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Abstract At Crypto 2015, Blondeau et al. showed a known-key analysis on the full PRESENT lightweight block

cipher. Based on some of the best differential distinguishers, they introduced a meet in the middle (MitM)

layer to pre-add the differential distinguisher, which extends the number of attacked rounds on PRESENT from 26

rounds to full rounds without reducing differential probability. In this paper, we generalize their method and

present a distinguisher on a kind of permutations called PRESENT-like permutations. This generic distinguisher

is divided into two phases. The first phase is a truncated differential distinguisher with strong bias, which

describes the unbalance of the output collision on some fixed bits, given the fixed input in some bits, and we

take advantage of the strong relation between truncated differential probability and capacity of multidimensional

linear approximation to derive the best differential distinguishers. The second phase is the meet-in-the-middle

layer, which is pre-added to the truncated differential to propagate the differential properties as far as possible.

Different with Blondeau et al.’s work, we extend the MitM layers on a 64-bit internal state to states with any

size, and we also give a concrete bound to estimate the attacked rounds of the MitM layer. As an illustration,

we apply our technique to all versions of SPONGENT permutations. In the truncated differential phase, as a result

we reach one, two or three rounds more than the results shown by the designers. In the meet-in-the-middle

phase, we get up to 11 rounds to pre-add to the differential distinguishers. Totally, we improve the previous

distinguishers on all versions of SPONGENT permutations by up to 13 rounds.

Keywords symmetric ciphers, PRESENT, SPONGENT, truncated differential, meet-in-the-middle, multidimen-

sional linear approximation
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1 Introduction

The design goal of cryptographic scheme is to meet the secure requirements, and the need of resource

restricted applications such as RFID and sensor networks makes the research of lightweight cryptogra-

phy naturally attract a lot of attention. Many lightweight cryptography including stream ciphers like
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Trivium [1] and Grain [2], blockciphers like KATAN/KTANTAN [3], PRESENT [4] and LED [5], and hash func-

tions like QUARK [6], SPONGENT [7, 8] and PHOTON [9] have been proposed in the past few years. The aim

to correctly evaluate the security of these proposals has become a primordial task. This has been proved

by the big number of security analyses of the previous primitives, such as [10–15].

The block cipher PRESENT has become ISO/IEC standard [16] because of its impressive hardware

performance and strong security assurance. Inspired by the design of PRESENT, there are a series of

ciphers, e.g., SPONGENT [7, 8], Puffin [17], PRINTcipher [18], MAYA [19], EPCBC [20], and RECTANGLE [21].

The core parts of these PRESENT-like ciphers include three layers: a key addition layer, a substitution layer

realized by many parallel small scale Sboxes and a bit-wise permutation layer. Recently, the SPONGENT

family of hash functions has also become ISO/IEC standard [22].

In the context of lightweight cryptanalysis, quite a few security analyses are developed for PRESENT-

like ciphers, and the influence of differential and linear cryptanalysis are obvious. Borghoff et al. [10]

focused on the analysis of PRESENT-like ciphers with secret Sboxes and gave a novel differential-style

attack on MAYA which enabled us to find Sboxes in the first round one by one. Cho [23] showed an

attack on 26-round PRESENT using the easy-to-trace linear trails with large correlations. Bulygin [13]

found an efficient method to compute the capacities of EPCBC to get the attack on the full round EPCBC-

96, and also presented an attack on 26 rounds of PRESENT-128 with higher success probability than

Cho’s. For PRESENT, linear cryptanalysis-based attacks were much more powerful, until Blondeau and

Nyberg [24] presented a link between differential probability and linear correlation, which converted a

multidimensional linear distinguisher into a truncated differential one which made truncated differential

attacks up to 26 rounds of PRESENT. Combining their 26-round truncated differential attack, Blondeau

et al. [15] gave a full-round known-key distinguisher valid for both PRESENT-80 and PRESENT-128. Firstly,

they got one of the best truncated differential distinguisher from [24] which showed a statistical bias of

the number of collisions on a few predetermined output bits under the fixed input bits. Secondly, they

extended the round number of the differential attack by prepending a meet-in-the-middle (MitM) layer

under the constraints that the output bits of the MitM layer must be exactly the same with those set on

the input bits of the truncated differential layer. Then enough number of plaintexts are provided to make

the distinguishing attack succeed with high probability, where the plaintexts satisfied the constraints on

both input and output of the MitM layer.

1.1 Our contribution

We firstly define a kind of permutations called PRESENT-like permutations, which capture various crypto-

graphic primitives such as PRESENT and SPONGENT. Then we propose a distinguisher for such PRESENT-like

permutations. Similar to Blondeau et al.’s distinguisher, it includes two layers, that is, the MitM layer

and the truncated differential distinguisher. The former is prepended to the latter, and provides enough

number of plaintexts to ensure the distinguisher succeed with non-negligible probability.

In the MitM layer of Blondeau et al.’s distinguisher on PRESENT, the bits of internal state are divided

into four groups. One of our observations on this MitM layer is that the bits of internal state can simply

be divided into two groups. Noting that the internal state of PRESENT has 64 bits, one can easily generalize

their method to obtain a similar MitM layer on any internal state with power-of-2 bits. Nevertheless,

it is not trivial to generalize the MitM layer for the other cases. Our another observation on the MitM

layer is that the number of its rounds is conducted by two factors, one of which is related to the size n

of the internal state and the other of which is related to the factorization of the size n. Based on these

observations, and according to the characteristic of PRESENT-like permutations, we construct the MitM

layer and show a lower bound on the number of rounds extended by the MitM layer, for PRESENT-like

permutations with any sizes. This bound is explicitly formulated by the size of the permutations.

We use the truncated differential distinguisher built based on [23, 24]. The truncated differential

distinguishing property is a statistical bias of the number of collisions on a few predetermined output

bits when some predetermined input bits are fixed, which is related to the capacity of a multidimensional

linear approximation [24]. For PRESENT-like permutations, this capacity can be obtained from the 1-bit
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Table 1 Summary of distinguishers of SPONGENT permutations

Version ba) Rb) r
c)
0 r

d)
1 re) Refs. [7, 8] Ref. [12] df)

SPONGENT-88/80/8 88 45 7 23 30 22 23 7

SPONGENT-88/176/88 264 135 9 68 77 66 – 11

SPONGENT-128/128/8 136 70 7 36 43 34 – 9

SPONGENT-128/256/128 384 195 11 98 109 96 – 13

SPONGENT-160/160/16 176 90 7 46 53 44 – 9

SPONGENT-160/160/80 240 120 7 62 69 60 – 9

SPONGENT-160/320/160 480 240 9 123 132 122 – 10

SPONGENT-224/224/16 240 120 7 62 69 60 – 9

SPONGENT-224/224/112 336 170 9 86 95 84 – 11

SPONGENT-224/448/224 672 340 9 172 181 169 – 12

SPONGENT-256/256/16 272 140 9 69 78 68 – 10

SPONGENT-256/256/128 384 195 11 98 109 96 – 13

SPONGENT-256/512/256 768 385 11 194 205 192 – 13

a) b: the size of internal state.

b) R: the number of full rounds.

c) r0: the number of rounds of the MitM layer.

d) r1: the number of rounds of truncated differential distinguisher.

e) r: the total number of rounds of our distinguisher.

f) d: the number of rounds we improve on the previous best distinguisher.

linear trails, which benefits from the bit-permutation linear layer of the permutations.

Finally, we apply our distinguisher on all the versions of SPONGENT permutations and summarize our

results compared with the previous distinguishers in Table 1. As shown in this table, we can distinguish

up to 13 more rounds than the analysis [7,8] provided by the designers on all versions, and 7 more rounds

than the result [12] which shows a distinguisher on the special version SPONGENT-88/80/8.

1.2 Organization

This paper is organized as follows. In Section 2 the structures of PRESENT-like permutations and SPONGENT

are briefly described. The framework of our generic attack, including the truncated differential distin-

guisher and the meet-in-the-middle layer, is shown in Section 3. Section 4 presents the detailed distin-

guisher on all versions of SPONGENT. Section 5 concludes this paper.

2 Research background

In this section, we start by briefly describing a generic view of a PRESENT-like permutation to capture

various cryptographic primitives such as PRESENT [4] and SPONGENT [7, 8].

2.1 Brief description of PRESENT-like permutations

We define a PRESENT-like permutation as a permutation that applies R rounds of a round function

to update an internal state consisting of n cells, where each of the cells has a size of c bits. In this

paper, we focus on the case c = 4, while our technique can also be adapted to the other cases, e.g., for

PRINTcipher [18], c = 3.

The round function uses a substitution-permutation network (SPN). It starts by xoring a round-

dependent constant to the state. Then, it applies a substitution layer which relies on a c × c nonlinear

bijective Sbox. Finally, the round function performs a bit-permutation linear layer L, where

L(i) =

{

i · n mod (c · n− 1), if i ∈ {0, . . . , c · n− 2},

c · n− 1, if i = c · n− 1.
(1)
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Figure 1 The bit permutation layer of SPONGENT-88/80/8.

Note that our distinguisher can also be adapted to other ciphers, such as PRINTcipher, which uses the

inverse of L as their linear layer.

In the case of PRESENT-like block ciphers analyzed in the known/chosen-key model, the subkeys gener-

ated by the key schedule are incorporated into the known constant addition layer. We state here that for

PRESENT-like block ciphers the generic distinguisher presented in this paper is suitable in the known-key

model.

2.2 Brief description of SPONGENT

SPONGENT [7,8] is a sponge-based hash function family with 13 versions. Its various parameterizations are

refered to as SPONGENT-n/c/r for different hash sizes n, capacities c, and rates r, as depicted in Table 1.

All variants with the same output size of n bits are referred to as SPONGENT-n, and there are five different

output: SPONGENT-88, SPONGENT-128, SPONGENT-160, SPONGENT-224 and SPONGENT-256. In this section,

we denote by b, n, c, r separately the size of the internal state, hash size, capacity and rate.

SPONGENT construction is an iterated design with three phases: the initialization phase is to pad the

message into a multiple of r bits, and the absorbing phase is to deal with the r-bit message blocks step

by step, and the squeezing phase is to generate the n-bit output.

As a lightweight hash function, it does not use the lightweight block cipher as its core part, and it

introduces the PRESENT-like permutation as its core permutation. The permutation layer operates linearly

on the b bits as follows: the b bit state STATEi is firstly xored with round constant Cb(i) at its leftmost

bits and with round constant ICb(i) at its rightmost bits, where Cb(i) is the state of an LFSR, and ICb(i)

is the value of Cb(i) with its bits in reversed order. Secondly, the 4-bit Sbox is described as follows:

S[·] = {0xE,0xD,0xB,0x0,0x2,0x1,0x4,0xF,0x7,0xA,0x8,0x5,0x9,0xC,0x3,0x6}.

Finally, the bit i of the state is moved to the bit position Pb(i), where

Pb(i) =

{

i · b/4 mod (b− 1), if i ∈ {0, . . . , b− 2},

b− 1, if i = b− 1.
(2)

It can be seen in Figure 1, which takes SPONGENT-88/80/8 as an example.

2.3 Previous results on SPONGENT

As claimed in [25, 26], the sponge construction can get the preimage security of 2r as well as the second

preimage and collision securities of 2c/2, if this core permutation does not have any structural distin-

guishers. As far as we know, there are very few attacks on the sponge construction of SPONGENT. Many

analyses on the core permutation were considered. The designers [7, 8] considered input and output

linear masks with hamming weight one, and showed that there were at most (R/2)-round linear trail

with correlation cw > 2−b/2 (except that SPONGENT-160/320/160 allows 2 + R/2 rounds). They also

estimated longest differential characteristics holding with probability in the range of 2−b. Different with

block cipher PRESENT, SPONGENT permutations have at most one linear trail with one active Sbox in each

round, so they cannot get the same high probability linear approximations as PRESENT. Abdelraheem [12]

and Bao et al. [27] estimated the probabilities of differential and linear approximations for SPONGENT.

Abdelraheem [12] considered input and output masks with Hamming weight 6 4 with large but sparse
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correlation matrix, which overcame the memory and time problems, and improved the linear cryptanalysis

on a special variant, SPONGENT-88/80/8, by one more round than the result provided by the designers.

3 A distinguisher for PRESENT-like permutations

In this section, we present a generic distinguisher on PRESENT-like permutations that are defined in

Subsection 2.1. This distinguisher includes two phases, the truncated differential layer and the meet-

in-the-middle layer. The truncated differential phase describes the collision bias on the predetermined

bits of the ciphertexts whose plaintexts are the same on some bits, while the meet-in-the-middle phase is

prepended to the truncated differential to extend the distinguisher to more rounds without reducing the

success probability. The following two subsections give the details of these two phases.

3.1 Truncated differential distinguisher

3.1.1 Definition of truncated differential distinguisher

The technique of truncated differential attack was introduced by Knudsen [28]. Whereas classical differen-

tial cryptanalysis analyzes the full difference between two texts, the truncated variant considers differences

that are only partially determined. That is, the attack makes predictions of only some of the bits instead

of the full block. Assuming that the permutation is F : Fn
2 → Fn

2 , x = (xs, xt) 7→ y = (yq, yr), we consider

a truncated differential composed of 2t input differences (0, δt) and 2r output differences (0,∆r). The

truncated differential distinguisher describes the unbalance of the collisions on the q bits of the output

under the condition that the s bits of the input are fixed. The distinguishing attack model is described

as in Algorithm 1, see also [15, 24].

Algorithm 1 Truncated differential distinguisher

Require: Given a plaintext set P including N plaintexts with the same value on the s bits and the truncated differential

(0, δt) → (0,∆r) with probability p.

1: Set a counter D to 0 and a table T with size 2q to 0.

2: For each plaintext x = (xs, xt):

Compute (yq , yr) = EK(xs, xt),

T [yq] = T [yq] + 1.

3: Compute scoring function D =
∑

06l62q−1 T [l](T [l]− 1)/2 .

4: For threshold function τ , if D > τ , conclude that this is the cipher.

The success probability PS of the distinguisher is defined by the following equation:

PS(N
2/2) = Φ

(

µR + µW

σR − σW

)

,

where µR = N2/2 × p, σ2
R ≈ N2/2 × 2−q, µW = N2/2 × 2−q, σ2

W = N2/2 × 2−q, and τ is the threshold

function satisfying τ = µR − σRφ
−1(N2/2).

Of course, as claimed in [15], the bias is usually small, so we cannot pre- or post-add other differential

characteristic to extend the attacked rounds number, which will cause lower differential probability.

3.1.2 Truncated differential for PRESENT-like permutations

In order to get a truncated differential with stronger bias, as more number of high differential character-

istics as possible are considered to improve the bias. Blondeau and Nyberg [24] provided a link between

truncated differential and multidimensional linear properties to convert a multidimensional linear distin-

guisher into a truncated differential distinguisher, which greatly balanced the differential-based attack

and linear-based attack on the same ciphers. For example, the link made it possible for the truncated

differential attack up to 26 rounds of PRESENT [24]. The following is the strong relation of the truncated

differential probability with the capacity of the multidimensional linear approximation.
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Theorem 1 ([24]). Let F : Fs
2 ×F t

2 → Fq
2 ×Fr

2 denote a vectorial Boolean function satisfying s+ t =

q + r = n. Given a multidimensional approximation [(as, 0), (bq, 0)]as∈Fs
2
,bq∈F

q

2
with capacity C and

a truncated differential composed of 2t input differences (0, δt) ∈ {0} × F t
2 and 2r output differences

(0, γr) ∈ {0} × Fr
2 with probability p, then p = 2−q(C + 1).

Note that the above result can be applied to PRESENT-like permutations. Thus their truncated differen-

tial with strong bias can be converted from multidimensional linear approximation. The constructions of

PRESENT-like permutations are similar to the core part of PRESENT, then we can find the multidimensional

linear approximation for PRESENT-like permutations according to the analysis on PRESENT presented by

Cho [23]. We consider r1 = r∗1 + 2 rounds linear characteristic as follows. In the first round, we consider

that the c-bit (c is the size of the cell) input mask α of the active Sbox can take arbitrary value from 1

to 2c and the output mask takes a single-bit value. In the last round, we require that each input mask

of the active Sbox takes a single-bit value and the output mask β can take arbitrary value from 1 to 2c.

Furthermore, we limit that both the two rounds have only one active Sbox. In the middle r∗1 rounds,

linear trails satisfying input mask and output mask with hamming weight 1 in each round are considered.

We can set up the correlation matrix of one round to get the correlation of the middle r∗1 rounds. The

probability of truncated differential is computed as P = 2−q(1+C) by the computation of the correlation

of multidimensional linear approximation.

3.2 Generic meet-in-the-middle layer for PRESENT-like permutations

In Blondeau et al.’s known-key attack on PRESENT [15], the key step is the MitM layer which propagated

the differential properties up to full rounds by prepending extra 7 rounds to the truncated differential

distinguisher. In order to make the truncated differential distinguisher valid, a set of plaintexts satisfying

the input constraints of the truncated differential must be identified. Namely, the internal states of these

plaintexts after several rounds as the output of the MitM layer should satisfy the input constraints of the

truncated differential. In order to efficiently identify such a set of plaintexts, after separately fixing the

few bits of the input and output of the plaintexts, their MitM layer carried out a forward computation to

get partial internal state bits after few rounds of the MitM layer by guessing just few bits and carried out

an independent backward computation to get partial internal state bits for the last one and half round of

the MitM layer. Finally the set of plaintexts was identified by carrying out a gradually matching process.

Because of the small Sbox and the bit-permutation linear layer of PRESENT, partial output bits can be

determined by guessing few bits. Benefitting from the 64-bit internal states, the internal states can be

divided into few groups, and gradually matching process can be easily carried out.

In the MitM layer of Blondeau et al.’s distinguisher on PRESENT, the bits of internal state were divided

into four groups. One of our observations on this MitM layer is that the bits of internal state can simply

be divided into two groups. Noting that the internal state of PRESENT has 64 bits, one can easily generalize

their method to obtain a similar MitM layer on any internal states with power-of-2 bits. Nevertheless,

it is not trivial to generalize the MitM layer for the other cases. Our another observation on the MitM

layer is that the number of its rounds is conducted by two factors, one of which is related to the size n

of the internal state and the other of which is related to the factorization of the size n. Based on these

observations and according to the characteristic of PRESENT-like permutations, we show a generic MitM

layer for PRESENT-like permutations with any sizes, and we also give a lower bound on the number of

rounds extended by this MitM layer.

Hereinafter, we assume that a PRESENT-like permutation uses an internal state of 4n bits, that is, it

consists of n 4-bit cells, for even n. We first provide the details of the procedure, then discuss the number

of rounds that the generic MitM layer consists of, and the complexity of this procedure.

3.2.1 The procedure

As in [15], we denote by Xi the internal state after i-th round of a PRESENT-like permutation, and by

Yi the internal state after applying Sbox layer to Xi. The detailed procedure for generic MitM layer is

described as below.
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Step 1. Set four bits input to a single Sbox of plaintexts to a randomly chosen 4-bit value, and compute

the corresponding bits of X1 in the forward direction. These bits are input to four different Sboxes in

the second round. Then we guess the other 12 bits input to these Sboxes, and compute in the forward

direction to get 16 bits of X2. Iteratively, we guess the other 4
i−4i−1 bits input to the 4i−1 active Sboxes

of Xi−1 and compute in the forward direction to get 4i bits of Xi, for i = 3, . . . , µn. In total we get a set

of 24
µn−4 such values of Xµn

and each value has 4µn bits determined.

Step 2. Similarly, set the four bits at expected positions of Yr0 to a randomly chosen 4-bit value, and

compute the corresponding bits of Yr0−1 in the backward direction. These bits are input to the inversion

of four different Sboxes in the (r0 − 1)-th round. Then we guess the other 12 bits input to the inversion

of these Sboxes of Yr0−1, and compute in the backward direction to get 16 bits of Yr0−2. Iteratively, we

guess the other 4i − 4i−1 bits input to the inversion of the 4i−1 active Sboxes of Yr0−i+1 and compute

in the backward direction to get 4i bits of Yr0−i, for i = 3, . . . , µn. In total we get a set of 24
µn−4 such

values of Yr0−µn
and each value has 4µn bits determined.

Step 3. For each partially determined value of Xµn
and Yr0−µn

, repeat the following steps.

(1) Divide the bits of Xµn
into two disjoint groups, each of which contains half of determined bits and

half of undetermined bits. Each group consists of 2n bits which are input to neighbouring 1
2n Sboxes.

Then for each group, we guess the 2n − 1
24

µn undetermined bits of Xµn
, and compute in the forward

direction to get 2n bits of Xµn+tn . We store in a table TX,i the values of partially determined Xµn+tn

computed from the i-th group, i = 0, 1.

(2) Similarly, divide the bits of Yr0−µn
into two disjoint groups, each of which contains half of deter-

mined bits and half of undetermined bits. Each group consists of 2n bits which are input to the inversion

of 1
2n Sboxes at carefully chosen positions. Then for each group, we guess the 2n− 1

24
µn undetermined

bits of Yr0−µn
, and compute in the backward direction to get 2n bits of Xµn+tn , which correspond to 2n

bits of Yr0−µn−tn = Xµn+tn−1 up to a bit-permutation linear layer. We store in a table TY,i the values

of partially determined Xµn+tn computed from the i-th group, i = 0, 1.

(3) Then merge those tables to find a set of fully-determined values of Xµn+tn :

(i) Merge the tables TX,i and TY,i to Ti respectively for i = 0, 1. By merging these two tables, we mean

to merge every two partially-determined values of Xµn+tn , each from a table and sharing the same bit

values at the common determined bit positions, into a new partially-determined value of Xµn+tn with all

their determined bits, and then to include this new value of Xµn+tn in table Ti. Note that each value

of TX,i and each value of TY,i share n determined bit positions (if the positions of Sboxes of each group

defined at Step 3(3) are carefully chosen). Hence table Ti has on average 22×(2n− 1

2
4µn )−n = 23n−4µn

values, each of which has 2× 2n− n = 3n bits.

(ii) Merge T0 and T1. Notice that T0 and T1 share 2n determined bit positions of Xµn+tn . Hence we

obtain 22×(3n−4µn )−2n = 24n−2×4µn

values on average, each of which has 2× 3n− 2n = 4n bits consisting

of the full bits of Xµn+tn .

The algorithm is to find a set of internal state values of Xµn+tn , whose corresponding plaintexts

can satisfy the constraints on the input and output of the MitM layer. Totally, we obtain on average

22×(4µn−4) × 24n−2×4µn

= 24n−8 plaintexts by inversely computing from the fully-determined values of

Xµn+tn , which satisfies the constraints on the input and output of the MitM layer.

3.2.2 The number of rounds

The number of rounds of the generic MitM layer is determined by Steps 1, 2, 3(1) and 3(2). Notice that

Steps 1 and 2 are symmetric and thus involve the same number of rounds. More exactly, they both involve

µn = ⌊log4 n⌋ rounds, where n is the total number of Sboxes. Also, Steps 3(1) and 3(2) are symmetric

and involve the same number of rounds. Denote by tn the maximum integer such that 4tn | 2n = 4n
2 .

Since in Step 3 the bits of the internal state are divided into two groups, Steps 3(1) and 3(2) both involve

tn rounds. Totally, the number of rounds of the generic MitM layer is

r0 = 2(µn + tn)− 1 = 2⌊log4 n⌋+ 2tn − 1.
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Taking PRESENT for example, n = 16, µn = 2, tn = 2, and thus r0 = 7, which is exactly the number of

rounds of the MitM layer for PRESENT presented in [15]. Taking SPONGENT-88/80/8 for example, n = 22,

µn = 2, tn = 1, and thus r0 = 5, which is two less than that proposed in Subsection 4.2. We will discuss

later how to improve the generic MitM layer for some special cases like SPONGENT-88/80/8.

3.2.3 Complexity

The complexity of the algorithm is dominated by Step 3. Since there are 24
µn−4 values of Xµn

from the

forward computations and 24
µn−4 values of Yr0−µn

from the backward computations, Step 3 is executed

22×(4µn−4) times. The complexity of each execution is dominated by Step 3(3)(ii), that is merging T0 and

T1, which needs 23n−4µn

table lookups. Hence the total complexity of Step 3 is 22×(4µn−4) × 23n−4µn

=

23n+4µn−8 6 24n−8 table lookups. Once a match of the MitM layer has been found, we can encrypt

this value Xµn+tn over the r1 + µn + tn − 1 rounds and increment the counter D given in the previous

section. The memory complexity of this attack is dominated by the storage of the table T0 and T1 which

is 2× 23n−4µn

× 3n = 3n× 23n−4µn+1 bits. To sum up, the total time complexity of the distinguisher is

23n+4µn−8 table lookups and 24n−8 encryptions, and the memory complexity is 3n× 23n−4µn+1 bits.

3.2.4 Improved generic meet-in-the-middle layer

For even n, we always have 4 | 2n and thus tn > 1. For the case that tn = 1 and 4n > 32 = 2× 42, e.g.,

4n = 88 for SPONGENT-88/80/8, it is possible to improve the greneric MitM layer by two more rounds,

consisting of one round in forward direction and one round in backward direction, at the cost of increasing

the complexity by using the strategy as shown in Subsection 4.2.

4 The distinguishers on SPONGENT permutations

As an application of our generic distinguisher shown in Section 3, we first analyse the internal permutation

used in SPONGENT-88/80/8, and we obtain a 30-round truncated differential distinguisher including 7

rounds in MitM phase and 23 rounds in truncated differential phase. Then, we apply the similar method

to get the distinguishers for the other versions of SPONGENT.

4.1 Truncated differentials with strong bias for SPONGENT permutations

4.1.1 Truncated differentials with strong bias for SPONGENT-88/80/8 permutation

As described in the previous section, the truncated differential with strong bias of SPONGENT-88/80/8

permutation can be converted from multidimensional linear approximation. According to Theorem 1, the

greater the total correlation of multidimensional linear approximation, the stronger the bias of truncated

differential. The Sbox in the SPONGENT permutation was chosen carefully to avoid many linear trails

with one active Sbox in each round existing on PRESENT, see [7, 8]. For instance in SPONGENT-88/80/8

permutation, there is only one trail that has one active Sbox at each round. For other versions, the

number of the trails satisfying input and output mask with hamming weight 1 on each round is also

less than five. So the designer claimed that there was linear distinguisher possible for not more than 22

rounds for SPONGENT-88/80/8 permutation when only input mask and output mask with hamming weight

1 were considered. Abdelraheem [12] increased the linear distinguisher to 23 rounds with capacity 2−87.5

considering linear characteristic hamming weight at most 4. As shown in [12], however, the characteristics

with Hamming weight 4 contributed negatively to the total correlation. Furthermore, from their analysis,

we can see that correlation is not increased much more when linear characteristics with hamming weight

3 or 4 are considered.

Our experiments show that the best capacity of multidimensional linear approximation is 2−84, where

the number of rounds is r∗1 = 21 and the truncated differential characteristic is (20,19). That is, the

inputs share the same values at bits {80, 81, 82, 83}, i.e., the input bits to S20, and the outputs share the
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Table 2 Differential distinguishers of SPONGENT

Version b R r1 C Charac. PS (%)

SPONGENT-88/80/8 88 45 23 −84 (20,19) 50.22

SPONGENT-88/176/88 264 135 67 −259 (44,65) 50.44

SPONGENT-88/176/88 264 135 68 −263 (44,65) 50.03

SPONGENT-128/128/8 136 70 35 −131 (22,31) 50.44

SPONGENT-128/128/8 136 70 36 −135 (20,31) 50.03

SPONGENT-128/256/128 384 195 97 −376.678 (64,95) 52.20

SPONGENT-128/256/128 384 195 98 −380.678 (64,95) 50.14

SPONGENT-160/160/16 176 90 45 −170.415 (20,31) 50.66

SPONGENT-160/160/16 176 90 46 −174.415 (20,40) 50.04

SPONGENT-160/160/80 240 120 61 −233.415 (58,58) 51.32

SPONGENT-160/160/80 240 120 62 −238 (58,59) 50.06

SPONGENT-160/320/160 480 240 122 −475.3 (80,118) 50.36

SPONGENT-160/320/160 480 240 123 −478.83 (80,112) 50.03

SPONGENT-224/224/16 240 120 61 −233.415 (58,58) 51.32

SPONGENT-224/224/16 240 120 62 −238 (58,59) 50.06

SPONGENT-224/224/112 336 170 85 −329.415 (28,83) 51.32

SPONGENT-224/224/112 336 170 86 −335 (60,78) 50.03

SPONGENT-224/448/224 672 340 171 −666.95 (56,146) 50.46

SPONGENT-224/448/224 672 340 172 −670.947 (56,146) 50.03

SPONGENT-256/256/16 272 140 69 −268 (44,66) 50.22

SPONGENT-256/256/128 384 195 97 −376.678 (64,95) 52.20

SPONGENT-256/256/128 384 195 98 −380.678 (64,95) 50.14

SPONGENT-256/512/256 768 385 193 −762.415 (128,191) 50.66

SPONGENT-256/512/256 768 385 194 −766.415 (128,191) 50.04

same values at bits {76, 77, 78, 79}, i.e., the input bits to S19 for the next round. In other words, bits

{80, 81, 82, 83} of the input mask are non-zeros, and bits {76, 77, 78, 79} of the output mask are non-zeros.

The details of the procedure are given as follows.

(1) Set up the correlation matrix of one round considering linear trails with input mask and output

mask of hamming weight 1, and we get many 21-round linear approximation, where a linear layer is

included before the first found. We choose linear approximation whose output mask reaches S19 after one

round and input mask reaches S20 after one inversion round. The capacity of these linear approximation

is 2−84 and r∗1 = 21.

(2) According to Parseval’s theorem:
∑15

αi=0 ρ(αi, 2
u)2 =

∑15
βj=0 ρ(2

v, βj)
2 = 1 for any u, v ∈ {0, 1, 2, 3},

the inputs of S20 in the first round travel all the value from 0 to 15 and the outputs of S19 in the 23 round

travel all the value from 0 to 15. The capacity of the r1 = r∗1 + 2 = 23 is the same with the capacity of

the middle r∗1 round, and the capacity of 23 round is 2−84.

Then for instance such truncated differential distinguisher on 23 rounds, we can compute the probability

of the distinguisher as p = 2−q(C+1) = 2−4(2−84+1) = 2−4+2−88 according to Theorem 1. Combining

with a 7-round MitM layer, which will be shown in Subsection 4.2, we can get 280×(280−1)/2 ≈ 2159 pairs

of messages which are under the constraint that their outputs are the same at bits (80,81,82,83). Then

we can distinguish 30-round of SPONGENT-88/80/8 from a random permutation with success probability

50.22%.

4.1.2 Applications to other vesions of SPONGENT permutations

Similarly, we apply the method to other versions of SPONGENT permutations for finding the best truncated

differentials. The results are listed in Table 2, respectively for different versions, where b is the size of

internal state, R is the number of full rounds, r1 is the number of rounds of the truncated differential,

C is the capacity of the best multidimensional approximation which equals the probability of the corre-

sponding truncated differential according to Theorem 1, and PS is the success probability of the truncated



Zhang G Y, et al. Sci China Inf Sci July 2017 Vol. 60 072101:10

X
0

X
1

X
2

X
3

X
4

Y
4

Y
5

Y
6

X
7

S0

S0

S0

S0

S1

S1

S1

S1

S2

S2

S2

S2

S3

S3

S3

S3

S4

S4

S4

S4

S5

S5

S5

S5

S6

S6

S6

S6

S7

S7

S7

S7

S8

S8

S8

S8

S9

S9

S9

S9

S10

S10

S10

S10

S11

S11

S11

S11

S12

S12

S12

S12

S13

S13

S13

S13

S14

S14

S14

S14

S15

S15

S15

S15

S16

S16

S16

S16

S17

S17

S17

S17

S18

S18

S18

S18

S19

S19

S19

S19

S20

S20

S20

S20

S21

S21

S21

S21

S12 S13 S14 S15 S16 S17 S18 S19 S20 S21S11

S3 S4 S14 S15 S19 S20 S21S8 S9 S10S5 S16

S14 S15 S16 S17

S20

S0 S1 S2 S6 S7 S11 S12 S13 S17 S18S5

S0 S1 S3 S4 S5 S7 S8S2 S6 S9 S10 S11

S1 S7 S12 S18

S6

Figure 2 MitM over the first 7 rounds of SPONGENT-88/80/8.

differential distinguisher. We also compare our results with the previous distinguishers in Table 1. As

shown in this table, we can reach one, two or three rounds more than the results shown by the designers.

4.2 The meet-in-the-middle layer for SPONGENT permutations

The family of SPONGENT hash functions has totally 13 variants, which use 11 different sizes of internal

states. In this section, we first show an improved meet-in-the-middle approach on SPONGENT-88/80/8 and

then apply it to other variants.

4.2.1 The MitM layer for SPONGENT-88/80/8

Next we illustrate the MitM layer for SPONGENT-88/80/8. Notice that the size of its internal state is 88,

which is not a power-of-2 and makes the MitM layer more complex than PRESENT. The MitM layer consists

of 7 rounds. The constraints on the inputs are that they share the same values at bits {24, 25, 26, 27},

i.e., the input bits to S6. The constraints on the outputs are that they share the same values at bits

{80, 81, 82, 83}, i.e., the input bits to S20 for the eighth round. As in [15], we denote by Xi the internal

state after i-th round of SPONGENT-88/80/8, and by Yi the internal state after applying Sbox layer to Xi.

The detailed procedure is described as below.

Step 1. Set the bits {24, 25, 26, 27} of plaintexts to a randomly chosen 4-bit value, and compute bits

{6, 28, 50, 72} of X1 in the forward direction. These bits are input to Sboxes S1, S7, S12, S18 in the second

round. Then we guess the other 12 bits input to these Sboxes, i.e., bits {4, 5, 7, 29, 30, 31, 48, 49, 51, 73,

74, 75} of X1, and compute in the forward direction to get 16 bits of X2, i.e., bits {1, 7, 12, 18, 23, 29,

34, 40, 45, 51, 56, 62, 67, 73, 78, 84}. It is also depicted as the first two rounds in Figure 2. Further, we
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guess the 6 bits {41, 42, 43, 44, 46, 47} of X2, which are input to Sboxes S10 and S11, as shown in Figure

2 in cyan color. In total we get a set of 218 such values of X2 and each value has 22 bits determined.

Step 2. Similarly, set the bits {80, 81, 82, 83} of Y7 to a randomly chosen 4-bit value, and compute

bits {59, 63, 67, 71} of Y6 in the backward direction. These bits are input to the inversion of Sboxes

S14, S15, S16, S17 in the sixth round. Then we guess the other 12 bits input to the inversion of these

Sboxes, i.e., bits {56, 57, 58, 60, 61, 62, 64, 65, 66, 68, 69, 70} of Y6, and compute in the backward direction

to get 16 bits of Y5, i.e., bits {3, 7, 11, 15, 19, 23, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86}. It is also depicted as

the last two rounds in Figure 2. Further, we guess the 6 bits {20, 21, 22, 64, 65, 67} of Y5, which are input

to the inversion of Sboxes S5 and S16, as shown in Figure 2 in cyan color. In total we get a set of 218

such values of Y5 and each value has 22 bits determined.

Step 3. For each partially determined value of X2 and Y5, repeat the following steps.

(1) Divide the bits of X2 into two overlapping groups, whose intersection is the 8 bits input to Sboxes

S10 and S11. Then for each group, we guess the 33 undetermined bits of X2 and 2 bits ({10, 11} or

{66, 67}) of X3, and compute in the forward direction to get 44 bits of X4. We store in a table TX,i,

i = 0, 1, the values of partially determined X4 computed from the i-th group together with the 4 bits

{10, 11, 66, 67} of X3. See Figure 2 for an example group in orange color, where the guessed 2 bits of X3

are bits 10 and 11, which are input to Sbox S5.

(2) Similarly, divide the bits of Y5 into two overlapping groups, whose common bits are the 8 bits

input to the inversion of Sboxes S5 and S16. Then for each group, we guess the 33 undetermined bits of

Y5 and 2 bits ({41, 43} or {44, 46}) of Y4, and compute in the backward direction to get 44 bits of X4.

We store in a table TY,i, i = 0, 1, the values of partially determined X4 computed from the i-th group

together with the 4 bits {41, 43, 44, 46} of Y4. See Figure 2 for an example group in orange color, where

the guessed 2 bits of Y4 are bits 44 and 46, which are input to the inversion of Sbox S11.

(3) Then merge those tables to find a set of fully-determined values of X4:

(i) Merge the tables TX,i and TY,i to Ti respectively for i = 0, 1. By merging these two tables, we

mean to merge every two partially-determined values of X4, each from a table and sharing the same

bit values at the common determined bit positions, into a new partially-determined value of X4 with all

their determined bits, and then to include this new value of X4 in table Ti. Note that each value of TX,i

and each value of TY,i share 22 determined bit positions. Hence table Ti has on average 22×35−22 = 248

values, each of which has 2× (44 + 4)− 22 = 74 bits.

(ii) Merge T0 and T1. Notice that T0 and T1 share 44 determined bit positions of X4, 4 determined bit

positions of X3 and 4 determined bit positions of Y4. Hence we obtain 22×48−52 = 244 values on average,

each of which has 2× 74− 52 = 96 bits consisting of the full 88 bits of X4, 4 bits of X3 and 4 bits of Y4.

The algorithm is to find a set of internal state values of X4, whose corresponding plaintexts can satisfy

the constraints on the input and output of the MitM layer. Totally, we obtain on average 22×18×244 = 280

plaintexts by inversely computing from the fully-determined values of X4, which satisfies the constraints

on the input and output of the MitM layer.

4.2.2 Complexity

The complexity of the algorithm is dominated by Step 3. Since there are 218 X2 from the forward

computations and 218 Y5 from the backward computations, Step 3 is executed 236 times. The complexity

of each execution is dominated by Step 3(3)(ii), that is merging T0 and T1, which needs 248 table lookups.

Hence the total complexity of Step 3 is 284 table lookups. Once a match of the MitM layer has been

found, we can encrypt this value X4 over the r1 + 3 rounds and increment the counter D given in the

previous section. The memory complexity of this attack is dominated by the storage of the table T0 and

T1 which is 2 × 248 × 74 ≈ 255.2 bits. To sum up, the total time complexity of the distinguisher is 284

table lookups and 280 permutation queries.

4.2.3 The MitM layer for all versions of SPONGENT

The 13 versions of SPONGENT hash functions use 11 different sizes of internal states. We have shown the
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Table 3 The number of rounds of the MitM layer for SPONGENT

Size of internal state

88 136 176 240 264 272 336 384 480 672 768

#Rounds (generic) 5 5 5 5 7 7 7 11 9 9 11

#Rounds (improved) 7 7 7 7 9 9 9 11 9 9 11

MitM layer for SPONGENT-88/80/8. The approach also applies to the other versions. Due to the simi-

larity of the idea, we directly provide our results while omitting the details. These results are listed in

Table 3, respectively for different sizes of internal states. The numbers of rounds for generic approach

are directly derived from the results of Subsection 3.2, and the corresponding complexities can also be

obtained. Notice that by the improved approach, besides the size 88 we also increase two more rounds

for the sizes 136, 176, 240, 264, 272, 336, which are not divided by 2 × 42 = 32. The complexities of these

cases are 2n−4 table lookups and 2n−8 permutation queries.

4.3 Summary

We have shown the meet-in-the-middle layers and the truncated differential distinguishers for all versions

of SPONGENT permutations. In the truncated differential phase, we take advantage of the strong relation

between truncated differential probability and capacity of multidimensional linear approximation to derive

the best differential distinguishers, and as a result we reach one, two or three rounds more than the

results shown by the designers. In the meet-in-the-middle phase, we get up to 11 rounds to pre-add to

the differential distinguishers. Totally, we improve the previous distinguishers on all versions of SPONGENT

permutations by up to 13 rounds. The full results are summarized in Table 1, compared with the previous

distinguishers.

5 Conclusion

In this paper, we present a general method to distinguish a PRESENT-like permutation with a random

permutation. This generic method is a truncated differential distinguisher which includes two layers:

a truncated differential layer for describing the collision bias on some predetermined output bits and

a MitM layer for extending the number of the attacked rounds without changing the probability of

truncated differential. We also estimate the number of attacked rounds of the MitM layer. For a concrete

permutation, the estimated bound can possibly be further improved. For example, for SPONGENT-88/80/8

it can be improved to 7 rounds from 5 rounds. As an application, we further show the distinguishers for

all the versions of SPONGENT permutations, which improve the previous results by up to 13 rounds.
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3 de Canniere C, Dunkelman O, Knežević M. KATAN and KTANTAN— a family of small and efficient hardware-oriented

block ciphers. In: Proceedings of the 11th International Workshop on Cryptographic Hardware and Embedded Systems,

Lausanne, 2009. 272–288



Zhang G Y, et al. Sci China Inf Sci July 2017 Vol. 60 072101:13

4 Bogdanov A, Knudsen L R, Leander G, et al. PRESENT: an ultra-lightweight block cipher. In: Proceedings of the

9th International Workshop on Cryptographic Hardware and Embedded Systems, Vienna, 2007. 450–466

5 Guo J, Peyrin T, Poschmann A, et al. The LED block cipher. In: Proceedings of International Conference on

Cryptographic Hardware Embedded Systems. Berlin: Spring-Verlag, 2011. 326–341

6 Aumasson J P, Henzen L, Meier W, et al. Quark: a lightweight hash. J Cryptol, 2010, 26: 1–15

7 Bogdanov A, Knezevic M, Leander G, et al. SPONGENT: a lightweight hash function. In: Proceedings of International

Conference on Cryptographic Hardware Embedded Systems. Berlin: Spring-Verlag, 2011. 312–325

8 Bogdanov A, Knezevic M, Leander G, et al. SPONGENT: the design space of lightweight cryptographic hashing.

IEEE Trans Comput, 2013, 62: 2041–2053

9 Guo J, Peyrin T, Poschmann A. The PHOTON family of lightweight hash functions. In: Advances in Cryptology-

CRYPTO 2011. Berlin: Spring-Verlag, 2011. 222–239

10 Borghoff J, Knudsen L R, Leander G, et al. Cryptanalysis of PRESENT-like ciphers with secret S-boxes. In: Fast

Software Encryption-FSE 2011. Berlin: Spring-Verlag, 2011. 270–289

11 Lauridsen M M, Rechberger C. Linear distinguishers in the key-less setting: application to PRESENT. In: Fast

Software Encryption-FSE 2015. Berlin: Spring-Verlag, 2015. 217–240

12 Abdelraheem M A. Estimating the probabilities of low-weight differential and linear approximations on PRESENT-like

ciphers. In: Information Security and Cryptology-ICISC 2012. Berlin: Spring-Verlag, 2012. 368–382

13 Bulygin S. More on linear hulls of PRESENT-like ciphers and a cryptanalysis of full-round EPCBC–96. Cryptology

ePrint Archive, Report 2013/028. http://eprint.iacr.org/2013/028.pdf

14 Nikolic I, Wang L, Wu S. Cryptanalysis of round-reduced LED. In: Fast Software Encryption-FSE 2013. Berlin:

Spring-Verlag, 2013. 112–129

15 Blondeau C, Peyrin T, Wang L. Known-key distinguisher on full PRESENT. In: Advances in Cryptology-CRYPTO

2015. Berlin: Spring-Verlag, 2015. 455–474

16 ISO/IEC. Information technology — Security techniques — Lightweight cryptography — Part 2: Block ciphers.

ISO/IEC, 2012, 29192-2:2012. https://www.iso.org/obp/ui/#!iso:std:56552:en

17 Cheng H, Heys H M, Wang C. PUFFIN: a novel compact block cipher targeted to embedded digital systems. In:

Proceedings of the 11th EUROMICRO Conference on Digital System Design Architectures, Methods and Tools. Wash-

ington: IEEE Computer Society, 2008. 383–390

18 Knudsen L, Leander G, Poschmann A, et al. PRINTcipher: a block cipher for IC-printing. In: Proceedings of the

12th International Conference on Cryptographic Hardware and Embedded Systems, Santa Barbara, 2010. 16–32

19 Gomathisankaran M, Lee R B. Maya: a novel block encryption function. In: Proceedings of International Workshop

on Coding and Cryptography, Ullensvang, 2009

20 Yap H, Khoo K, Poschmann A, et al. EPCBC-a block cipher suitable for electronic product code encryption. In:

Proceedings of the 10th International Conference on Cryptology and Network Security, Sanya, 2011. 76–97

21 Zhang W, Bao Z, Lin D, et al. RECTANGLE: a bit-slice lightweight block cipher suitable for multiple platforms. Sci

China Inf Sci, 2015, 58: 122103

22 ISO/IEC. Information technology — Security techniques — Lightweight cryptography — Part 5: Hash-functions.

ISO/IEC DIS, 2015, 29192-5:2015. https://www.iso.org/obp/ui/#!iso:std:67173:en

23 Cho J Y. Linear cryptanalysis of reduced-round PRESENT. In: Topics in Cryptology-CT-RSA 2010. Berlin: Springer-

Verlag, 2010. 302–317

24 Blondeau C, Nyberg K. Links between truncated differential and multidimensional linear properties of block ciphers

and underlying attack complexities. In: Advances in Cryptology-EUROCRYPT 2014. Berlin: Springer-Verlag, 2014.

165–182

25 Bertoni G, Daemen J, Peeters M, et al. Sponge-based pseudo-random number generators. In: Proceedings of the 12th

International Conference on Cryptographic Hardware and Embedded Systems, Santa Barbara, 2010. 33–47

26 Bertoni G, Daemen J, Peeters M, et al. On the Indifferentiability of the Sponge Construction. In: Advances in

Cryptology-EUROCRYPT 2008. Berlin: Springer-Verlag, 2008. 181–197

27 Bao Z Z, Zhang W T, Lin D D. Speeding up the search algorithm for the best differential and best linear trails. In:

Information Security and Cryptology-ICISC 2014. Berlin: Springer-Verlag, 2014. 259–285

28 Knudsen L R. Truncated and higher order differentials. In: Fast Software Encryption-FSE 2015. Berlin: Springer-

Verlag, 1995. 196–211

29 Jean J. TikZ for Cryptographers. Asiacrypt 2015 Rump Session, 2015. http://www.di.ens.fr/∼jean/latex crypto/


	Introduction
	Our contribution
	Organization

	Research background
	Brief description of PRESENT-like permutations
	Brief description of SPONGENT
	Previous results on SPONGENT

	A distinguisher for PRESENT-like permutations
	Truncated differential distinguisher
	Definition of truncated differential distinguisher
	Truncated differential for PRESENT-like permutations

	Generic meet-in-the-middle layer for PRESENT-like permutations
	The procedure
	The number of rounds
	Complexity
	Improved generic meet-in-the-middle layer


	The distinguishers on SPONGENT permutations
	Truncated differentials with strong bias for SPONGENT permutations
	Truncated differentials with strong bias for SPONGENT-88/80/8 permutation
	Applications to other vesions of SPONGENT permutations

	The meet-in-the-middle layer for SPONGENT permutations
	The MitM layer for SPONGENT-88/80/8
	Complexity
	The MitM layer for all versions of SPONGENT

	Summary

	Conclusion

