adaptation)

DHMG-S &

6DMG (w/o

adaptation)

DHMG-S &

6DMG (w/

adaptation)
NN-1 NN-3 NG-3 KNN-3

(d)

0.00%
1.00%
2.00%
3.00%
4.00%
5.00%
6.00%
7.00%
8.00%

DHMG (w/o

adaptation)

DHMG (w/

adaptation)

DHMG-S &

6DMG (w/o

adaptation)

DHMG-S &

6DMG (w/

adaptation)
NN-1 NN-3 NG-3 KNN-3

(e)

Figure 6 Theoretical and practical performance of MS-DTW. (a) Theoretical accuracy comparison; (b) accuracy incre-

ment by multiple-source; (c) theoretical rejection comparison; (d) practical accuracy comparison w/ and w/o template

adaptation; (e) practical rejection comparison w/ and w/o template adaptation.

that the most time consumption of this algorithm is still the DTW distance calculation process and the

improvement has little impaction on the overall time complexity.

4.3 Evaluation and analysis

4.3.1 Dataset

We evaluate our algorithm on two different gesture sets: the 6DMG (6D Motion Gesture) [29] dataset

published by Georgia Institute of Technology and the DHMG (Dual-Handed Motion Gesture) dataset we

collected in [10]. The 6DMG dataset contains 20 different single-handed gestures from 28 participants

with each participant performing one gesture for 10 times in a single day, resulting a total number

of 5600 gesture samples. Each sample in the 6DMG dataset contains a 3-D position vector from the

WorldViz PPT-X4 sensor and a 3-axis acceleration vector from the Wii Remote sensor. The DHMG

dataset contains 8 different bimanual gestures from 6 participants with each participant performing one

gesture for 50 times in 5 different days (10 times per day), resulting in a total number of 2400 gesture

samples. Each sample in the DHMG dataset contains a feature vector fd
p from the Kinect sensor and a

feature vector fd
a from the Wii Remote sensor. As the DHMG dataset consists of data from 5 days, in

order to evaluate the performance difference between data from different days and data from the same

day, we created a new dataset called DHMG-S that contains 5 sub-datasets. The ith sub-dataset in

DHMG-S contains only the data from the ith day in the original DHMG dataset.

4.3.2 Theoretical performance

We first evaluate the theoretical performance of the MS-DTW algorithm without dynamic template

adaptation using different template matching criteria in multiple metrics, including theoretical accuracy

and rejection for different datasets, and the error decrement by using multiple sources over a single

source. In this evaluation, we ran the experiments for several times and at each time the initial standard

templates were randomly chosen from the dataset. The average results are shown in Figure 6(a)–(c),

where the accuracy is calculated excluding the rejected data. Although all criteria achieve accuracy

rates higher than 99% with tiny variation, the difference of rejection rates among different criteria varies

more significantly. All the multiple-template matching criteria demonstrate lower rejection rate than

the single-template criterion (NN-1), and among which the nearest neighbor criterion with 3 standard

Lou Y H, et al. Sci China Inf Sci July 2017 Vol. 60 072104:12

templates (NN-3) reaches the lowest rejection rate compared to other two criteria (NG-3, KNN-3). Such

a difference in the rejection metric becomes more obvious when the input gestural data presents higher

variance: the rejection rate with the DHMG dataset shows more variance than those with the other

two datasets. This fact occurs because the variation of the gestural samples in the DHMG dataset is

much larger than that of the other two datasets. Even in the worst case, all multiple-template matching

criteria yield better performance than NN-1 in term of the rejection rate (<6.0% vs 9.3%). For all tested

datasets, the multiple-template matching criteria achieved an accuracy rates of 99.8% with a rejection

rate of 3.0% in average.

In comparison with the performance of the conventional DTW using a single input source, the MS-

DTW successfully increases the accuracy rate significantly for both the DHMG dataset and the 6DMG

dataset. Despite of the relative narrow gain in the case of the DHMG-S dataset, multiple sources tend

to have a positive effect on the recognition accuracy of MS-DTW because unreliable recognition results

are discarded. In average, MS-DTW with multiple-template matching criteria achieves an accuracy

improvement of 1.7% for all tested datasets.

4.3.3 Practical scenario performance

The theoretical performance of the MS-DTW algorithm may not be achieved in real scenarios, because

in many cases it is impossible to pre-collect a gesture dataset for each user. Therefore, we tested the

performance of MS-DTW in real circumstances by setting the initial standard templates of a gesture

type to each user’s corresponding first l data samples. We then evaluated our algorithm’s performance

with and without dynamic template adaptation. The experimental results are shown in Figure 6(d) and

(e). The figure illustrates that when used in a practical scenario, the algorithm’s performance reduction

depends on the data variation of the dataset. For the DHMG-S and 6DMG datasets (small variation), the

rate reduction in the average accuracy is very small (60.1%) either with or without template adaptation,

while the increase in the average rejection rate is 1.32% without template adaptation and 0.9% with

template adaptation. However, for the DHMG dataset (large variation), the MS-DTW’s performance

degrades more than the previous case: the rate reduction in the average accuracy becomes 1.25% and

the increase in the rejection rate becomes 1.47%. To remedy the negative impact caused by variation,

the dynamic template adaptation is implemented in the MS-DTW. Using adaptation, the reduction rate

in the accuracy drops from 1.25% to 0.3% and the increase in the rejection rate drops from 1.47% to

0.41%. Even without the adaptation, multiple-template matching criteria can still enable the MS-DTW

to achieve an average accuracy rate of 98.5% for the DHMG dataset. During the above experiments, we

also evaluated the algorithm’s time performance and found that even in the worst case, the MS-DTW

algorithm ran within 4 ms (the DHMG dataset) or 10 ms (the 6DMG dataset) for one gesture input

through a PC with a Quad-core 3.50 GHz CPU.

5 Related work and comparison

5.1 Related work

Gesture recognition has been widely investigated for human-computer interaction [30]. Various types of

sensors are used to capture gestures, such as the smartphone [31], the Nintendo Wii Remote controller [25,

32], the Microsoft Kinect sensor [2,33], the Leap Motion sensor [7] and even the WiFi Access Point [34].

Gesture recognition devices [3], libraries [32], frameworks [35] and applications [2, 5, 7, 33] are created

to provide interactions in either cyber spaces or physical spaces, among which some research efforts

focus on gesture interactions in smart-home environments. Panger [2] studied the usage of Kinect in

controlling household appliances in kitchen. Our previous research in [7] utilized Leap Motion to capture

gestures for smart TV control purpose. Pan et al. [3] modified the Wii Remote controller for controlling

smart-home appliances through gestures, while Kühnel et al. [5] and van Seghbroeck et al. [35] utilized

the smartphone and the Sun SPOT wireless sensor for similar tasks respectively. And Pu et al. [34]

Lou Y H, et al. Sci China Inf Sci July 2017 Vol. 60 072104:13

Table 1 Comparison of systems designed for smart-home environments

Criterion GS-CPE GeeAir [3] GPWS [9] I’m home [5] WS-Gesture [35] WiSee [34]

Driven style Event-driven Data-driven Event-driven N/A Message-driven N/A

User identification Yes No No No No No

Personalization Yes No No No No No

Multiple input sources Yes No No No No No

Acquisition device
Kinect

Wii remote

Modified

Wii remote
Wii remote Smartphone Sun SPOT WiFi AP

Recognition algorithm MS-DTW FDSVM DTW FastDTW HMM + k-means Simple match

Overall accuracy 98.5% 96.4% 96% 90.8% 90% 94%

Response time 630 ms 660 ms 6500 ms N/A 6200 ms N/A

discovered the possibility of using WiFi signals for gesture recognition at home.

Although user identification is important in a practical environment [36], most previous research efforts

put emphasis on gesture recognition only and did not implement user identification. Some work have

partially addressed this problem by introducing gesture-based user authentication and identification [25,

37]. However, these systems either focused only on identification or supported only fixed gesture models

rather than user-defined personalized gestures, and thus they could not provide a full personalized gesture

interaction solution.

Recently, SOA and ontologies have been employed for gesture recognition [9, 35, 38] to provide more

flexibility and extensibility. Among this work, WS-Gesture [35] and GPWS [9] are two representatives of

different approaches: WS-Gesture adopts the enterprise-level service-oriented architecture, while GPWS

uses a lightweight event-driven framework. As devices in a smart home often have limited computing

resources to afford the heavy computation required by enterprise-level services, the event-driven approach

used by GPWS is more appropriate for developing a gesture interaction framework for smart homes.

5.2 Comparison

We choose a series of key evaluation criteria inspired from [39] to compare GS-CPE with other gesture

interaction systems designed for smart homes in Table 1. The highlights of GS-CPE include:

• GS-CPE is the only system that provides full personalization support with user identification.

• GS-CPE is the only system that supports two types of acquisition devices (and is capable for more)

to provide multiple input sources for gesture recognition.

• GS-CPE reduces response time by applying personalized profiles (that filters templates during match-

ing) and by implementing more efficient algorithms (that reduces the computation overhead).

• GS-CPE achieves higher recognition accuracy than other systems through personalization and dy-

namic template adaptation.

6 Conclusion

This paper proposed GS-CPE, a new service-oriented framework for personalized gesture interaction in

cyber-physical smart-home environments. Our framework adopts two new algorithms: the HMM-GSS

algorithm for user identification and the MS-DTW algorithm for personalized gesture recognition. The

proposed HMM-GSS algorithm, which recognizes gesture passwords for user identification, delivers an

accuracy rate of 96.2%, which is higher than the accuracy rates of both conventional HMM and GSS

algorithms. And the proposed MS-DTW algorithm achieves an average improvement of accuracy rates

by 1.7% using two input sources, and the experimental results also show that its average accuracy rate

in practical scenarios is 98.5% with template adaptation enabled. The comparison between GS-CPE

and other gesture interaction systems reveals that GS-CPE has several advantages including supporting

multiple input sources and full personalization, higher recognition accuracy and smaller response time.

Lou Y H, et al. Sci China Inf Sci July 2017 Vol. 60 072104:14

Acknowledgements This work was supported by National High Technology Research and Development Pro-

gram of China (Grant No. 2013AA01A210), State Key Laboratory of Software Development Environment (Grant

No. SKLSDE-2013ZX-03), and National Natural Science Foundation of China (Grant No. 61532004). Vatavu also

acknowledges support from the project “Integrated Center for Research, Development and Innovation in Advanced

Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control” (Grant No. 671/09.04.2015),

Sectorial Operational Program for Increase of the Economic Competitiveness, co-funded from the European Re-

gional Development Fund.

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Bernhaupt R, Obrist M, Weiss A, et al. Trends in the living room and beyond: results from ethnographic studies using

creative and playful probing. ACM CIE, 2008, 6: 5

2 Panger G. Kinect in the kitchen: testing depth camera interactions in practical home environments. In: Proceedings

of the CHI Extended Abstracts on Human Factors in Computing Systems. New York: ACM, 2012. 1985–1990

3 Pan G, Wu J H, Zhang D Q, et al. GeeAir: a universal multimodal remote control device for home appliances. Pers

Ubiquitous Comput, 2010, 14: 723–735

4 Vatavu R D. Point & click mediated interactions for large home entertainment displays. Multimed Tools Appl, 2012,

59: 113–128

5 Kühnel C, Westermann T, Hemmert F, et al. I’m home: defining and evaluating a gesture set for smart-home control.

Int J Hum-Comput Stud, 2011, 69: 693–704

6 Vatavu R D. A comparative study of user-defined handheld vs. freehand gestures for home entertainment environments.

J Ambient Intell Smart Environ, 2013, 5: 187–211

7 Vatavu R D, Zaiti I A. Leap gestures for TV: insights from an elicitation study. In: Proceedings of the ACM

International Conference on Interactive Experiences for TV and Online Video. New York: ACM, 2014. 131–138

8 Li W, Lee Y H, Tsai W T, et al. Service-oriented smart home applications: composition, code generation, deployment,

and execution. Serv Oriented Comput Appl, 2012, 6: 65–79

9 Vatavu R D, Chera C M, Tsai W T. Gesture profile for web services: an event-driven architecture to support gestural

interfaces for smart environments. In: Ambient Intelligence. Berlin: Springer-Verlag, 2012. 161–176

10 Lou Y H, Wu W J. A real-time personalized gesture interaction system using Wii remote and Kinect for tiled-display

environment. In: Proceedings of the International Conference on Software Engineering and Knowledge Engineering.

Skokie: KSI, 2013. 131–136

11 Zhang H K, Wu W J, Lou Y H. A personalized gesture interaction system with user identification using Kinect. In:

PRICAI 2014: Trends in Artificial Intelligence. Berlin: Springer, 2014. 614–626

12 Vatavu R D. User-defined gestures for free-hand TV control. In: Proceedings of the 10th European Conference on

Interactive TV and Video. New York: ACM, 2012. 45–48

13 Wobbrock J O, Morris M R, Wilson A D, et al. User-defined gestures for surface computing. In: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2009. 1083–1092

14 Vatavu R D, Wobbrock J O. Formalizing agreement analysis for elicitation studies: new measures, significance test,

and toolkit. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM,

2015. 1325–1334

15 Wobbrock J O, Aung H H, Brandon R, et al. Maximizing the guessability of symbolic input. In: Proceedings of the

CHI Extended Abstracts on Human Factors in Computing Systems. New York: ACM, 2005. 1869–1872

16 Lou Y H, Yao T, Chen Y Q, et al. A novel scheme of ROI detection and transcoding for mobile devices in high-definition

videoconferencing. In: Proceedings of the 5th Workshop on Mobile Video. New York: ACM, 2013. 31–36

17 Wang Y W, Yang C, Wu X, et al. Kinect based dynamic hand gesture recognition algorithm research. In: Proceedings

of the 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanchang, 2012. 274–279

18 Zhu H M, Pun C M. Real-time hand gesture recognition form depth image sequences. In: Proceedings of the 9th

International Conference on Computer Graphics, Imaging and Visualization, Hsinchu, 2012. 49–52

19 Moni M A, Shawkat Ali A B M. HMM based hand gesture recognition: a review on techniques and approaches. In:

Proceedings of the 2nd IEEE International Conference on Computer Science and Information Technology, Beijing,

2009. 433–437

20 Kiefer J. Sequential minimax search for a maximum. Proc American Math Soc, 1953, 4: 502–506

21 Vatavu R D, Anthony L, Wobbrock J O. Gestures as point clouds: a $P recognizer for user interface prototypes. In:

Proceedings of the 14th ACM International Conference on Multimodal Interaction. New York: ACM, 2012. 273–280

22 Myers C S, Rabiner L R. A comparative study of several dynamic time-warping algorithms for connected word recog-

nition. Bell Syst Tech J, 1981, 60: 1389–1409

23 Wobbrock J O, Wilson A D, Li Y. Gestures without libraries, toolkits or training: a $1 recognizer for user interface

prototypes. In: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology. New

York: ACM, 2007. 159–168

24 Carmona J M, Climent J. A performance evaluation of HMM and DTW for gesture recognition. In: Progress in

Lou Y H, et al. Sci China Inf Sci July 2017 Vol. 60 072104:15

Pattern Recognition, Image Analysis, Computer Vision, and Applications. Berlin: Springer-Verlag, 2012. 236–243

25 Liu J Y, Zhong L, Wickramasuriya J, et al. uWave: accelerometer-based personalized gesture recognition and its

applications. Pervasive Mob Comput, 2009, 5: 657–675

26 Reyes M, Dominguez G, Escalera S. Feature weighting in dynamic time warping for gesture recognition in depth data.

In: Proceedings of the IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2011.

1182–1188

27 Liu X, Mu Y, Zhang D, et al. Large-scale unsupervised hashing with shared structure learning. IEEE Trans Cybern,

2015, 45: 1811–1822

28 Liu X, Deng C, Lang B, et al. Query-adaptive reciprocal hash tables for nearest neighbor search. IEEE Trans Image

Process, 2015, 25: 907–919

29 Chen M Y, AlRegib G, Juang B H. 6DMG: a new 6D motion gesture database. In: Proceedings of the 3rd Multimedia

Systems Conference. New York: ACM, 2012. 83–88

30 Mitra S, Acharya T. Gesture recognition: a survey. IEEE Trans Syst Man Cybern Part C-Appl Rev, 2007, 37: 311–324

31 Ruiz J, Li Y, Lank E. User-defined motion gestures for mobile interaction. In: Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems. New York: ACM, 2011. 197–206

32 Schlömer T, Poppinga B, Henze N, et al. Gesture recognition with a Wii controller. In: Proceedings of the 2nd

International Conference on Tangible and Embedded Interaction. New York: ACM, 2008. 11–14

33 Vatavu R D. Nomadic gestures: a technique for reusing gesture commands for frequent ambient interactions. J Ambient

Intell Smart Environ, 2012, 4: 79–93

34 Pu Q F, Gupta S, Gollakota S, et al. Whole-home gesture recognition using wireless signals. In: Proceedings of the

19th Annual International Conference on Mobile Computing & Networking. New York: ACM, 2013. 27–38

35 van Seghbroeck G, Verstichel S, de Truck F, et al. WS-Gesture: a gesture-based state-aware control framework. In:

Proceedings of the IEEE International Conference on Service-Oriented Computing and Applications. Piscataway:

IEEE, 2010. 1–8

36 Zheng Y W, Sheng H, Zhang B C, et al. Weight-based sparse coding for multi-shot person re-identification. Sci China

Inf Sci, 2015, 58: 100104

37 Hayashi E, Maas M, Hong J I. Wave to me: user identification using body lengths and natural gestures. In: Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2014. 3453–3462

38 Wang D X, Xiong Z H, Zhang M. An application oriented and shape feature based multi-touch gesture description

and recognition method. Multimed Tools Appl, 2012, 58: 497–519

39 Chera C M, Tsai W T, Vatavu R D. Gesture ontology for informing Service-oriented architecture. In: Proceedings of

IEEE International Symposium on Intelligent Control. Piscataway: IEEE, 2012. 1184–1189

	Introduction
	GS-CPE framework
	Personalization requirement analysis
	Overall architecture
	Core services and workflow

	Gesture password recognition algorithm
	Feature preprocessing
	Algorithm design
	Parameter selection
	Evaluation and analysis

	Personalized gesture recognition algorithm
	Feature selection and preprocessing
	Algorithm design
	Standard template selection and adaptation
	Rejection determination
	Algorithm description

	Evaluation and analysis
	Dataset
	Theoretical performance
	Practical scenario performance

	Related work and comparison
	Related work
	Comparison

	Conclusion

