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Abstract A gesture-based interaction system for smart homes is a part of a complex cyber-physical environ-
ment, for which researchers and developers need to address major challenges in providing personalized gesture
interactions. However, current research efforts have not tackled the problem of personalized gesture recognition
that often involves user identification. To address this problem, we propose in this work a new event-driven
service-oriented framework called gesture services for cyber-physical environments (GS-CPE) that extends the
architecture of our previous work gesture profile for web services (GPWS). To provide user identification func-
tionality, GS-CPE introduces a two-phase cascading gesture password recognition algorithm for gesture-based
user identification using a two-phase cascading classifier with the hidden Markov model and the Golden Sec-
tion Search, which achieves an accuracy rate of 96.2% with a small training dataset. To support personalized
gesture interaction, an enhanced version of the Dynamic Time Warping algorithm with multiple gestural input
sources and dynamic template adaptation support is implemented. Our experimental results demonstrate the
performance of the algorithm can achieve an average accuracy rate of 98.5% in practical scenarios. Comparison
results reveal that GS-CPE has faster response time and higher accuracy rate than other gesture interaction

systems designed for smart-home environments.
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1 Introduction

Smart homes are intelligent environments where both physical home appliances and computing devices
are interconnected to deliver easy-to-access, convenient, and highly interactive experiences for residents.
For such hybrid cyber-physical smart-home environments, traditional input devices for human-computer
interaction, such as the keyboard and the mouse, are no longer suitable. Although remote controls still
represent the industry standard for interacting with household electrical appliances, these standard inter-
faces are sometimes difficult to control by users [1] and inappropriate for some tasks and contexts [2]. As
a suitable alternative, gestural interfaces can deliver natural and intuitive interactions to their users [3,4].
Despite many efforts on integrating gestural interfaces for smart-home environments [5-7], the following
challenges still hamper wider adoption of gestural interfaces:
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1. Complexity of gesture recognition algorithms for system developers, especially for those who de-
velop systems for new environments with none or few software resources (e.g., gesture libraries) available.

2. Complexity of gesture training procedures for end users. It is a non-trivial task for average users
without technical backgrounds to train accurate gesture classifiers, and smart-home interfaces need to
provide transparent ways to reduce the need for and implications of complex training procedures.

3. Complexity of identification of personalized gesture commands. When performing gestures, users
may produce significant variations. Consequently, gesture recognition algorithms need to process user-
specific personalized gesture preference profiles to achieve accurate classification. It is also necessary to
have user identification mechanisms to make sure each user can be associated with his gesture preference
profile.

To address the first challenge, using service-oriented approaches is a promising option [8,9], as it
hides the complex details of implementation while exposing clear ready-to-use services for the applica-
tion designers of smart-home interaction systems. Due to the fact that human gestures are naturally
event-driven, our previous work gesture profile for web services (GPWS) [9] has provided a good start
point in implementing service-oriented framework for gestural interfaces using stateless services and the
lightweight event-driven architecture. However, the other two challenges about the complexity of per-
sonalized gesture training and recognition remain unsolved. In this paper, we extend our previous work
on GPWS and propose a new service-based personalized gesture interaction framework for smart homes
called gesture services for cyber-physical environments (GS-CPE), which incorporates user identification
and personalized gesture recognition through an event-driven architecture to solve all three challenges.
Our new framework enables the residents of a smart home to control appliances in a natural and intuitive
way due to its new features. The major contributions of this paper include as follows:

1. We introduce GS-CPE as an integrated framework for supporting personalized gesture interac-
tion in cyber-physical smart-home environments. Previous gestural interfaces have not considered user
identification, which means such systems can neither be optimized for personalized interaction nor be
deployed in scenarios where user identity must be verified. GS-CPE addresses these aspects by inte-
grating the user identification service that identifies users through gesture passwords to associate a user
with the pre-stored gesture preference profile and the personalized gesture recognition service that rec-
ognizes personalized gestures through the gesture preference profile for an identified user. Through the
service-oriented and event-driven architecture, GS-CPE provides easy-to-use APIs for system developers
to implement a full-functional gesture interaction system.

2. We introduce a new gesture password recognition algorithm that adopts a two-phase cascading
classifier for user identification. In GS-CPE, user identification works by recognizing human gesture
motions as passwords consisting of symbols from a fixed user-independent symbol gesture set. Most
gesture systems employ statistical-model classifiers to handle gesture password recognition, which often
requires a large training dataset to ensure accurate performance. It is difficult for such a classifier to
achieve a high recognition accuracy through a relatively small training set in smart-home environments.
Therefore, we introduce a new cascading classifier by applying a template-matching classifier that requires
much fewer training samples to achieve a high recognition accuracy as the second-level classifier, so that
the overall recognition accuracy can be improved with less training.

3. We introduce a new personalized gesture recognition algorithm that supports multiple gestural input
sources and dynamic template adaptation. Previous gesture interaction frameworks mostly rely upon a
single input source to recognize human gestures, which often reject unreliable results merely based on
likelihood values. However, as the range of likelihood values varies in different situations, it is difficult to
determine an appropriate threshold for the rejection likelihood. To overcome this problem, we introduce
a new personalized gesture recognition algorithm that employs multiple input sources to remedy possible
bias caused by a single source. Instead of using a rejection likelihood threshold, our algorithm makes the
rejection decision by comparing the classification results from different sources. Also, to overcome the
problem that a sufficient training set is not always available for a specific user in a practical environment,
our algorithm uses dynamic templates adaptation during the recognition process.
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This paper is organized as follows: Section 2 proposes the GS-CPE framework along with its core
services. Sections 3 and 4 describe the two key algorithms adopted in GS-CPE. Section 5 discusses
related work and makes comparison between GS-CPE and other gesture interaction systems for smart
homes. Section 6 concludes the paper.

2 GS-CPE framework

2.1 Personalization requirement analysis

Although many researches, including our previous work in [10,11], claimed personalized gesture inter-
actions, such previous work has not addressed the reasons why personalization should be considered as
an important factor in designing gesture interaction systems for smart-home environments. Although
researches in [12,13] have revealed that users may have different preferences when performing gesture
commands, their final objectives were to design user-independent gesture sets rather than to analyze the
personalization requirements. Therefore, we start our work by answering this question following the same
methodology as [12,13]. We first conducted an experiment to collect a gesture motion dataset consisting
of 216 gesture instances for 8 camera-control commands from 27 participants (17 males and 10 females,
aging from 18 to 22 years old) without prior experience of using gestural interfaces. Then, we analyzed
the results using the normalized agreement rate AR € [0, 1] proposed in our previous work [14]:

A —
AR = ——" ll;]', (1)

where A, € [|P.|71, 1] represents the absolute agreement rate calculated through the formula given in [15]
for referent r(1 < r < 8), and P, represents the set containing all gesture motions for r. Because the
range of AR is independent of the number of participants, AR is directly comparable across results from
different datasets. Our experimental result shows an average AR of 0.21 (0=0.05), which is smaller
than that of 0.36 (0=0.30) in [12] and that of 0.28 (¢=0.30) in [13]. As a smaller AR indicates a larger
variance in gesture motion selection among different users, the result of our experiment suggests a stronger
personalization requirement of gesture interactions in real-world smart-home environments.

2.2 Overall architecture

The architecture of GS-CPE is illustrated in Figure 1(a) and includes three major components:

1. The ontology database (OD) is the central database of GS-CPE, which stores the information of all
objects in the system. For performance reasons, data from the OD is cached in the smart home controller
and updated asynchronously during runtime.

2. The service portal (SP) is the core component where the smart home controller obtains services and
applications. It uses the OD to collect information about objects and manage policies. It also provides
functionalities to allow users to simulate and test services before downloading and executing them.

3. The smart home controller (SHC), a low-cost controller installed at home, is the major component
at home-side. It acts as an intermediate agent between the cloud and the home-side devices, stores the
service software as well as ontology data downloaded from the SP, and communicates with sensors and
actuators through a lightweight event-driven architecture rather than a full-fledged service bus.

2.3 Core services and workflow

In the current version of GS-CPE, the gesture services, object management services and the event dispatch
service are considered as “core services” as they implement the gesture recognition functionalities. Most
APIs exposed by the core services are asynchronous methods. When invoked, each method generates an
event with a unique transaction ID that is returned to the caller for further reference. In addition, the
invocation generates a status code that indicates the execution status. The relationships among all core
services and corresponding events are illustrated in Figure 1(b).
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Figure 1 GS-CPE framework. (a) Architecture; (b) services and events.

Event dispatch service (EDS). In order to implement a lightweight event-driven architecture, GS-
CPE adopts the EDS as the role of a publisher-subscriber of intermediate messages to disseminate events
to their destinations correctly and efficiently. It exposes three synchronous methods: SubscribeEvent
that allows a listener to subscribe to a specific event from an event generator, UnsubscribeEvent that
allows a listener to unsubscribe from a previously subscribed event, and DispatchEvent that dispatches
an activated event to all subscribers and write event logs into the OD.

Object management services (OMSs).  The OMSs are collected services that maintain the
registry of objects in GS-CPE, such as commands, gestures, devices, and user profiles, with each type
of object having its own specific management service. The OMSs enable other services in GS-CPE to
handle different types of objects using the same API set, which provides better dynamic extensibility
and command management. Each object is identified by a unique object ID. All services in this group
expose five asynchronous methods: Register that generates the Object_Registered event, Dispose that
generates the Object_Disposed event, Activate that generates the Object_Activated event, Deactivate
that generates the Object_Deactivated event, and Update that generates the Object_Updated event.

Sensor control services (SCSs). A SCS is a device-dependent service that converts raw data
from a gesture acquisition device into filtered and quantified feature data. By designing a specific SCS
for a specific type of gesture acquisition device, GS-CPE is able to support different gesture acquisition
devices without modifying the core recognition algorithms.

Actuator control services (ACSs). An ACS is a device-dependent service that converts device-
independent commands into actuator-specific commands. By designing different ACSs for different actu-
ators, GS-CPE is able to support different actuators without modifying the other components.

Gesture recognition service (GRS). The GRS is responsible for recognizing personalized gestures
produced by an identified user through the personalized gesture recognition algorithm discussed later in
Section 4. The service exposes the Recognize method that generates the Gesture_Recognized event.

User identification service (UIS). To deliver smooth and personalized recognition experience
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Figure 2 Typical workflow of GS-CPE.

for users, each user should be identified before they can perform gesture commands. An unidentified
user needs to perform a series of single-handed writing gesture motions so that the UIS can classify the
gesture motions into pre-defined symbol classes as a password through the gesture password recognition
algorithm described in Section 3. Next, the UIS will search for a match in the OD to retrieve the user’s
gesture preference profile. When the authentication succeeds, the gesture preference profile’s ID will be
sent to the corresponding SCS through an event, so that the SCS can then call the GRS with the ID to
make sure the user’s consecutive gesture commands can be recognized through his own gesture preference
profile for personalization. The service exposes the Identify method that generates the User_Identified
event.

User tracking service (UTS). If a user’s location can be continuously tracked, the framework can
skip the identification process for the user after he roams to a new gesture acquisition device, which
provides more seamless interaction experience. For example, given the limited sensing scope of a single
Kinect sensor, a large room often needs multiple Kinect sensors to cover its entire space for continuous
tracking. However, as each Kinect sensor performs tracking independently, a user may be assigned with
different sensor-specific tracking IDs by multiple Kinect sensors. Therefore, it is the responsibility of the
UTS to fuse the tracking data from multiple Kinect sensors so that the same user will be assigned with a
unique global tracking ID. The tracking process is done by an improved version of the tracking algorithm
described in our previous work [16], which will not be discussed in depth in this paper. UTS exposes the
Track method that generates the User_Tracked event.

Gesture control service. The GCS handles classified gestures, converts them into device-
independent commands, and generates corresponding events (Object_Command, Not_Gesture, Gesture_
Sequence_Pending and No_Gesture_Mapping) to notify their subscribers (mostly ACSs).

Figure 2 illustrates a typical workflow of GS-CPE, where the Steps (1) to (4) (dotted lines) represent the
optional user tracking workflow, Steps (5) to (8) (dashed lines) represent the user identification workflow,
and Steps (5) and (6) along with Steps (9) to (12) represent the gesture recognition workflow. Note that
the tracking process is optional for personalized gesture recognition to work properly, so that GS-CPE
can also be deployed in places where tracking is not allowed because of privacy concerns or other reasons.

3 Gesture password recognition algorithm

In this section, we introduce the algorithm for gesture password recognition.

3.1 Feature preprocessing

In the algorithm, we choose the trajectory of a user’s right hand as the gesture feature. Because the raw
data from a Kinect sensor are 3-D floating-point position sequences, preprocessing can be applied in order
to achieve higher recognition accuracy. First, as a gesture password is composed of symbols that are 2-D
drawings articulated mostly in the z-y plane, the data of the z-axis can be safely discarded. Second,
previous work [17,18] found that the direction quantization approach offers both higher recognition
accuracy and lower computational cost than simply using the raw data. Therefore, we preprocess the
raw data in two steps: we first remove the z-axis data and then quantify the 2-D position sequence into
an integer direction sequence using the direction quantization scheme proposed in our previous work [11]
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Figure 3 The direction quantization scheme, examples of trajectory sequences and likelihood comparison. (a) Quantiza-
tion scheme; (b) trajectory of “6”; (c) trajectory of “4”; (d) comparison of second maximum likelihood ratio.

which is shown in Figure 3(a). After the preprocessing phase, the trajectory sequence is represented as
an integer direction sequence {6y, 01,...,0,_1}.

3.2 Algorithm design

The purpose of gesture password recognition is to identify users by recognizing user-independent symbol
writing gestures from uncertain users, for which statistical-model classifiers are widely used. Among these
models, the Hidden Markov Model (HMM) [19] has been found to be an effective way to classify such
gestures. Therefore, we first tried to employ HMM as the main classifier of the recognition algorithm.
However, when evaluating the HMM classifier for our real-world digit symbol gesture dataset, we found
that its recognition accuracy was not as high as we were expecting. Our finding reveals that in a practical
environment the HMM classifier does not deal well with variations in the generation of symbol gesture
trajectories when the training dataset is not large enough. For example, Figure 3(b) and (c) show the
trajectories of two digit symbols. The start of both feature sequences (i.e., gray arrows) is the same,
and the difference occurs only at the trailing parts (i.e., black arrows). Although the two symbols
are visually distinguishable, the system may mistakenly regard them as the same symbol because the
likelihood values between the two symbols are extremely closer than others. Denote 19 = (I§,19,...,1§)
is the vector containing likelihood values between input gesture g and HMM models “0” to “9”, we
compute the likelihood ratio vector Ir? = (mai"(lg), maf(lg),..., maﬁfg(lg)) for g and show values of the
secondary maximum likelihood ratio secmax(Ir?) from some test cases in Figure 3(d). From Figure 3(d)
one can see that, the values of secmax(lr?) for incorrect classifications are much larger than those for
correct classifications, and we further found that more than half of the incorrect classifications have such

significantly large secmax(Ir?). Therefore, it is reasonable to make the following assumptions:
1 P(H,#Ly| .
ey = € then we have WZL;’;) > 1;

g
2. For a given gesture input g, if #h € H so that #h(lg) > €, then we have % <1

where H, denotes the classification result from HMM classifier, L, denotes the real label, H denotes the
set of all HMM models, h denotes a HMM model, € is a constant, and P(H, # Lyle) and P(H, = Lgle)
denote the probability of incorrect and correct classifications with respect to a given e respectively.

1. For a given gesture input g, if 3h € H so that

)

Algorithm 1 The HMM-GSS algorithm

Input: Input trajectory g, threshold value e, GSS standard template set ST;
Output: Label;
Hg,1Ir9 + Classification result and likelihood ratio vector of input gesture g from the HMM classifier;
if secmax(lr9) < e then
Label < Hy;
else 19
R:{h|heHAWh(ﬁ,) > e}
GT = {ti|t; € ST ANi € R}
Label <= Sy, which is the classification result of input gesture g from the GSS classifier according to ST;
end if

Based on the assumptions, we propose a two-phase cascading classifier described in Algorithm 1. During
the first phase, when secmax(1r?) < e satisfies, the classifier accepts H, as the final result for a gesture
input. Otherwise, the input should be sent to the second-level template-matching classifier for further
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Figure 4 The relationship between indicators and TP.

classification, which may be helpful to mitigate some misclassifications introduced by HMM. Commonly
used template-matching classifiers include golden section search (GSS) [20], Hungarian [21] and dynamic
time warping (DTW) [22]. As GSS has good performance in recognizing unistroke gestures [23], which is
suitable to handle the shape information of a symbol writing gesture trajectory, we consider GSS as the
second-level classifier and denote the algorithm as HMM-GSS.

As GSS is a template-matching algorithm, template selection has direct impact on its recognition
accuracy. Thus the template set should be carefully selected in order to maximize the recognition accuracy
of the GSS classifier. Given a pre-collected training dataset T = {TF|k € [1,n],i € [1,nx]} (where n is
the number of different symbol gestures, T is the ith data sample of symbol gesture k, and nj, > 0 is
the amount of data samples for symbol gesture k), the standard template set ST is defined by (2):

1 &
ST = {STk =arg min — ZDistance(Tf,Tfﬂk € [1,n],TF € ’JI‘,TjIc € T}, (2)
jellni] ng

where ST} is the standard template of symbol gesture k and Distance(Tf, Tf) calculates the distance
between Tf and TF according to some distance metric. Moreover, ST can be updated adaptively when
new data is available.

3.3 Parameter selection

According to Algorithm 1, the value of € directly affects the number of inputs that should be classified by
the GSS classifier (GSS-set) or is only classified by the HMM classifier (HMM-set), and eventually impacts
on the final recognition accuracy. To find the best value for €, we first define four indicators that are
illustrated in Figure 4: HP and HN that represent the percentages of correctly and incorrectly classified
gestures in the HMM-set respectively, and GP and GN that represent the corresponding percentages in
the GSS-set. Obviously, the four indicators satisfy that HP4+HN+GP+GN=1 and the overall recognition
accuracy of the algorithm is HP4+GP. Therefore, in order to maximize the overall recognition accuracy,
one should solve the following optimization problem:

arg max (HP + GP). (3)
e€[0,1]

However, because the functional relationship between HP+GP and € is unknown, the problem cannot
be directly solved, which means that e should be adjusted according to the training dataset G with an
iterative method through the following steps:

1. Vg € G, calculate Ir? and Hy, and construct LR = {lr|lr € Ir?, g € G};

2. VIr € LR, if Ir satisfies % > 1, then add Ir into the candidate set ¢;

3. V€' € €, get all S, that satisfies secmax(lr?) > ¢’ and calculate the corresponding HP and GP;

4. Choose the ¢’ € € that maximizes the value HP+GP as the best estimation for e.

As the absolute value of the best estimation for ¢ depends on the given dataset and lacks of physical
significance and intuitiveness, it is better to choose a more intuitive parameter that has a functional
relationship with e. One can notice that, each € partitions a dataset into two groups: one group is sent
to the GSS classifier while the other group is not. Therefore one can define a threshold position (TP)
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Figure 5 The experiment results of HMM-GSS algorithm. (a) Average win/lost/profit; (b) average accuracy comparison.

that represents the percentage of data to be classified by the GSS classifier. Obviously, the functional
relationship between € and TP exists, and TP is intuitive. We will use TP in the evaluation part.

3.4 Evaluation and analysis

The dataset we used contains 10 digit symbol writing gestures from 14 participants using Kinect sensors.
Each participant performs each writing gesture at least four times and the final dataset contains 525
valid samples after removing some invalid samples. Then the dataset was randomly split into five cross-
validation groups, with each group containing a training set of 60% samples and a test set of 40% samples.
For accurate evaluation of the algorithm, we define three indicators of win, lost and profit to reflect the
performance change between the HMM-only single-level classifier and the two-level classifier. To calculate
the three indicators, another four intermediate indicators of PP, NP, PN and NN are introduced and the
relationships of all indicators are illustrated in Figure 4. Figure 5 illustrates the relationships between
TP and win/lost/profit (Figure 5(a)) as well as the overall trend of accuracy (Figure 5(b)). The figure
illustrates that no matter how TP is set, the HMM-GSS classifier outperforms the HMM-only classifier
in terms of the benefit of a positive profit. Although both win and lost rise as TP increases, the win
(1.67%—13.95%) rises much faster than the lost (0.09%—0.65%) when TP is under 70%. Then the
rising rate of lost increases so that the profit shows as a unimodal function with the peak value (13.95%)
appearing when TP is set to 80%. At this point, the HMM-GSS classifier achieves a maximum accuracy
of 96.19%, which is not only higher than the HMM-only classifier (82.24%) but also higher than the GSS-
only classifier (93.02%). As the accuracy of GSS-only classifier is higher than the HMM-only classifier in
our dataset, the set of TP causes the algorithm to accept more GSS-classified results than HMM-classified
results. We also evaluate the time performance of the HMM-GSS classifier, and the results show that the
classifier produces the classification result for one gesture input in less than 4 ms in our dataset.

4 Personalized gesture recognition algorithm
In this section, we describe the personalized gesture recognition algorithm in detail.

4.1 Feature selection and preprocessing

The algorithm accepts two types of features for gesture recognition: the acceleration data and the position
data. The acceleration data are provided by sensors equipped with accelerometers such as a smartphone
or the Nintendo Wii Remote controller. Each data sample provided by an accelerometer is a 3-axis vector
(az,ay,a.) that contains acceleration values for each axis. Therefore, if a gesture is produced with only

one hand, the feature vector can be defined as f2 = (al,al,al) or £2 = (a%, ay,, a;) for each data sample.

x) Yy
If a gesture is bimanual, the feature vector can be defined as f¢ = (al,, a}, al,al, al, al), where (al, a}, al)
and (al,, s at) represent the acceleration data of the left hand and the right hand respectively.
The position data are provided by sensors equipped with video cameras, such as a Microsoft Kinect
sensor or a Leap Motion sensor. In this paper, we focus on the Kinect sensor. As each data sample from

the Kinect sensor contains 20 three-dimensional vectors, only a subset of the returned vectors with the



Lou Y H, et al. Sci China Inf Sci  July 2017 Vol. 60 072104:9

most significant movements are chosen as the gesture feature to reduce the complexity of representation
and recognition process. Then the relative position between a hand position and the spine position is

used to remove the influence of user’s absolute standing position. The feature vector of each data sample

S o, .8

; s — (o] s ol s ol s S5 — (o s 3

is defined as f; = (v, — v, v, — vy, v, —v3) or f = (v; —v3, v, — vy, v; —v3) for a single-handed gesture
d _— (,] s ol s ol S T S o0 S T S ; [N |

and f5 = (v, —v3,v, — V5, v, — v, v — V5, v, — vy, v; —v3) for a bimanual gesture, where (v,,v,,v;),

(v3, vy, v%) and (v, vy, v3) represent the corresponding positions of the left hand, right hand and the
spine.

As the raw data may contain noise that can degrade the recognition accuracy, each sample is processed
with a moving average filter. Also, a quantization process is applied to the filtered data to reduce time-
consuming floating point calculation, which quantizes the floating-point values into integers within [—31,

+31] according to the technique proposed in our previous work [10].

4.2 Algorithm design

According to [24], a DTW classifier can achieve better recognition accuracy than a HMM classifier with
fewer training samples. As the DTW classifier employs the template-matching mechanism rather than a
statistics model, using a very small training dataset (even only one sample) for each gesture type may
lead to relatively high recognition accuracy if the templates are appropriately selected. Therefore, DTW
has been widely used for gesture recognition [25,26]. However, conventional DTW has the following
limitations that prevent it from achieving higher recognition accuracy in many situations:

1. Conventional DTW adopts only fixed templates for each gesture type, which limits its performance
for gesture instances with large variations.

2. Implementing rejection is challenging for conventional DTW because only likelihood values can be
used to determine whether a recognition result should be rejected or not. However, choosing an appro-
priate rejection likelihood threshold is difficult because it may vary significantly for different datasets.

Therefore, to overcome these limitations, we proposed an enhanced DTW to implement the personalized
gesture recognition algorithm. The enhancements are summarized as follows:

1. We introduce a standard template selection process during the bootstrap phase, and a dynamic
template adaptation process for updating standard templates during the recognition phase;

2. We introduce a new rejection determination criterion using multiple input sources instead of the
rejection likelihood threshold.

When using multiple templates for each gesture type, there are several ways to select the best-matching
gesture. In this paper, we consider three template matching criteria: nearest neighbor (NN), K-nearest
neighbor (KNN) and nearest group (NG).

4.2.1 Standard template selection and adaptation

Before a DTW classifier can be used for classification, it is important to select the standard templates
for each gesture type to maximize the recognition accuracy. Suppose that each gesture type has [ (I > 1)
templates and the initial sample set T' = {T1, T3, ..., T\, } of this gesture type contains m (m > [) samples,
we can construct a set d in which each element is the sum of DTW distances from one sample to all the
other samples calculated according to (4):

d= {dj => DTW(T;, T))|j € [l,m]}. (4)

i=1

Then the [ gesture samples in T' corresponding to the smallest [ values from set d are the initial
standard templates of each gesture type. During the recognition process, when the number of rejected
inputs for a gesture type reaches a specific amount, the dynamic template adaptation process is invoked
to update the standard templates for this gesture type to reflect the user’s most recent gesture preference.
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4.2.2  Rejection determination

Previous research [25] has showed that rejecting unreliable recognition results can improve the recogni-
tion accuracy. However, it is not straightforward to determine whether a recognition result should be
rejected or not. Common criteria such as likelihood or distance values may vary significantly for different
datasets even when they are normalized. However, if a gesture motion is captured by multiple sensors
simultaneously, we can get one recognition result for each input source independently. If results from all
input sources are the same, the result can be accepted. Otherwise, results should be rejected or further
examined using other criteria. In this paper, for simplification purposes, the proposed algorithm only
considers two different input sources (position and acceleration).

4.2.3  Algorithm description

The details of the algorithm are described in Algorithm 2. Suppose there are n gesture types with
each type having [ standard templates, then the algorithm takes the user-specific standard template set
T = {T®* = {(tal,tpL)|k € [1,1]}]i € [1,n]} (where u is the gesture profile ID of a specific user) and
the input gesture sample set G = {Ga, Gp} as input (postfix “a” means “acceleration” and postfix “p”
means “position”), and outputs the recognized gesture label (1 ~ n) or 0 in case of rejection.

Algorithm 2 The multiple-source DTW (MS-DTW) algorithm

Input: T%, G;
Output: L;
1: Initialize Da = {Da} = DTW(Ga, ta)}, Dp = {Dp, = DTW(Gp, tp})}, Tr; < ¢, where i € [1,n],k € [1,1];
2: //The template matching process;
3: if using the K-nearest neighbor criterion or nearest neighbor criterion then
4 da < {da;|i € [1, K]} where da; belongs to the minimal K values in Da;
5: dp «+ {dp,|¢ € [1, K]} where dp,; belongs to the minimal K values in Dp;
6: Label, < The majority class in da;
7.
8

Labelp <= The majority class in dp;
: else
9:  da<« {da; =233, Daj i € [1,n] A Daj, € Da};
10:  dp + {dp; = § 34— Dpjli € [1,n] ADpj, € Dp};

11: Label, argminie[lm]{dal, dag,...,dan};
12:  Labely < argminje(i nj{dpy,dps, ..., dp, };
13: end if

14: //The rejection determination process;

15: if Label, = Label, then

16: L < Labelg;

17: else

18: L + 0

19: end if

20: //The dynamic template adaptation process;
21: if L # 0 then

22: Try, <—’I‘I‘LU{G},I‘CL <+~ 0;

23: else

24:  if received correct label g and |Trg| > 0 then

25: Update T,* using Trg U T* through the same way of selecting initial standard templates;
26: Trg < ¢;

27: end if

28: end if

If the average length of standard templates and input data are p and ¢ respectively, then the time
complexity for calculating all DTW distances is O(pgnl). After calculation, the template matching
process normally takes O(nl), O(nllog K) and O(nl) for NN, KNN and NG criteria respectively (for large
datasets, hash-based methods [27,28] may be used to speed up the NN or KNN process). The dynamic
template adaptation process takes O(pql+1log K') to complete, while the rejection determination process
takes a constant time to complete. As [ is normally a small integer no more than 5, while p and g have the
same magnitude, the time complexity for this algorithm can be simplified as O(np? + n), which indicates
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Figure 6 Theoretical and practical performance of MS-DTW. (a) Theoretical accuracy comparison; (b) accuracy incre-
ment by multiple-source; (c) theoretical rejection comparison; (d) practical accuracy comparison w/ and w/o template
adaptation; (e) practical rejection comparison w/ and w/o template adaptation.

that the most time consumption of this algorithm is still the DTW distance calculation process and the
improvement has little impaction on the overall time complexity.

4.3 Evaluation and analysis

4.3.1 Dataset

We evaluate our algorithm on two different gesture sets: the 6DMG (6D Motion Gesture) [29] dataset
published by Georgia Institute of Technology and the DHMG (Dual-Handed Motion Gesture) dataset we
collected in [10]. The 6DMG dataset contains 20 different single-handed gestures from 28 participants
with each participant performing one gesture for 10 times in a single day, resulting a total number
of 5600 gesture samples. Each sample in the 6DMG dataset contains a 3-D position vector from the
WorldViz PPT-X4 sensor and a 3-axis acceleration vector from the Wii Remote sensor. The DHMG
dataset contains 8 different bimanual gestures from 6 participants with each participant performing one
gesture for 50 times in 5 different days (10 times per day), resulting in a total number of 2400 gesture
samples. Each sample in the DHMG dataset contains a feature vector f;l from the Kinect sensor and a
feature vector fZ from the Wii Remote sensor. As the DHMG dataset consists of data from 5 days, in
order to evaluate the performance difference between data from different days and data from the same
day, we created a new dataset called DHMG-S that contains 5 sub-datasets. The ith sub-dataset in
DHMG-S contains only the data from the ith day in the original DHMG dataset.

4.3.2 Theoretical performance

We first evaluate the theoretical performance of the MS-DTW algorithm without dynamic template
adaptation using different template matching criteria in multiple metrics, including theoretical accuracy
and rejection for different datasets, and the error decrement by using multiple sources over a single
source. In this evaluation, we ran the experiments for several times and at each time the initial standard
templates were randomly chosen from the dataset. The average results are shown in Figure 6(a)—(c),
where the accuracy is calculated excluding the rejected data. Although all criteria achieve accuracy
rates higher than 99% with tiny variation, the difference of rejection rates among different criteria varies
more significantly. All the multiple-template matching criteria demonstrate lower rejection rate than
the single-template criterion (NN-1), and among which the nearest neighbor criterion with 3 standard
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templates (NN-3) reaches the lowest rejection rate compared to other two criteria (NG-3, KNN-3). Such
a difference in the rejection metric becomes more obvious when the input gestural data presents higher
variance: the rejection rate with the DHMG dataset shows more variance than those with the other
two datasets. This fact occurs because the variation of the gestural samples in the DHMG dataset is
much larger than that of the other two datasets. Even in the worst case, all multiple-template matching
criteria yield better performance than NN-1 in term of the rejection rate (<6.0% vs 9.3%). For all tested
datasets, the multiple-template matching criteria achieved an accuracy rates of 99.8% with a rejection
rate of 3.0% in average.

In comparison with the performance of the conventional DTW using a single input source, the MS-
DTW successfully increases the accuracy rate significantly for both the DHMG dataset and the 6DMG
dataset. Despite of the relative narrow gain in the case of the DHMG-S dataset, multiple sources tend
to have a positive effect on the recognition accuracy of MS-DTW because unreliable recognition results
are discarded. In average, MS-DTW with multiple-template matching criteria achieves an accuracy
improvement of 1.7% for all tested datasets.

4.3.3 Practical scenario performance

The theoretical performance of the MS-DTW algorithm may not be achieved in real scenarios, because
in many cases it is impossible to pre-collect a gesture dataset for each user. Therefore, we tested the
performance of MS-DTW in real circumstances by setting the initial standard templates of a gesture
type to each user’s corresponding first [ data samples. We then evaluated our algorithm’s performance
with and without dynamic template adaptation. The experimental results are shown in Figure 6(d) and
(e). The figure illustrates that when used in a practical scenario, the algorithm’s performance reduction
depends on the data variation of the dataset. For the DHMG-S and 6DMG datasets (small variation), the
rate reduction in the average accuracy is very small (<0.1%) either with or without template adaptation,
while the increase in the average rejection rate is 1.32% without template adaptation and 0.9% with
template adaptation. However, for the DHMG dataset (large variation), the MS-DTW’s performance
degrades more than the previous case: the rate reduction in the average accuracy becomes 1.25% and
the increase in the rejection rate becomes 1.47%. To remedy the negative impact caused by variation,
the dynamic template adaptation is implemented in the MS-DTW. Using adaptation, the reduction rate
in the accuracy drops from 1.25% to 0.3% and the increase in the rejection rate drops from 1.47% to
0.41%. Even without the adaptation, multiple-template matching criteria can still enable the MS-DTW
to achieve an average accuracy rate of 98.5% for the DHMG dataset. During the above experiments, we
also evaluated the algorithm’s time performance and found that even in the worst case, the MS-DTW
algorithm ran within 4 ms (the DHMG dataset) or 10 ms (the 6DMG dataset) for one gesture input
through a PC with a Quad-core 3.50 GHz CPU.

5 Related work and comparison

5.1 Related work

Gesture recognition has been widely investigated for human-computer interaction [30]. Various types of
sensors are used to capture gestures, such as the smartphone [31], the Nintendo Wii Remote controller [25,
32], the Microsoft Kinect sensor [2,33], the Leap Motion sensor [7] and even the WiFi Access Point [34].
Gesture recognition devices [3], libraries [32], frameworks [35] and applications [2,5,7,33] are created
to provide interactions in either cyber spaces or physical spaces, among which some research efforts
focus on gesture interactions in smart-home environments. Panger [2] studied the usage of Kinect in
controlling household appliances in kitchen. Our previous research in [7] utilized Leap Motion to capture
gestures for smart TV control purpose. Pan et al. [3] modified the Wii Remote controller for controlling
smart-home appliances through gestures, while Kiihnel et al. [5] and van Seghbroeck et al. [35] utilized
the smartphone and the Sun SPOT wireless sensor for similar tasks respectively. And Pu et al. [34]
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Table 1 Comparison of systems designed for smart-home environments

Criterion GS-CPE GeeAir [3] GPWS [9] I'm home [5] WS-Gesture [35] WiSee [34]
Driven style Event-driven  Data-driven  Event-driven N/A Message-driven N/A
User identification Yes No No No No No
Personalization Yes No No No No No
Multiple input sources Yes No No No No No

Acquisition device Hinect Modified (i remote  Smartphone  Sun SPOT WiFi AP

Wii remote Wii remote
Recognition algorithm MS-DTW FDSVM DTW FastDTW  HMM + k-means Simple match

Overall accuracy 98.5% 96.4% 96% 90.8% 90% 94%
Response time <30 ms <60 ms <500 ms N/A <200 ms N/A

discovered the possibility of using WiF1i signals for gesture recognition at home.

Although user identification is important in a practical environment [36], most previous research efforts
put emphasis on gesture recognition only and did not implement user identification. Some work have
partially addressed this problem by introducing gesture-based user authentication and identification [25,
37]. However, these systems either focused only on identification or supported only fixed gesture models
rather than user-defined personalized gestures, and thus they could not provide a full personalized gesture
interaction solution.

Recently, SOA and ontologies have been employed for gesture recognition [9,35,38] to provide more
flexibility and extensibility. Among this work, WS-Gesture [35] and GPWS [9] are two representatives of
different approaches: WS-Gesture adopts the enterprise-level service-oriented architecture, while GPWS
uses a lightweight event-driven framework. As devices in a smart home often have limited computing
resources to afford the heavy computation required by enterprise-level services, the event-driven approach
used by GPWS is more appropriate for developing a gesture interaction framework for smart homes.

5.2 Comparison

We choose a series of key evaluation criteria inspired from [39] to compare GS-CPE with other gesture
interaction systems designed for smart homes in Table 1. The highlights of GS-CPE include:

e GS-CPE is the only system that provides full personalization support with user identification.

e GS-CPE is the only system that supports two types of acquisition devices (and is capable for more)
to provide multiple input sources for gesture recognition.

e GS-CPE reduces response time by applying personalized profiles (that filters templates during match-
ing) and by implementing more efficient algorithms (that reduces the computation overhead).

e GS-CPE achieves higher recognition accuracy than other systems through personalization and dy-
namic template adaptation.

6 Conclusion

This paper proposed GS-CPE, a new service-oriented framework for personalized gesture interaction in
cyber-physical smart-home environments. Our framework adopts two new algorithms: the HMM-GSS
algorithm for user identification and the MS-DTW algorithm for personalized gesture recognition. The
proposed HMM-GSS algorithm, which recognizes gesture passwords for user identification, delivers an
accuracy rate of 96.2%, which is higher than the accuracy rates of both conventional HMM and GSS
algorithms. And the proposed MS-DTW algorithm achieves an average improvement of accuracy rates
by 1.7% using two input sources, and the experimental results also show that its average accuracy rate
in practical scenarios is 98.5% with template adaptation enabled. The comparison between GS-CPE
and other gesture interaction systems reveals that GS-CPE has several advantages including supporting
multiple input sources and full personalization, higher recognition accuracy and smaller response time.



Lou Y H, et al. Sci China Inf Sct  July 2017 Vol. 60 072104:14

Acknowledgements This work was supported by National High Technology Research and Development Pro-
gram of China (Grant No. 2013AA01A210), State Key Laboratory of Software Development Environment (Grant
No. SKLSDE-2013ZX-03), and National Natural Science Foundation of China (Grant No. 61532004). Vatavu also
acknowledges support from the project “Integrated Center for Research, Development and Innovation in Advanced
Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control” (Grant No. 671/09.04.2015),

Sectorial Operational Program for Increase of the Economic Competitiveness, co-funded from the European Re-

gional Development Fund.

Conflict of interest The authors declare that they have no conflict of interest.

References
1 Bernhaupt R, Obrist M, Weiss A, et al. Trends in the living room and beyond: results from ethnographic studies using
creative and playful probing. ACM CIE, 2008, 6: 5
2 Panger G. Kinect in the kitchen: testing depth camera interactions in practical home environments. In: Proceedings
of the CHI Extended Abstracts on Human Factors in Computing Systems. New York: ACM, 2012. 1985-1990
3 Pan G, Wu J H, Zhang D Q, et al. GeeAir: a universal multimodal remote control device for home appliances. Pers
Ubiquitous Comput, 2010, 14: 723-735
4 Vatavu R D. Point & click mediated interactions for large home entertainment displays. Multimed Tools Appl, 2012,
59: 113-128
5 Kiihnel C, Westermann T, Hemmert F, et al. I'm home: defining and evaluating a gesture set for smart-home control.
Int J Hum-Comput Stud, 2011, 69: 693-704
6 Vatavu R D. A comparative study of user-defined handheld vs. freehand gestures for home entertainment environments.
J Ambient Intell Smart Environ, 2013, 5: 187-211
7 Vatavu R D, Zaiti I A. Leap gestures for TV: insights from an elicitation study. In: Proceedings of the ACM
International Conference on Interactive Experiences for TV and Online Video. New York: ACM, 2014. 131-138
8 LiW, LeeY H, Tsai W T, et al. Service-oriented smart home applications: composition, code generation, deployment,
and execution. Serv Oriented Comput Appl, 2012, 6: 65-79
9 Vatavu R D, Chera C M, Tsai W T. Gesture profile for web services: an event-driven architecture to support gestural
interfaces for smart environments. In: Ambient Intelligence. Berlin: Springer-Verlag, 2012. 161-176
10 Lou Y H, Wu W J. A real-time personalized gesture interaction system using Wii remote and Kinect for tiled-display
environment. In: Proceedings of the International Conference on Software Engineering and Knowledge Engineering.
Skokie: KSI, 2013. 131-136
11 Zhang H K, Wu W J, Lou Y H. A personalized gesture interaction system with user identification using Kinect. In:
PRICAI 2014: Trends in Artificial Intelligence. Berlin: Springer, 2014. 614-626
12 Vatavu R D. User-defined gestures for free-hand TV control. In: Proceedings of the 10th European Conference on
Interactive TV and Video. New York: ACM, 2012. 45-48
13 Wobbrock J O, Morris M R, Wilson A D, et al. User-defined gestures for surface computing. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2009. 1083-1092
14 Vatavu R D, Wobbrock J O. Formalizing agreement analysis for elicitation studies: new measures, significance test,
and toolkit. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM,
2015. 1325-1334
15 Wobbrock J O, Aung H H, Brandon R, et al. Maximizing the guessability of symbolic input. In: Proceedings of the
CHI Extended Abstracts on Human Factors in Computing Systems. New York: ACM, 2005. 1869-1872
16 LouY H, Yao T, Chen Y Q, et al. A novel scheme of ROI detection and transcoding for mobile devices in high-definition
videoconferencing. In: Proceedings of the 5th Workshop on Mobile Video. New York: ACM, 2013. 31-36
17 Wang Y W, Yang C, Wu X, et al. Kinect based dynamic hand gesture recognition algorithm research. In: Proceedings
of the 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, Nanchang, 2012. 274-279
18 Zhu H M, Pun C M. Real-time hand gesture recognition form depth image sequences. In: Proceedings of the 9th
International Conference on Computer Graphics, Imaging and Visualization, Hsinchu, 2012. 49-52
19 Moni M A, Shawkat Ali A B M. HMM based hand gesture recognition: a review on techniques and approaches. In:
Proceedings of the 2nd IEEE International Conference on Computer Science and Information Technology, Beijing,
2009. 433-437
20 Kiefer J. Sequential minimax search for a maximum. Proc American Math Soc, 1953, 4: 502-506
21 Vatavu R D, Anthony L, Wobbrock J O. Gestures as point clouds: a $P recognizer for user interface prototypes. In:
Proceedings of the 14th ACM International Conference on Multimodal Interaction. New York: ACM, 2012. 273-280
22 Myers C S, Rabiner L R. A comparative study of several dynamic time-warping algorithms for connected word recog-
nition. Bell Syst Tech J, 1981, 60: 1389-1409
23 Wobbrock J O, Wilson A D, Li Y. Gestures without libraries, toolkits or training: a $1 recognizer for user interface
prototypes. In: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology. New
York: ACM, 2007. 159-168
24 Carmona J M, Climent J. A performance evaluation of HMM and DTW for gesture recognition. In: Progress in



25

26

27

28

29

30
31

32

33

34

35

36

37

38

39

Lou Y H, et al. Sci China Inf Sct  July 2017 Vol. 60 072104:15

Pattern Recognition, Image Analysis, Computer Vision, and Applications. Berlin: Springer-Verlag, 2012. 236-243
Liu J Y, Zhong L, Wickramasuriya J, et al. uWave: accelerometer-based personalized gesture recognition and its
applications. Pervasive Mob Comput, 2009, 5: 657675

Reyes M, Dominguez G, Escalera S. Feature weighting in dynamic time warping for gesture recognition in depth data.
In: Proceedings of the IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2011.
1182-1188

Liu X, Mu Y, Zhang D, et al. Large-scale unsupervised hashing with shared structure learning. IEEE Trans Cybern,
2015, 45: 1811-1822

Liu X, Deng C, Lang B, et al. Query-adaptive reciprocal hash tables for nearest neighbor search. IEEE Trans Image
Process, 2015, 25: 907-919

Chen M Y, AlRegib G, Juang B H. 6DMG: a new 6D motion gesture database. In: Proceedings of the 3rd Multimedia
Systems Conference. New York: ACM, 2012. 83-88

Mitra S, Acharya T. Gesture recognition: a survey. IEEE Trans Syst Man Cybern Part C-Appl Rev, 2007, 37: 311-324
Ruiz J, Li Y, Lank E. User-defined motion gestures for mobile interaction. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. New York: ACM, 2011. 197-206

Schlémer T, Poppinga B, Henze N, et al. Gesture recognition with a Wii controller. In: Proceedings of the 2nd
International Conference on Tangible and Embedded Interaction. New York: ACM, 2008. 11-14

Vatavu R D. Nomadic gestures: a technique for reusing gesture commands for frequent ambient interactions. J Ambient
Intell Smart Environ, 2012, 4: 79-93

Pu Q F, Gupta S, Gollakota S, et al. Whole-home gesture recognition using wireless signals. In: Proceedings of the
19th Annual International Conference on Mobile Computing & Networking. New York: ACM, 2013. 27-38

van Seghbroeck G, Verstichel S, de Truck F, et al. WS-Gesture: a gesture-based state-aware control framework. In:
Proceedings of the IEEE International Conference on Service-Oriented Computing and Applications. Piscataway:
IEEE, 2010. 1-8

Zheng Y W, Sheng H, Zhang B C, et al. Weight-based sparse coding for multi-shot person re-identification. Sci China
Inf Sci, 2015, 58: 100104

Hayashi E, Maas M, Hong J I. Wave to me: user identification using body lengths and natural gestures. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2014. 3453-3462

Wang D X, Xiong Z H, Zhang M. An application oriented and shape feature based multi-touch gesture description
and recognition method. Multimed Tools Appl, 2012, 58: 497-519

Chera C M, Tsai W T, Vatavu R D. Gesture ontology for informing Service-oriented architecture. In: Proceedings of
IEEE International Symposium on Intelligent Control. Piscataway: IEEE, 2012. 1184-1189



	Introduction
	GS-CPE framework
	Personalization requirement analysis
	Overall architecture
	Core services and workflow

	Gesture password recognition algorithm
	Feature preprocessing
	Algorithm design
	Parameter selection
	Evaluation and analysis

	Personalized gesture recognition algorithm
	Feature selection and preprocessing
	Algorithm design
	Standard template selection and adaptation
	Rejection determination
	Algorithm description

	Evaluation and analysis
	Dataset
	Theoretical performance
	Practical scenario performance


	Related work and comparison
	Related work
	Comparison

	Conclusion

