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Abstract This paper considers the simultaneous attack problem of multiple missiles against a stationary

target. Built upon the classic proportional navigation structure, we propose a consensus-based approach to

design the cooperative guidance law. Specifically, we present time-varying navigation ratios for the missiles,

which exchange the time-to-go estimates between neighboring missiles via a communication network. For the

cases where the communication topology is undirected or in the leader–follower structure with a missile acting

as the leader whose navigation ratio cannot be tuned, we show that the proposed cooperative guidance law

can solve the simultaneous attack problem. The effectiveness of the theoretical results is finally illustrated by

numerical simulations.

Keywords simultaneous attack, consensus problem, cooperative control, distributed control, guidance law

design

Citation Zhou J L, Yang J Y, Li Z K. Simultaneous attack of a stationary target using multiple missiles: a

consensus-based approach. Sci China Inf Sci, 2017, 60(7): 070205, doi: 10.1007/s11432-016-9089-7

1 Introduction

In the past few years, simultaneous attack with multiple missiles against a single target has been an

emerging research topic. When attacking a target, a group of well-organized low-cost missile attackers

can be more effective than a single expensive missile attacker. The main advantage of multi-missile

simultaneous attack is that it can enhance the survivability when penetrating a missile defense system

and is more effective at destroying the target.

Simultaneous attack can be achieved in two ways, namely, individual homing and cooperative

homing [1]. In the individual homing approach, a specific time is given in advance as the common

impact time and each missile tries to arrive at the target on time independently. In this way, the many-

to-one simultaneous attack problem can be considered as a one-to-one attack problem with impact time

constraints. Impact-time control guidance laws were designed in [2–4] using optimal control theory. A

sliding mode-based impact time and angle guidance law were presented in [5]. The drawback of the in-

dividual homing approach is that it requires the determination of a suitable common impact time before
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homing, which may cause the simultaneous attack to fail as some missiles may not be able to satisfy the

impact time constraint due to limited speeds or accelerations.

The shortcomings of individual homing can be overcome by the cooperative homing approach, in

which the missiles communicate among themselves to synchronize the arrival times. To the best of the

authors’ knowledge, studies on cooperative guidance law design for a simultaneous attack are few, but

examples include [1, 6–9]. The main objective of [1, 6–8] is to drive the missiles to reach an agreement

on their times-to-go. However, it is generally difficult to establish a mathematical expression of the

time-to-go because the flight condition thereafter is unknown. In [6, 7], the time-to-go is approximated

as the ratio of the distance between the missile and the target and the component of relative velocity

along the line of sight (LOS). The limitation of [6, 7] is that it can only achieve the consensus of the

approximated times-to-go, but not the real times-to-go. In [1], a cooperative proportional navigation

(PN) guidance law was proposed, which reduces the variance of time-to-go estimates during the homing

guidance. It is worth mentioning that the cooperative guidance law in [1] is centralized in the sense

that it requires real-time updates of the global information of the whole missile system. Designing a dis-

tributed cooperative guidance law for the simultaneous attack problem is important and still needs further

investigation.

Distributed control of multi-agent systems has been studied extensively over the past few decades,

e.g., [10–14]. Owing to the spatial distribution of the agents and limited sensing capability of sensors,

implementable control laws for multi-agent systems should be distributed, depending on only the local

information of each agent and its neighbors. Of particular interest is distributed control design for the

consensus problem, which means that the states of the agents reach agreement. Please refer to [15–20] and

references therein for recent results. These results have been applied to several areas, such as spacecraft

formation flying, sensor networks, and neural networks [14, 21–23]. However, few attempts have been

made at application to simultaneous attack.

Motivated by the discussions above, in this paper we study the distributed cooperative guidance law

design problem to achieve simultaneous attack of multiple missiles against a stationary target. With the

use of a PN structure similarly as in [1], the cooperative guidance law design problem is reduced to the

design of navigation ratios. Within the consensus framework, we present time-varying navigation ratios for

the missiles, which exchange the time-to-go estimates between neighboring missiles via a communication

network. For the cases where the communication topology is undirected or in the leader–follower structure

with a missile acting as the leader whose navigation ratio cannot be tuned, we show that the proposed

cooperative guidance law can solve the simultaneous attack problem. The main contributions of this paper

lie in the following aspects. First, the guidance law proposed in this paper is distributed. Compared with

the centralized guidance law in [1], which relies on global onboard information of time-to-go estimates,

the cooperative guidance law depends only on time-to-go estimates of each missile and its neighbors,

and thus can decrease the communication burden. Second, different from most existing time-to-go-

based work, in which only the consensus of time-to-go estimates is considered, in this paper we further

consider the consensus of real times-to-go. Therefore, the guidance law in this paper can ensure accurate

simultaneous attack. Third, in comparison with the guidance law in [1], which only reduces the variance

of time-to-go estimates, the guidance law in this paper can achieve finite-time consensus of real times-to-

go. Furthermore, the guidance law designed in this paper can deal with not only undirected connected

communication graphs, but also the case where a missile undergoes communication failure. Last but

not the least, different from [1], which requires the small angle assumption of the heading error, this

paper proves that such an assumption is not necessary, and thus is much more practical in engineering

applications.

The rest of this paper is organized as follows. Useful mathematical preliminaries are introduced in

Section 2. The simultaneous attack problem is formulated in Section 3. Distributed cooperative guidance

laws are proposed in Section 4. Simulation results of a five-to-one engagement scenario are provided in

Section 5 and conclusion is given in Section 6.
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Figure 1 The 3D engagement geometry.

2 Mathematical preliminaries

A graph G is a pair (V , E), where V = 1, . . . , n is the set of nodes (i.e., missiles), and E ∈ V ×V is the set

of edges, in which an edge is represented by an ordered pair of distinct nodes. An edge (i, j) represents

that node i is a neighbor of node j and node j can receive information from node i. A graph is undirected

if for any (i, j) ∈ E , (j, i) ∈ E . A path from node i1 to node il is a sequence of ordered edges of the form

(ik, ik+1), k = 1, . . . , l − 1. An undirected graph is connected if for any i ∈ V , there exists paths to all

other nodes, while a directed graph contains a directed spanning tree if there exists a node called the

root node such that the node has directed paths to all the other nodes.

Suppose there are n nodes in the graph G. The adjacency matrix A = [aij ] ∈ R
n×n is defined as

aii = 0, aij = 1 if (j, i) ∈ E and 0 otherwise. The Laplacian matrix L = [lij ] ∈ R
n×n is defined as

lii =
∑n

j=1 aij and lij = −aij for i 6= j.

Lemma 1 (Ren et al. [21]). Zero is an eigenvalue of L with 1 as a right eigenvector and all nonzero

eigenvalues have positive real parts, where 1 denotes a column vector with all entries equal to 1. Moreover,

zero is a simple eigenvalue of L if and only if G has a directed spanning tree.

Lemma 2 (Olfati-saber and Murray [24]). For a connected undirected graph G, its Laplacian matrix

L has the following properties: for any x ∈ R
n satisfying 1Tx = 0, we have xTLx > λ2x

Tx, where λ2
denotes the smallest nonzero eigenvalue of L.

Lemma 3 (Yu et al. [25]). For xi ∈ R, i = 1, . . . , p, 0 < α 6 1, then
∑p

i=1 |xi|
α > (

∑p

i=1 |xi|)
α
.

Lemma 4 (Yu et al. [25]). If there exists a Lyapunov function V (x) such that

V̇ (x) + aV (x) + bV α(x) 6 0,

where a > 0, b > 0, and 0 < α < 1, then V (x) will converge to the origin in finite time. In addition, the

finite settling time T satisfies

T 6
1

a(1− α)
ln
aV 1−α(x0) + b

b
.

3 Problem formulation

In this paper, we consider the scenario where n missiles cooperatively attack a stationary target in three-

dimensional (3D) space. The task assigned to the multi-missile system is to hit the target simultaneously.

The many-to-one 3D engagement geometry is illustrated in Figure 1, where Mi and T denote the ith

missile and the target, respectively, T is an inertial coordinate system with XT –ZT being the horizontal

surface and XT –YT being the vertical surface, ψi is the angle between XT and the projection of the LOS

MiT on the XT –ZT plane, and ψ1, . . . , ψn are different at initial time. For simplicity, assume that all

the missiles have already laterally headed on the target, implying that the missiles’ flight paths are on

different vertical surfaces and therefore collisions can be avoided. For the case that the missiles do not

laterally head on the target, we can always design the lateral accelerations to drive the missiles laterally
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Figure 2 The planar engagement geometry.

head on the target, which is a very easy task. In this case, we only need to consider the planar engagement

scenario on vertical surface with the longitudinal model of the missiles.

The planar engagement scenario of the ith missile and the target is depicted in Figure 2, where ri
is the relative range along the LOS, λi is angle between the LOS and the horizontal reference line, ai,

Vi, γi, and φi denote the acceleration, velocity, fight-path angle, and heading error of the ith missile,

respectively. Similarly as in [1], the missile acceleration is assumed to be perpendicular to its velocity

and the missile speed Vi remains constant during the entire process.

The planar missile-target engagement kinematics can be described by

ṙi =− Vi cosφi, λ̇i = −
Vi sinφi
ri

,

ai =Viγ̇i, φi = γi − λi, i = 1, . . . , n.

(1)

The objective of the simultaneous attack problem is to design the cooperative guidance law for the

multi-missile system such that the relative ranges r1, . . . , rn converge to zero simultaneously. The guidance

law of the multi-missile system in this paper is designed based on PN, which has been widely used as

the guidance scheme in the homing phase for most missile systems. In the PN scheme, the rate of turn

of the missile is made proportional with the navigation ratio N to the rate of turn of the LOS. With the

navigation ratio satisfying N > 2, the component of relative velocity between the missile and the target

in the direction normal to the LOS can be driven to zero and the hit-to-kill attack can be achieved.

With the PN structure

ai = NiViλ̇i, i = 1, . . . , n, (2)

where Ni denotes the navigation ratio of the ith missile, the kinematics equations (1) can be rewritten

as

ṙi = −Vi cosφi, φ̇i = −
(Ni − 1)Vi sinφi

ri
, i = 1, . . . , n. (3)

Then, the simultaneous attack problem can be reformulated as designing the navigation ratiosN1, . . . , Nn,

for the multi-missile system described by (3), such that r1, . . . , rn, reach zero simultaneously.

4 Main results

Similarly as in [1], the main idea of the cooperative guidance strategy here is that the missiles with longer

times-to-go try to take shortcuts, whereas others with shorter times-to-go take detours to delay the arrival

times, by designing of navigation ratios. Different from the conventional PN in which the navigation ratio

is held fixed, the navigation ratio of each missile in this paper is adjusted using its onboard information

and exchanging information with the other missiles. The information exchanges among the n missiles are

conducted on a wireless network, whose topology is represented by a graph G.

In the following subsections, we consider two cases where the communication graph G is undirected or

of the leader-follower form.
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4.1 Undirected communication graphs

In this subsection, the communication graph G is assumed to satisfy the following assumption.

Assumption 1. The communication graph G is undirected and connected.

Based on the local information of each missile and its neighbors, the navigation ratio of the ith missile

is described by

Ni = Ns(1− airiξi − biri|ξi|
αsgn(ξi)), i = 1, . . . , n, (4)

where

ξi =
n
∑

j=1

aij(t̂go,j − t̂go,i), (5)

t̂go,i =
ri
Vi

(

1 +
φ2i

2(2Ns − 1)

)

, (6)

and Ns, ai, bi, and α are real numbers satisfying Ns >
3π−4
3π−8 , ai > 0, bi > 0, and 0 < α < 1.

As shown in [1], the time-to-go of the ith missile tgo,i can be calculated by ri
Vi

(1 +
φ2
i

2(2Ni−1) ) only if

its navigation ratio Ni remains constant thereafter. Therefore, t̂go,i in (6) can be understood as the

time-to-go estimate of the ith missile. Note that the simultaneous attack is achieved if the times-to-

go tgo,1, . . . , tgo,N , reach agreement. This is done via communicating the time-to-go estimates between

neighboring missiles and adjusting the navigation ratios for the missile which are now nonlinear and time-

varying. Note that the control law (4) depends on only the local information of neighboring missiles,

thereby it is distributed.

Before proceeding, the following assumption is introduced.

Assumption 2. We have ri 6= 0, φi 6= 0, i = 1, . . . , n before the consensus of t̂go,i, i = 1, . . . , n.

Noting that ri = 0, φi = 0 only happens when the ith missile reaches the target, Assumption 2 is

necessary as the simultaneous attack task fails if any missile arrives at the target before the consensus of

times-to-go. Moreover, Assumption 2 can be satisfied by appropriately choosing the parameters Ns, ai,

bi, and α, which will be discussed later.

Theorem 1. Suppose that Assumptions 1 and 2 hold, and |φi| 6
π

2 , i = 1, . . . , n. For the multi-missile

system (1) with the PN strategy (2) and the proposed navigation ratios (4), ξi, i = 1, . . . , n will converge

to a neighborhood of the origin in finite time, and φi, i = 1, . . . , n will asymptotically converge to zero.

Proof. Let t̂go = [t̂go,1, . . . , t̂go,n]
T and ξ = [ξ1, . . . , ξn]

T. Then, Eq. (5) can be written as ξ = −Lt̂go,

where L denotes the Laplacian matrix of G. Since Assumption 1 holds, it follows that zero is a simple

eigenvalue of L with 1 as the eigenvector. It is not difficult to see that ξ = 0 if and only if t̂go,1 = · · · =

t̂go,n. Thus, ξ will be referred to as the consensus error of the time-to-go estimates.

Differentiating t̂go,i with respect to time and substituting (3) into (6) yield

˙̂tgo,i =
ṙi
Vi

(

1 +
φ2i

2(2Ns − 1)

)

+
riφiφ̇i

Vi(2Ns − 1)

= − cosφi

(

1 +
φ2i

2(2Ns − 1)

)

−
(Ni − 1)φi sinφi

2Ns − 1

= −1 +
(Ns −Ni)φi sinφi

2Ns − 1
+ δi, (7)

where

δi = 1− cosφi −
φ2i cosφi

2(2Ns − 1)
−

(Ns − 1)φi sinφi
2Ns − 1

.

Note that δi(φi) is an even function about the independent variable φi, and is monotone increasing in

φi ∈ [0,π). Thus, we have 0 6 δi < 2 + π
2

2(2Ns−1) , when |φi| < π.
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Substituting the protocol (4) into (7), we can obtain

˙̂tgo,i = −1 +
Nsφi sinφi(airiξi + biri|ξi|

αsgn(ξi))

2Ns − 1
+ δi. (8)

Consider the following Lyapunov function candidate

V1 =
1

4

∑

(i,j)∈E

aij(t̂go,j − t̂go,i)
2 =

1

2
t̂TgoLt̂go. (9)

The time derivative of V1 along the trajectory of (8) is given by

V̇1 = t̂TgoL
˙̂tgo = −

n
∑

i=1

(

Nsairiφi sinφi
2Ns − 1

ξ2i +
Nsbiriφi sinφi

2Ns − 1
|ξi|

1+α + ξiδi

)

, (10)

where we have used the fact that L1 = 0 and ξ = −Lt̂go to obtain the last equality, which can be further

rewritten as the following two terms:

V̇1 =−

n
∑

i=1

(

(

Nsairiφi sinφi
2Ns − 1

+
δi
ξi

)

ξ2i +
Nsbiriφi sinφi

2Ns − 1
|ξi|

1+α

)

, (11)

V̇1 = −

n
∑

i=1

(

Nsairiφi sinφi
2Ns − 1

ξ2i +

(

Nsbiriφi sinφi
2Ns − 1

+
δi

|ξi|αsgn(ξi)

)

|ξi|
1+α

)

. (12)

From (11), with Lemma 3 we can get

V̇1 6 −k1ξ
Tξ − k2(ξ

Tξ)
1+α

2 , (13)

where

k1 = min{k11, . . . , k1n}, k2 = min{k21, . . . , k2n}

with

k1i =

(

Nsairiφi sinφi
2Ns − 1

+
δi
ξi

)

, k2i =
Nsbiriφi sinφi

2Ns − 1
, i = 1, . . . , n.

Since 1TL1 = (L
1
21)T(L

1
21) = 0, we have L

1
2 1 = 0. It follows that 1TL

1
2 t̂go = 0. By Lemma 2, we have

t̂TgoLLt̂go > λ2 t̂
T
goLt̂go, i.e., ξ

Tξ > 2λ2V1, in virtue of which, it follows from (18) that

V̇1 6 −2λ2k1V1 − (2λ2)
1+α

2 k2V
1+α

2

1 , (14)

if k1, k2 are positive. We can obtain from Lemma 4 that the finite-time convergence of V1 is guaranteed

with

T1 6
1

λ2k1(1 − α)
ln

2λ2k1V
1−α

2

1 (0) + (2λ2)
1+α

2 k2

(2λ2)
1+α

2 k2
.

Note that k1 and k2 are positive if |ξi| >
(2Ns−1)δi

Nsairiφi sinφi

for i = 1, . . . , n. Then, the consensus errors

can converge to the region |ξi| 6
(2Ns−1)δi

Nsairiφi sinφi

in finite time. From (12), we can similarly obtain the

finite-time convergence region |ξi| 6 ( (2Ns−1)δi
Nsbiriφi sinφi

)
1
α . Thus, the consensus errors can converge to the

region |ξi| 6 min{ (2Ns−1)δi
Nsairiφi sin φi

, ( (2Ns−1)δi
Nsbiriφi sinφi

)
1
α } in finite time.

Since δi
φi sinφi

is an even function about the independent variable φi and is monotone increasing in

φi ∈ (0,π), we can obtain that 0 6
δi

φi sinφi

6
2
π
− Ns−1

2Ns−1 when |φi| 6
π

2 . Thus, the convergence region of

the consensus error is

∆i =

{

ξi : |ξi| 6 min

{

2Ns − 1

Nsairi

(

2

π

−
Ns − 1

2Ns − 1

)

,

(

2Ns − 1

Nsbiri

(

2

π

−
Ns − 1

2Ns − 1

))
1
α

}}

. (15)



Zhou J L, et al. Sci China Inf Sci July 2017 Vol. 60 070205:7

Once the consensus error converges to the region, according to the proposed guidance law (4), we have

Ni >Ns(1− |airiξi| − |biri|ξi|
α|)

>Ns

(

1− 2×
2Ns − 1

Ns

(

2

π

−
Ns − 1

2Ns − 1

))

=

(

3−
8

π

)

Ns +
4

π

− 2

>1,

where we have used the condition that Ns >
3π−4
3π−8 to obtain the last inequality. In light of the dynamics

of φi in (3), once Ni > 1, φi will asymptotically converge to zero.

Remark 1. In practice, the convergence region of the consensus error is much smaller than (15). The

conservativeness of this region is introduced in tackling δi with (11) and (12). Thus, the demands of

|φi| 6
π

2 , i = 1, . . . , n and Ns >
3π−4
3π−8 are also conservative, which accords with the simulation results.

Theorem 2. Suppose that Assumptions 1 and 2 hold, and |φi| 6
π

2 , i = 1, . . . , n. For the multi-missile

system (1) with the PN strategy (2) and the proposed navigation ratios (4), the simultaneous attack

problem can be solved.

Proof. From Theorem 1 we can obtain that the consensus error ξi will decrease to region ∆i and φi will

asymptotically converge to zero. When φi decreases to a small angle, we have sinφi ≈ φi, cosφi ≈ 1− φ2

2 .

Then, Eq. (7) turns into

˙̂tgo,i = −1 +
(Ns −Ni)φ

2
i

2Ns − 1
, i = 1, . . . , n, (16)

and the time derivative of V1 along the trajectory of (8) is given by

V̇1 = t̂TgoL
˙̂tgo = −

Ns

2Ns − 1

(

n
∑

i=1

airiφ
2
i ξ

2
i +

n
∑

i=1

biriφ
2
i |ξi|

1+α

)

. (17)

Define am = min{a1, . . . , an}, bm = min{b1, . . . , bn}. By Assumption 2, there exist constants rm and φm
such that ri > rm, |φi| > φm, i = 1, . . . , n. Then, we can obtain that

V̇1 6 −
Ns

2Ns − 1

(

n
∑

i=1

amrmφ
2
mξ

2
i +

n
∑

i=1

bmrmφ
2
m|ξi|

1+α

)

6 −
Nsrmφ

2
m

2Ns − 1

(

amξ
Tξ + bm(ξTξ)

1+α

2

)

, (18)

where we have used Lemma 3 to obtain the last inequality.

By Lemma 4, we have

V̇1 6 −
2λ2Nsamrmφ

2
m

2Ns − 1
V1 −

(2λ2)
1+α

2 Nsbmrmφ
2
m

2Ns − 1
V

1+α

2

1 , (19)

implying that V1 converges to zero in finite time, which further implies that t̂go,i, i = 1, . . . , n, reach

consensus and ξ converges to zero in finite time. Moreover, the settling time T satisfies

T 6 T1 +
2Ns − 1

Nsλ2amrmφ2m(1− α)
ln

2λ2amV
1−α

2

1 (T1) + (2λ2)
1+α

2 bm

(2λ2)
1+α

2 bm
. (20)

Note that once ξ converges to zero, all the navigation ratios stop varying and are equal to the constant

Ns. Then, the cooperative guidance law of each missile turns into the conventional PN guidance law,

implying that all the missiles will hit the target with zero LOS rates and zero heading errors at the final

time. Moreover, t̂go,i, i = 1, . . . , n, will represent the true values of times-to-go. Therefore, all missiles

will hit the target at the same time. This completes the proof.
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Remark 2. The settling time T depends on the initial conditions, the communication topology and

the control parameters Ns, ai, bi, and α. To satisfy Assumption 2, the settling time T should be small

so that the consensus of time-to-go estimates can be achieved fast enough before any missile arrives the

target. According to (20), we can choose large ai, bi and small Ns, α to obtain a small settling time T .

If the case that some missiles reach the target before consensus happens, these missiles are no longer in

the communication group due to the impact, while the remaining communication channels keep working,

under which the remaining missiles will still synchronize their time-to-go estimates with the proposed

guidance law. The simultaneous attack of the whole group fails, but that of the remaining missiles may

be achieved if their communication graph is still connected.

Remark 3. Different from [6, 7] in which only consensus of the time-to-go estimates is considered,

this paper steps further and achieves consensus of the real times-to-go. Compared with the centralized

guidance law in [1], which relies on global onboard information of time-to-go estimates, the cooperative

guidance law proposed in this paper only requires the onboard time-to-go estimates of each missile and its

neighbors, and thereby is fully distributed. Moreover, the guidance law in [1] can only make the variance

of time-to-go estimates decrease, while in this paper the consensus of the real times-to-go can be achieved

in finite time.

4.2 Leader-follower communication graphs

Theorem 1 shows that protocol (4) is applicable for the case that the communication graph is undirected

and connected. However, the communication channels are not always reliable in practice. In this sub-

section, we consider the situation that there exists a missile which cannot obtain the information from

its neighbors. As a result, this missile takes the role of the leader, and its navigation ratio cannot be

adjusted and remains constant. Without loss of generality, let this missile be the nth one.

We assume that the communication graph G satisfies the following assumption.

Assumption 3. The communication topology G is a leader–follower graph containing a directed span-

ning tree with the nth node as the root, whose navigation ratio Nn remains constant satisfying Nn > 2,

and the subgraph among the followers is undirected.

In this case, the navigation ratio of the nth missile Nn cannot be adjusted and remains unchanged. The

assumption Nn > 2 is to ensure that it will hit the target, according to the property of the conventional

PN guidance law. In addition, we can obtain its actual time-to-go tgo,n = rn
Vn

(1 +
φ2
n

2(2Nn−1) ), and its

time derivative ṫgo,n = −1. Let t̂go,n in (4) be tgo,n. The following theorems show that the proposed

navigation ratios (4) are still applicable to this leader-follower case.

Theorem 3. Suppose that Assumptions 2 and 3 hold, and |φi| 6
π

2 , i = 1, . . . , n − 1. For the multi-

missile system (1) with the PN strategy (2) and the proposed navigation ratios (4), ξi, i = 1, . . . , n − 1

will converge to a neighborhood of the origin, and φi, i = 1, . . . , n− 1 will converge to zero.

Proof. Since the graph G satisfies Assumption 3, the Laplacian matrix can be partitioned into

L =

[

L1 L2

01×(n−1) 0

]

,

where L1 ∈ R
(n−1)×(n−1) is symmetric and L2 ∈ R

n−1. In light of Lemma 1, it is obvious that L1 is

positive definite. Let t̃go = [t̂go,1, . . . , t̂go,n−1]
T and ξ̃ = [ξ1, . . . , ξn−1]

T. Noting that L11 = −L2, we have

ξ̃ = −[L1 L2][t̃
T
go tgo,n]

T = −L1(t̃go − tgo,n1). (21)

Evidently, ξ̃ = 0 if and only if t̂go,i = tgo,n, i = 1, . . . , n− 1.

Consider the following Lyapunov function candidate:

V2 =
1

2
(t̃go − tgo,n1)

TL1(t̃go − tgo,n1). (22)



Zhou J L, et al. Sci China Inf Sci July 2017 Vol. 60 070205:9

Note that ˙̂tgo,i, i = 1, . . . , n− 1, is given in (8). The time derivative of V2 along (8) can be obtained as

V̇2 = (t̃go − tgo,n1)
TL1(

˙̃tgo − ṫgo,n1)

= −

n−1
∑

i=1

(

Nsairiφi sinφi
2Ns − 1

ξ2i +
Nsbiriφi sinφi

2Ns − 1
|ξi|

1+α + ξiδi

)

. (23)

Denote by λ1 > 0 the smallest eigenvalue of L1. Observe that

(

L
1
2

1 (t̂go − t̂go,n1)
)T

L1

(

L
1
2

1 (t̂go − t̂go,n1)
)

> λ1

(

L
1
2

1 (t̂go − t̂go,n1)
)T (

L
1
2

1 (t̂go − t̂go,n1)
)

,

which means that ξ̃Tξ̃ > 2λ1V2. Aware of this, taking similar steps as in the proof of Theorem 1, we

can obtain that ξi, i = 1, . . . , n− 1 will converge to the region ∆i, i = 1, . . . , n− 1 in finite time and φi,

i = 1, . . . , n− 1 will asymptotically converge to zero.

Theorem 4. Suppose that Assumptions 2 and 3 hold, and |φi| 6
π

2 , i = 1, . . . , n − 1. For the multi-

missile system (1) with the PN strategy (2) and the proposed navigation ratios (4), the simultaneous

attack problem can be solved.

Proof. Taking similar steps as in the proofs of Theorems 2 and 3, we have

V̇2 6 −
Nsrmφ

2
m

2Ns − 1

(

ãmξ̃
Tξ̃ + b̃m(ξ̃Tξ̃)

1+α

2

)

, (24)

where ãm = min{a1, . . . , an−1} and b̃m = min{b1, . . . , bn−1}. Then, it follows from (24) that

V̇2 6 −
2λ1Nsãmrmφ

2
m

2Ns − 1
V2 −

(2λ1)
1+α

2 Nsb̃mrmφ
2
m

2Ns − 1
V

1+α

2

2
(25)

implying that V2 will converge to zero in finite time, which further implies that ξ̃ will converge to zero

and t̂go,i, i = 1, . . . , n− 1 will all equal to tgo,n.

Note that once ξ̃ converges to zero, the followers’ navigation ratios stop varying and equal the constant

Ns. Then, all the missiles are under the conventional PN guidance law, implying that all the missiles

will hit the target with zero LOS rate and zero heading error at the final time. Moreover, the time-to-go

estimates will represent the true values of times-to-go. Therefore, all missiles will hit the target at the

same time. This completes the proof.

Remark 4. In this version, the followers’ navigation ratios will converge to the value Ns, while the

leader’s navigation ratio retains a constant Nn. Although the navigation ratios of the whole group may

not converge to the same value, the times-to-go of them can still achieve consensus in finite time.

5 Simulation

In this section, simulations are conducted on the engagement scenario that five missiles attack a single

stationary target from different directions. The speed of the missiles, the initial ranges-to-go, the initial

LOS angles, and the initial heading errors are given as V1 = 350, V2 = 300, V3 = 250, V4 = 325, and

V5 = 275 m/s2; r1 = 31000, r2 = 36000, r3 = 25000, r4 = 30000, and r5 = 35000 m; λ1 = λ2 = λ3 =

λ4 = λ5 = 0; and φ1 = 0.3, φ2 = 0.15, φ3 = 0.25, φ4 = 0.175, and φ5 = 0.3 rad.

We consider two cases where the communication topologies among missiles are an undirected con-

nected graph as shown in Figure 3(a) and a directed graph in the leader–follower structure as shown in

Figure 3(b), respectively. In Case 2, the 5th missile takes the role of the leader and its navigation ratio

keeps the constant N5 = 5.

Now, we use the novel cooperative guidance law as described in Theorems 2 and 4 for Cases 1 and 2,

respectively. In both cases, Ns is designed to be three, as three is known as the energy-optimal navigation

ratio when attacking a stationary target. Other control parameters for Cases 1 and 2 are as follows:
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Figure 3 The communication topology among missiles. (a) Case 1; (b) Case 2.

0
3

2000

4000

2

6000

4

Y
T
 (

m
)

1

8000

3

10000

ZT (m) XT (m)

×104

×104
20

12000

1

14000

−1 0
−1−2

−2−3 −3

Missile 1
Missile 2
Missile 3
Missile 4
Missile 5

Figure 4 (Color online) Trajectories of missiles for Case 1.

Case 1: α = 0.8, a1 = a2 = 2 × 10−5, a3 = a4 = a5 = 5 × 10−5, b1 = b2 = 2 × 10−5, and

b3 = b4 = b5 = 5× 10−5;

Case 2: α = 0.8, a1 = 1.333 × 10−5, a2 = 3.333 × 10−5, a3 = a4 = 5.128 × 10−5, b1 = 10−5,

b2 = 2.5× 10−5, and b3 = b4 = 3.846× 10−5.

Simulation results for Case 1, including trajectories of missiles, ranges-to-go ri, i = 1, . . . , 5, estimates

of time-to-go t̂go,i, i = 1, . . . , 5, consensus errors of estimates of time-to-go ξi, i = 1, . . . , 5, heading errors

φi, i = 1, . . . , n, navigation ratios Ni, i = 1, . . . , 5, and missile accelerations ai, i = 1, . . . , 5, are presented

in Figures 4–10. From Figures 4 and 5, we can see that the five missiles reach the target simultaneously.

Figures 6 and 7 show that the consensus error ξ converges to zero and the estimates of times-to-go reach

consensus. Figures 9 and 10 present the performance of the control inputs. It can be observed that all

the navigation ratios converge to value Ns = 3 and all the missile accelerations are within the limits

|ai| < 180 m/s2, i = 1, . . . , 5. It should be noted that in the theorems, we demand Ns >
3π−4
3π−8 and

|φi| 6 π/2, which are conservative. In the simulation, Ns is designed to be three, and φi exceed the

limitation, the simultaneous attack task is still completed.

Simulation results for Case 2 are presented in Figures 11–17. From Figures 11 and 12, we can see that

the five missiles can still attack the target simultaneously with the proposed guidance law, even when the

navigation ratio of the 5th missile cannot be tuned. Figures 13 and 14 show that the consensus error ξ

converges to zero and the estimates of times-to-go reach consensus. The navigation ratios are described

by Figure 16, from which we can observe N5 = 5 as we set, and N1, . . . , N4 converge to Ns = 3. Figure

17 shows that the history of missile accelerations are all within the limits |ai| < 270 m/s2, i = 1, . . . , 5.

6 Conclusion

In this paper, we studied the simultaneous attack problem of multiple missiles against a stationary

target. We presented a consensus-based approach to design a cooperative guidance law that can achieve
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Figure 5 (Color online) Ranges-to-go histories for

Case 1.

Figure 6 (Color online) Consensus errors of estimates of

times-to-go for Case 1.
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Figure 7 (Color online) Estimates of times-to-go for

Case 1.

Figure 8 (Color online) Heading errors of missiles for

Case 1.
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Figure 9 (Color online) Navigation ratios of missiles for

Case 1.

Figure 10 (Color online) Accelerations of missiles for

Case 1.



Zhou J L, et al. Sci China Inf Sci July 2017 Vol. 60 070205:12

0
3

2000

4000

2

6000

41

8000

3

10000

20

12000

1

14000

−1 0
−1−2 −2−3 −3

Y
T
 (

m
)

Z
T
 (m) X

T
 (m)

×104

×104

Missile 1
Missile 2
Missile 3
Missile 4
Missile 5

Figure 11 (Color online) Trajectories of missiles for Case 2.
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Figure 12 (Color online) Ranges-to-go histories for

Case 2.

Figure 13 (Color online) Consensus errors of estimates

of times-to-go for Case 2.
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Figure 14 (Color online) Estimates of times-to-go for

Case 2.

Figure 15 (Color online) Heading errors of missiles for

Case 2.

simultaneous attack for both the case where the communication topology is undirected or in the leader–

follower structure with a missile acting as the leader whose navigation ratio cannot be tuned. Compared

with the existing related work, the main contribution of this paper is that the proposed cooperative

guidance law depends on only the estimated times-to-go of the missile itself and its neighbors, and thereby
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Figure 16 (Color online) Navigation ratios of missiles

for Case 2.

Figure 17 (Color online) Accelerations of missiles for

Case 2.

is distributed, which can significantly improve the operational effectiveness and reduce the communication

burden. Further study needs to be concerned on designing fully distributed adaptive guidance laws for

general directed graph or the case that the target is not stationary but moving.
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