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Abstract This paper presents a design method for saturated coordinated control of multiple underactuated

unmanned surface vehicles (USVs) on a closed curve, holding a symmetric formation pattern. Each vehicle is

subject to unknown sideslip, uncertain vehicle kinetics, and limited control torques. First, the course angle and

surge velocity are considered as immediate signals to stabilize the along-track and cross-track path following

errors. In the vehicle kinematics, a reduced-order extended state observer is utilized to compensate for the effect

of the unknown sideslip. Next, a bounded neural network control law is constructed at the kinetic level with

the aid of the a saturated function, a projection operator, and a dynamic surface design method. Finally, a

parameter cyclic pursuit approach is presented to guarantee that the vehicles are evenly spaced over the closed

curve for achieving a symmetric formation pattern. The input-to-state stability of the closed-loop system is

analyzed via cascade theory. Comparative studies are given to show the effectiveness of the proposed method.
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1 Introduction

Unmanned surface vehicles (USVs) have been playing an increasingly important role in military and

civilian applications due to their small size, low cost, and high agility [1]. Studies on motion control of

USVs have attracted great attention from various research communities. Current research goes beyond

single USV control, and much attention has been paid to coordinated control of multiple USVs [2–25].

In general, coordinated USV systems can execute more challenging missions with improved mission

performance, enhanced reliability against system failures, and reduced operational costs [1, 9, 17]. To

achieve the coordination of multiple USVs, several methods have been proposed, including leader-follower

formation control [2–8], cooperative trajectory tracking [9–15], and cooperative path following [16–25].
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In particular, the objective of coordinated path following is to steer a group of vehicles along predefined

path while keeping a desired formation [26, 27].

Coordinated path following of USVs has been studies by many researchers [16–25]. In [16], a coordi-

nated path following controller is proposed based on a passivity-based synchronization method. In [17],

a coordinated path following design is presented for multiple autonomous vehicles in the presence of

parametric uncertainty and unknown constant ocean currents. In [18], coordinated path following under

discrete-time periodic communications is investigated. In [19], a coordinated path following controller is

developed based on an adaptive dynamic surface control method and neural networks. In [20], coordi-

nated path following control is addressed both for both state and output feedback. In [21], coordinated

path following of marine vehicles with input saturation is investigated. In [22], a modular design approach

is employed to develop distributed path following controllers where the path information is available for a

small fraction of vehicles. In [23], a neurodynamics-based observer is developed to achieve the distributed

output feedback path following control. In [16–23], a parallel formation pattern on multiple paths is

achieved by synchronizing path variables. In [24,25], a path variable containment method is proposed to

coordinated path following along one parameterize path, where the vehicles are evenly spaced between

two virtual leaders along the path. All these coordinated path following controllers [16–25] focus on for-

mation control over open curves. In many circumstances, closed paths are preferable by oceanographers,

since the sensor measurements collected along repeated orbits can be interpreted without using a complex

ocean model [28, 29]. However, the existing methods on coordinated control of multiple USVs [16–25]

cannot be applied to the coordinated control on a closed curve, since a symmetric formation pattern

cannot be achieved by using the existing path variable synchronization method [16–23] and path variable

containment method [24, 25].

On the other hand, some efforts have been devoted to the coordinated control of moving sensor plat-

forms [28–34]. In [28], a curve extension approach is presented for unit speed particles moving along a

convex and closed loop. A formation motion is maintained by forcing the relative arc-length between each

pair of vehicles to a constant value. It is later applied to underwater gliders and experimental results are

given to verify its effectiveness [29]. In [30], a modified curve extension design method named concentric

compression is proposed for unicycles on a set of convex and closed loops. The inter-vehicle formation

is achieved by synchronizing the arc-lengths. In [31], the formation control problem for non-holonomic

vehicles on convex orbits in a three-dimensional space is investigated with a time-varying reference or-

bital velocity. In [32], an adaptive formation controller is proposed for a group of fully actuated surface

vessels to follow a set of convex orbit and maintain attitude synchronization. In [33], a formation of

multi-unicycles around a closed curve is achieved in the presence of a time-invariant flow field. In [34], a

formation controller is presented for underactuated ships along closed orbits. Note that most aforemen-

tioned studies focus on the parallel formations on multiple closed paths [30–34], which can be achieved

by synchronizing the arc-lengths. Besides, the methods given in [28–34] require the communication to be

bidirectional, which may be restrictive in practice.

Motivated by the above observations, we consider the coordinated control of multiple underactuated

USVs over a closed curve. The USVs subject to unknown sideslip, dynamical uncertainties, and limited

control torques. First, the course angle and surge velocity are treated as virtual controls to stabilize

the along-track and cross-track path following errors. A reduced-order extended state observer is used

to compensate for the effort of the unknown sideslip at the kinematics level. Second, a bounded neural

network control law is developed at the kinetic level based on a dynamic surface control design method

with the control torques known as a priori. Third, a parameter cyclic pursuit approach is proposed to

space the path variables such that a symmetric formation pattern is reached. The input-to-state stability

of the closed-loop network is established via cascade theory. Comparison studies are given to illustrate

the efficacy of the proposed method.

Compared with the existing results [16–25, 28–34], the main features of the proposed method are

summarized as follows.

• A parameter cyclic pursuit approach is proposed to achieve a symmetric formation along a closed

path. Different from the coordinated control of multiple USVs over multiple parameterized paths in [16–
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23], a coordinated control along a parameterized path is considered here. Different from the coordinated

control problem addressed in [24,25], where the vehicles keep a queue formation along one open curve, a

symmetric formation on a closed curve is achieved in this paper.

• In contrast to the coordinated controllers in [28–34], where the bidirectional communication is re-

quired, the communication graph is directed herein. Different from the parallel formations pattern on

multiple closed curve considered in [30–34], a symmetric formation on a closed curve is achieved here.

• Compared with the coordinated controllers in [16–22,24, 25, 28–34], where the input constraints are

not considered, the developed coordinated controllers are bounded with the bounds known as a priori.

This paper is organized as follows. Section 2 introduces some preliminaries and gives the problem

formulation. Section 3 presents the controller design and main results. Section 4 gives the simulation

results to illustrate the proposed method. Section 5 concludes this paper.

2 Preliminaries and problem formulation

2.1 Preliminaries

Some graph concepts are briefly introduced. A graph G = {V , E} consists of a node set V = {n1, . . . , nN}
and an edge set E = {(ni, nj) ∈ E × E}. The element (ni, nj) describes the communication from node i

to node j. The adjacency matrix A = [aij ] ∈ R
N×N associated with the graph G is defined as aij = 1, if

(nj , ni) ∈ E ; and aij = 0, otherwise. The Laplacian matrix L associated with the graph G is defined as

L = D −A where D = diag{d1, . . . , dN} with di =
∑N
j=1 aij , i = 1, . . . , N .

Lemma 1 ([35]). Let G be a weight-balanced and weakly connected graph, and L be its Laplacian

matrix. Then,

(i) The matrix Sym(L) := L+LT

2 is positive semi-definite.

(ii) Denoted by λ∗ the smallest nonzero eigenvalue of Sym(L) and 1N = [1, . . . , 1]T, then xTSym(L)x >

λ∗||x− 1N1TN
N

x||2, for all x ∈ R
N .

2.2 Problem formulation

Consider a group of N USVs, labeled as 1 to N . Let (xi, yi, ψiB) be the position and the yaw angle in a

north-east frame, and let ui, υi, ri be the surge, sway velocities and yaw rate in a body-fixed frame (see

Figure 1). According to [36], the dynamical model of the ith USV can be described as















ẋi = ui cosψiB − υi sinψiB,

ẏi = ui sinψiB + υi cosψiB ,

ψ̇iB = ri,

(1)

and














miuu̇i = fiu(ui, υi, ri) + τiu + τiuw,

miυ υ̇i = fiυ(ui, υi, ri) + τiυw,

mir ṙi = fir(ui, υi, ri) + τir + τirw,

(2)

wheremiu, miυ , andmir are inertial parameters; fiu(·), fiυ(·), and fir(·) are unknown functions including

Coriolis/centripetal force, and hydrodynamic damping effects; τiuw , τiυw, and τirw are ocean disturbances

caused by wind, waves and currents; τiu and τir are control inputs.

The kinematics (1) can be rewritten as















ẋi = Ui cosψiW ,

ẏi = Ui sinψiW ,

ψ̇iW = ri + βid,

(3)
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Figure 1 (Color online) A geometrical illustration of LOS guidance.

where Ui =
√

u2i + υ2i is the total velocity of the vehicle, and is assumed to satisfy Ui > 0; ψiW = ψiB+βi
is the course angle with βi = atan2(υi/ui) being an unknown sideslip angle, and βid = β̇i.

Consider a closed curve that can be parameterized by
{

xd(θ) = a cos θ + µb sin θ,

yd(θ) = b sin θ,
(4)

where θ is a time-independent variable; µ is the skew parameter; a is the semi-major axis length and b is

the semi-minor axis length. Setting a = b yields a circle and a > b yields an ellipse.

For any given θi, the inertial position of the geometric path is denoted by (xd(θi), yd(θi)). The path-

tangential angle is given by ψid = atan2(y′id, x
′
id), where x

′
id = ∂xd(θi)/∂θi and y

′
id = ∂yd(θi)/∂θi. Then,

for the ith USV located at (xi, yi), the along-track error xie and cross-track error yie can be expressed in

a path-tangential reference frame {P} as follows:

[

xie

yie

]

=

[

cosψid −sinψid

sinψid cosψid

]T [

xi − xd(θi)

yi − yd(θi)

]

. (5)

Taking the time derivative of xie, yie and using (3), it follows that
{

ẋie = Uicos(ψiW − ψid) + ψ̇idyie − u∗idθ̇i,

ẏie = Uisin(ψiW − ψid)− ψ̇idxie,
(6)

where u∗id =
√

x′2id + y′2id.

Using the fact that ui = Uicos(βi), we have u̇i = U̇icos(βi) + Uisin(βi)βid = U̇i − 2U̇isin(
βi
2 ) +

Uisin(βi)βid. Finally, the dynamics of xie, yie, ψiW , Ui, ri can be expressed as






































ẋie = Uicos(ψiW − ψid) + ψ̇idyie − u∗idθ̇i,

ẏie = Uisin(ψiW − ψid)− ψ̇idxie,

ψ̇iW = ri + βid,

miuU̇i = fiu(ui, υi, ri) + τiu + τiuw + 2miuU̇isin

(

βi
2

)

−miuUisin(βi)βid,

mir ṙi = fir(ui, υi, ri) + τir + τirw .

(7)

The control objective is to develop a coordinated path following controller for the N USVs with the

dynamics (1) and (2), such that the USVs follow the parameterized and closed path (xd(θ), yd(θ)) while

achieving a symmetric formation on the path.
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3 Controller design

3.1 Controller design

3.1.1 Step 1

In this step, the course angle ψiW and the surge speed Ui are treated as virtual controls to stabilize xie
and yie.

Define ψie = ψiW − αψi , ziu = Ui − Uir, qiu = Uir − αUi , z̃iu = ẑiu − ziu, where αψi and αUi are the

virtual controls of ψi and Ui, respectively; Uir is the estimation value of αUi ; ẑiu is the estimation of the

tracking error ziu. Then, we can write the first two equations of (7) as







ẋie = αUi + ziu + qiu − 2Uisin
2

(

ψiW − ψid
2

)

+ ψ̇idyie − u∗idθ̇i,

ẏie = Uisin(αψi − ψid) + ̺i − ψ̇idxie,

(8)

where ̺i = Uisin(ψiW − ψid)− Uisin(αψi − ψid).

The virtual guidance laws for the ith vehicle is proposed as follows:










αψi = ψid + arctan
(

− yie
∆i

)

,

αUi = −ki1xie/Πix + u∗idθ̇i + 2Uisin
2

(

ψiW − ψid
2

)

− ẑiu,
(9)

where ∆i is a look ahead distance; ki1 is a positive constant; Πix =
√

x2ie +∆2
ix with ∆ix being a positive

constant.

Substituting (9) into (8) and using the fact sin(arctan(− yie
∆i

)) = − yie
Πiy

with Πiy =
√

y2ie +∆2
i , it follows

that the dynamics of xie and yie become

{

ẋie = −ki1xie/Πix − z̃iu + qiu + ψ̇idyie,

ẏie = −Uiyie/Πiy + ̺i − ψ̇idxie.
(10)

3.1.2 Step 2

In this step, the yaw velocity ri is viewed as a control input to stabilize ψie.

Before starting, a reduced-order extended state observer is proposed to identify the uncertain kine-

matics βid,

{

ṗi = −ωipi − ω2
i ψiW − ωiri,

β̂id = ωiψiW + pi,
(11)

where pi is the auxiliary state of the observer; ωi is a design parameter.

To move on, the following assumption is made.

Assumption 1. There exists a positive constant β∗ such that |β̇id| 6 β∗.

Let β̃id = β̂id − βid, whose derivative with (7) and (11) can be expressed as

˙̃
βid = −ωiβ̃id − β̇id. (12)

Define zir = ri − rir , qir = rir − αri , z̃ir = ẑir − zir, where αri is a virtual control law; rir represents the

estimation of αri ; ẑir is the estimation of the tracking error zir. From (7), the dynamic of ψie can be

expressed as

ψ̇ie = αri + zir + qir + βid − α̇ψi . (13)

A virtual control law αri is given by

αri = −ki2ψie/Πiψ − β̂id + α̇ψi −
yie̺i
ψie

− ẑir, (14)
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where ki2 is a positive constant; Πiψ =
√

ψ2
ie +∆2

iψ with ∆iψ being a positive constant.

Note that ψie = (ψiW −ψid)−(αψi−ψid), then we have limψie→0
sin(ψiW−ψid)−sin(αψi−ψid)

ψie
= cos(αψi−

ψid), and limψie→0
̺i
ψie

= Uicos(αψi − ψid).

Substituting (14) into (13) , the dynamic of ψie becomes

ψ̇ie = −ki2ψie/Πiψ − yie̺i
ψie

− z̃ir + qir − β̃id. (15)

Introduce two new states Uir and rir as the desired values of Ui and ri, respectively. Let αUi and αri
pass through two first-order filters with time constants γiu and γir to obtain Uir and rir as follows:

U̇ir =
αUi − Uir

γiu
, ṙir =

αri − rir
γir

. (16)

The time derivatives of qiu and qir are given by

q̇iu = − qiu
γiu

− α̇iU , q̇ir = − qir
γir

− α̇ir . (17)

By integration of (17), it follows that

qiu(t) = e
− t
γiu qiu(0)−

∫ t

0

e
− t−τ
γiu α̇iU (τ)dτ, qir(t) = e

− t
γir qir(0)−

∫ t

0

e
− t−τ
γir α̇ir(τ)dτ, (18)

from which we can compute an upper bound for qiu and qir as

|qiu(t)| 6 e
− t
γiu |qiu(0)|+ γiuα

∗
iU , |qir(t)| 6 e

− t
γir |qir(0)|+ γirα

∗
ir, (19)

where |α̇iU |∞ 6 α∗
iU , |α̇ir|∞ 6 α∗

ir with α∗
iU and α∗

ir being positive constants. Since the energy to drive

the USV is limited and the derivatives of the reference path are bounded, the boundedness of α̇iU and

α̇ir are naturally satisfied for marine vehicles. Then, there exist positive constants q∗iu and q∗ir such that

|qiu(t)| 6 q∗iu and |qir(t)| 6 q∗ir.

3.1.3 Step 3

In this step, we aim to develop the kinetic controllers τiu and τir based on the first-order filters (16).

From (7), the time derivative of ziu and zir is given by

miużiu = f̄iu(·) + τiu, mir żir = f̄ir(·) + τir , (20)

where f̄iu(·) = fiu(ui, υi, ri)+τiuw+2miuU̇isin(
βi
2 )−miuUisin(βi)βid−miuU̇ir and f̄ir(·) = fir(ui, υi, ri)+

τirw −mir ṙir.

Note that the unknown functions f̄iu(·) and f̄ir(·) include both the state-related nonlinear uncertainty

and the external disturbances. Two neural networks are employed to approximate the unknown functions

f̄iu =WT
iuσiu(ξiu) + εiu, f̄ir =WT

irσir(ξir) + εir, (21)

where Wiu ∈ R
s and Wir ∈ R

s are the unknown time-varying matrixes satisfying ||Wiu|| 6 W ∗
iu and

||Wir || 6 W ∗
ir with W ∗

iu and W ∗
ir being positive constants; ξiu = [ziu(t), ziu(t − td), τiu, 1]

T ∈ R
4 and

ξir = [zir(t), zir(t − td), τir , 1]
T ∈ R

4 are the input matrixes; σiu(ξiu) : R
4 → R

s and σir(ξir) : R
4 → R

s

are known continuous basis vectors satisfying ||σiu|| 6 σ∗
u and ||σir || 6 σ∗

r with σ∗
u and σ∗

r being positive

constants; εiu and εir are the approximation errors satisfying |εiu| 6 ε∗iu and |εir| 6 ε∗ir with ε∗iu and ε∗ir
being positive constants.

A kinetic controller is constructed as follows:

τiu = −ki3ẑiu/Πu − ŴT
iuσiu(ξiu), τir = −ki4ẑir/Πr − ŴT

irσir(ξir), (22)
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Figure 2 (Color online) Communication topology.

where ki3 and ki4 are control gains; Πiu =
√

ẑ2iu +∆2
iu and Πir =

√

ẑ2ir +∆2
ir with ∆iu and ∆ir being

positive constants; Ŵiu and Ŵir are estimates of Wiu and Wir , respectively. ẑiu and ẑir are obtained

from the following dynamical compensators as

{

miu
˙̂ziu = −ki3ẑiu/Πu − (ki3 + ρiu)(ẑiu − ziu),

mir
˙̂zir = −ki4ẑir/Πr − (ki4 + ρir)(ẑir − zir),

(23)

where ρiu and ρir are positive constants.

The update laws for Ŵiu and Ŵir are designed as

˙̂
Wiu = −ΓiuProj(Ŵiu, σiu(ξiu)z̃iu),

˙̂
Wir = −ΓirProj(Ŵiu, σir(ξir)z̃ir), (24)

where Proj denotes the projection operator [37]; Γiu and Γir are positive constants. Due to the projection

operator, there exist positive constants �i1 and �i2 such that ||Ŵiu|| 6W ∗
iu+ �i1 and ||Ŵir || 6W ∗

ir+ �i2.

Let W̃iu = Ŵiu −Wiu and W̃ir = Ŵir −Wir . Then, the dynamics of z̃iu, z̃ir, W̃iu, and W̃ir can be

expressed as























miu
˙̃ziu = −(ki3 + ρiu)z̃iu + W̃T

iuσiu(ξiu)− εiu,

mir
˙̃zir = −(ki4 + ρir)z̃ir + W̃T

irσir(ξir)− εir,
˙̃Wiu = Γiuσiu(ξiu)z̃iu,
˙̃Wir = Γirσir(ξir)z̃ir.

(25)

Note that a salient feature of the proposed control law (22) is that the control torques are bounded

and the bounds are known as a priori to a designer. The upper bound of the torque input is as follows:

|τiu| 6 ki3 + δiuσ
∗
iu, |τir| 6 ki4 + δirσ

∗
ir , (26)

where δiu and δir are positive constants defined as δiu =W ∗
iu+ �i1, δir = W ∗

ir+ �i2, which exist due to

the use of projection operator.

3.1.4 Step 4

In this step, we aim to design an update law for θi such that a symmetric formation can be achieved.

The neighbor topology for the N USVs is defined according to their positions in circular clockwise

radial order around the closed curve, and the ith USV only received the information from the one

previous to it. For example, the communication topology among five vehicles is shown in Figure 2. Let

the communication topology among USVs be described by a graph G, and L be its Laplacian matrix.

Let θi represent the path variable of the ith vehicle, and its updating law is to be designed. θi+ denotes

the path variable of the ith vehicle’s neighoring vehicle, which is determined by the communication

network. A coordination error based on neighbors’ information is defined as

ei = θi+ − θi + ζi, (27)
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where

ζi =

{

0, if θi+ − θi > 0,

2π, if θi+ − θi < 0.
(28)

Then, an updating law for the path parameter θi is designed as

θ̇i = −κiei, (29)

where κi is a positive constant.

Letting e = [e1, . . . , eN ]
T and κ = diag{κi}, the error system in terms of xie, yie, ψie, ẑiu, ẑir and e

can be expressed by















































ẋie = −ki1xie/Πix − z̃iu + qiu + ψ̇idyie,

ẏie = −Uiyie/Πiy + ̺i − ψ̇idxie,

ψ̇ie = −ki2ψie/Πiψ − yie̺i
ψie

− z̃ir + qir − β̃id,

miu
˙̂ziu = −ki3ẑiu/Πiu − (ki3 + ρiu)z̃iu,

mir
˙̂zir = −ki4ẑir/Πir − (ki4 + ρir)z̃ir,

ė = −Lκe.

(30)

3.2 Stability analysis

The closed-loop error system can be regarded as a cascade system formed by two estimation error sub-

systems (the subsystem (12) and subsystem (25)) and the tracking error subsystem (30). We first state

the stability of the subsystem (12).

Lemma 2. The subsystem (12), viewed as a system with the states being β̃id, the input being β̇id, is

input-to-state stable (ISS).

Proof. Construct the following Lyapunov function:

Vi1 =
1

2
β̃2
id. (31)

Taking the time derivative of Vi1 along (12) results in

V̇i1 = −ωiβ̃2
id − β̃idβ̇id. (32)

Since |β̃id| > |β̇id|
ωiθi1

, we have

V̇i1 6 −ωi(1− θi1)β̃
2
id, (33)

where 0 < θi1 < 1. Then we conclude that the system (12) is ISS, and

|β̃id(t)| 6 max
{

̟i1(|β̃id(0)|, t), φβdi (|β̇id|)
}

, (34)

where ̟i1 is a KL function and φβdi (s) = (1/ωi1θi1)s.

The following lemma presents the stability of the subsystem (25).

Lemma 3. The subsystem (25), viewed as a system with the states being z̃iu, z̃ir, W̃iu and W̃ir , the

inputs being εiu, εir, W̃iu and W̃ir, is ISS.

Proof. Construct the following Lyapunov function:

Vi2 =
1

2
miuz̃

2
iu +

1

2
mir z̃

2
ir +

1

2
W̃T
iuΓ

−1
iu W̃iu +

1

2
W̃T
irΓ

−1
ir W̃ir, (35)
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whose time derivative along (25) satisfies

V̇i2 =− ET
i1Ki1Ei1 + hTi1Ei1

6− λmin(Ki1)||Ei1||2 − λmin(Ki1)||W̃iu||2 − λmin(Ki1)||W̃ir ||2

+ hTi1Ei1 + λmin(Ki1)||W̃iu||2 + λmin(Ki1)||W̃ir ||2

6− λmin(Ki1)||Ei2||2 + ||hi2||||Ei2||, (36)

where Ki1 = diag{ki3 + ̺iu, ki4 + ̺ir}, Ei1 = [z̃iu, z̃ir]
T, hi1 = [εiu, εir]

T, Ei2 = [z̃iu, z̃ir, ||W̃iu||, ||W̃ir ||]T,
hi2 = [|εiu|, |εir|, λmin(Ki1)||W̃iu||, λmin(Ki1)||W̃ir ||]T.

Since ||Ei2|| > |εiu|
θi2λmin(Ki1)

+ |εir|
θi2λmin(Ki1)

+ ||W̃iu||
θi2

+ ||W̃ir||
θi2

>
||hi2||

θi2λmin(Ki1)
, we have

V̇i2 6 −(1− θi2)λmin(Ki1)||Ei2||2, (37)

where 0 < θi2 < 1. It follows that the subsystem (25) is ISS, and

||Ei2(t)|| 6 max
{

̟i2(||Ei2(0)||, t), φεui (|εu|) + φεri (|εr|) + φWu

i (||Wu||) + φWr

i (||Wr ||)
}

, (38)

where ̟i2 is a KL function and φεui (s) =
√

λmax(Si1)
λmin(Si1)

s
θi2λmin(Ki1)

, φεri (s) =
√

λmax(Si1)
λmin(Si1)

s
θi2λmin(Ki1)

, φWu

i (s)

=
√

λmax(Si1)
λmin(Si1)

s
θi2
, φWr

i (s) =
√

λmax(Si1)
λmin(Si1)

s
θi2

with Si1 = diag{miu,mir,Γ
−1
iu ,Γ

−1
ir }. The boundedness of

W̃iu and W̃ir is guaranteed by projection operation [38], and their upper bounds are given by ||W̃iu|| 6
2W ∗

iu+ �i1 and ||W̃ir || 6 2W ∗
ir+ �i2.

Next, the stability of the tracking error subsystem (30) is stated as follows.

Lemma 4. The subsystem (30), viewed as a system with the states being xie, yie, ψie, ẑiu ẑir and ei,

the inputs being β̃id, z̃iu, z̃ir, qiu and qir, is ISS.

Proof. Construct the following Lyapunov function:

V3 =

N
∑

i=1

{

1

2
x2ie +

1

2
y2ie +

1

2
ψ2
ie +

1

2
miuẑ

2
iu +

1

2
mir ẑ

2
ir +

1

2
e2i

}

. (39)

Substituting (30) into the derivative of V3, we have

V̇3 =

N
∑

i=1

{

− ki1x
2
ie/Πix + xie(−z̃iu + qiu)− Uiy

2
ie/Πiy − ki2ψ

2
ie/Πiψ + ψie(−z̃ir + qir − β̃id)

− ki3ẑ
2
iu/Πiu − (ki3 + ρiu)ẑiuz̃iu − ki4ẑ

2
ir/Πir − (ki4 + ρir)ẑir z̃ir

}

− eTLκe

6

N
∑

i=1

{

− λmin(Ki2)||Ei3||2
√

||Ei3||2 +∆2
imax

+ ||hi3||||Ei3||
}

− eT
(

L+ LT

2

)

κe, (40)

where Ki2 = diag{ki1, Ui, ki2, ki3, ki4}, Ei3 = [xie, yie, ψie, ẑiu, ẑir]
T, ∆imax = max{∆ix,∆iy ,∆iψ,∆iu,

∆ir} and hi3 = [|z̃iu|+ |qiu|, |z̃ir|+ |qir|+ |β̃id|, (ki3 + ρiu)|z̃iu|, (ki4 + ρir)|z̃ir|]T.
From Lemma 1, we have eT(L+ LT)e > λ∗||e − 1N1TN

N
(e)||2. Since 1N1TN

N
(e) = 2π

N
1N , it follows that

V̇3 6

N
∑

i=1

{

− λmin(Ki2)||Ei3||2
√

||Ei3||2 +∆2
imax

+ ||hi3||||Ei3||
}

− λmin(κ)

2
λ∗||z||2,

6

N
∑

i=1

{

− λmin(Ki3)||Ei4||2
√

||Ei4||2 +∆2
imax

+ ||hi3||||Ei4||
}

, (41)

where zi = ei − 2π
N
1N ; z = [z1, . . . , zN ]; Ki3 = diag{ki1, Ui, ki2, ki3, ki4, λmin(κ)}; Ei4 = [xie, yie, ψie, ẑiu,

ẑir, zi]
T.
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Since ||Ei4||√
||Ei4||2+∆2

imax

>
|qiu|

θi3λmin(Ki3)
+ |qir|

θi3λmin(Ki3)
+ |β̃id|

θi3λmin(Ki3)
+ (1+ki3+̺iu)|z̃iu|

θi3λmin(Ki3)
+ (1+ki4+̺ir)|z̃ir|

θi3λmin(Ki3)
>

||hi3||
θi3λmin(Ki3)

, we have

V̇3 6

N
∑

i=1

{

− (1− θi3)λmin(Ki3)||Ei4||2
√

||Ei4||2 +∆2
imax

}

, (42)

where 0 < θi3 < 1. Then the error subsystem (30) is ISS, and

||Ei4(t)|| 6 max
{

̟i3 (||Ei4(0)||, t) , φqui (|qiu|) + φqri (|qir |) + φβ̃di

(

|β̃id|
)

+ φz̃ui (|z̃iu|) + φz̃ri (|z̃ir|)
}

, (43)

where̟3 is aKL function and φqui (s) = µ−1
i (

√

λmax(S2)
λmin(S2)

s
θi3λmin(Ki3)

), φqri (s) = µ−1
i (

√

λmax(S2)
λmin(S2)

s
θi3λmin(Ki3)

),

φβ̃di (s) = µ−1
i (

√

λmax(S2)
λmin(S2)

s
θi3λmin(Ki3)

), φz̃ui (s) = µ−1
i ((1+k3 + ̺u)

√

λmax(S2)
λmin(S2)

s
θi3λmin(Ki3)

), φz̃ri (s) = µ−1
i ((1+

k4 + ̺r)
√

λmax(S2)
λmin(S2)

s
θi3λmin(Ki3)

) with µi(s) =
s2√

s2+∆2

imax

and Si2 = diag{1,miu,mir}.
As a consequence, the following theorem presents the stability of the cascade of the subsystems (12),

(25) and (30).

Theorem 1. Under Assumption 1, the cascade system formed by the subsystem (12), subsystem (25)

and subsystem (30) is ISS. Besides, all error signals in the closed-loop system are uniformly ultimately

bounded (UUB).

Proof. Lemmas 1–3 have shown that: subsystem (12) with state β̃id and exogenous input β̇id is ISS;

subsystem (25) with states z̃iu, z̃ir, W̃iu, W̃ir and exogenous inputs εiu, εir, W̃iu, W̃ir is ISS; subsystem

(30) with states xie, yie, ψie, ẑiu, ẑir, ei, and exogenous inputs β̃id, z̃iu, z̃ir, qiu, qir is ISS; by Lemma

C.4 in [39], it follows that the complete error systems (12), (25) and (30) with states β̃id, z̃iu, z̃ir, W̃iu,

W̃ir , xie, yie, ψie, ẑiu, ẑir, ei and exogenous inputs β̇id, εiu, εir, W̃iu, W̃ir , qiu, qir are ISS, i.e., there exist

class KL function ̟i and class K function φi, such that

||Ei(t)|| 6 ̟i(||Ei(0)||, t) + φi

(

||[β̇id, εiu, εir, W̃iu, W̃ir, qiu, qir]||
)

, (44)

where Ei = [β̃id, z̃iu, z̃ir, W̃iu, W̃ir, xie, yie, ψie, ẑiu, ẑir, ei]. Note that β̇id, εiu, εir, W̃iu, W̃ir, qiu and qir
are bounded by β∗, ε∗iu, ε

∗
ir, 2W ∗

iu+ �i1, 2W ∗
ir+ �i2, q

∗
iu and q∗ir , respectively. Then, the error signals

β̃id, z̃iu, z̃ir, W̃iu, W̃ir , xie, yie, ψie, ẑiu, ẑir, ei are all bounded.

4 Simulation result

Consider a networked system consisting of five USVs with the information exchange topology given in

Figure 3. Suppose each vehicle is governed by a model ship CyberShip II [40], whose inertial parameters

are given as mu = 25.8, mv = 33.8 and mr = 2.76. The model uncertainties are given as fu(u, v, r) =

−33.8vr − 1.0115r2 + 0.72 + 1.33|u| + 5.87u2 + 0.0279uv2 + 0.0342v2r, fv(u, v, r) = 25.8u + 0.8896 +

36.5|v|+ 0.805|r| and fr(u, v, r) = −33.8uv − 1.115ur − 25.8uv + 1.90− 0.08|v|+ 0.75|r|+ 0.0156ur2 +

0.0278urv3. Without loss of generality, environmental disturbances are introduced into the model: τuw =

−0.2 cos(1.0t) cos(1.5t), τvw = 0.01 sin(0.1t) and τrw = −0.3 sin(2.0t) cos(2.3t). A reference closed curve

is given by xd(θ) = 50 cos θ, yd(θ) = 60 sin θ. Select the control parameters as follows: ∆i = 5, ki1 = 0.2,

∆ix = 2, ki2 = 0.2, ∆iy = 2, ki3 = 1, ∆iu = 0.8, ki4 = 0.7, ∆ir = 0.8, ρiu = 25, ρir = 25, γiu = 1,

γir = 1, Γiu = 100, Γir = 100, κi = 0.005.

Simulation results are shown in Figures 4–7. Figure 4 shows that a symmetric formation formed by

the five vehicles along a closed curve can be reached. As zi is bounded, ei will nearly converge to 2π/N

with N = 5 herein and from (29), the parameter updating velocity θ̇i in steady state will be κi(2π/N).

As a result, the surge speed for each USV in steady state is κiu
∗
id(2π/N). The along-track error xie and
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Figure 5 (Color online) Tracking errors. (a) Along-track errors; (b) cross-track errors.

Figure 6 (Color online) The estimation performance of neural networks. (a) The estimation of f̄1u (barf1u = f̄1u);

(b) the estimation of f̄1r (barf1r = f̄1r).

cross-track error yie are plotted in Figure 5. It can be seen that the tracking errors are bounded to a small

neighborhood of the origin. The estimation performance of neural networks is shown in Figure 6, where

it demonstrates that the uncertainties are efficiently compensated by the proposed neural networks.

To better show the efficiency of the proposed saturated coordinated controller (9), (14), (16), (22), (24),

(29), comparison study with the predictor-based neural control method [41] is made. The coordinated
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Figure 7 (Color online) Comparisons of control inputs using different methods. (a) Control inputs of the control method

in [41]; (b) control inputs of the proposed method.
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controller using the predictor-based neural control method is given by (16), (24), (29) and















































αψi = ψid + arctan
(

− yie
∆i

)

,

αUi = −ki1xie + u∗idθ̇i + 2Uisin
2

(

ψiW − ψid
2

)

− ẑiu,

αri = −ki2ψie − β̂id + α̇ψi −
yie̺i
ψie

− ẑir,

τiu = −ki3ẑiu − ŴT
iuσiu(ξiu),

τir = −ki4ẑir − ŴT
irσir(ξir).

(45)

Figure 7 depicts the comparison of control inputs using the predictor-based neural control method

in [41] and the proposed method. Figure 7(a) shows that the control inputs of the predictor-based neural

control may exceed the desired bound in transient process. This may be not implementable by actuators

with limited energy. By contrast, Figure 7(b) verifies that control inputs of the proposed controller are

bounded within 2 N and 1.5 N ·m. The comparison of tracking errors using the predictor-based neural

control method in [41] and the proposed method is shown in Figure 8. It can be observed that in the

steady state, the tracking errors of both methods are almost the same; in the transient state, the tracking

errors of the method in [41] are a little smaller than those of the proposed method. However, compared

with the method given in [41], the proposed method is able to obtain acceptable performance without

violating the input constraints.
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5 Conclusion

This paper addressed the coordinated control problem of multiple underactuated USVs over a closed

curve while holding a symmetric formation. The kinematic control law is designed based on a reduced-

order extended state observer, which is utilized to compensate for the effort of the sideslip. The bounded

kinetic control law is developed by combining the saturated function, the projection operator, and the

dynamic surface control design method. The parameter cyclic pursuit approach is proposed to guarantee

that the vehicles are evenly spaced over the closed curve. The input-to-state stability of the closed-

loop system is analyzed via cascade theory. Comparison studies are given to illustrate the efficacy of the

proposed method. We discuss some possible further works. First, time delays are pervasive in engineering

systems, and it is desirable to investigate the coordinated control problem of USVs in the presence of

time delays. Second, it will be interesting to implement the proposed coordinated algorithm in a real

world multi-vehicle system.
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