
SCIENCE CHINA
Information Sciences

July 2017, Vol. 60 070202:1–070202:11

doi: 10.1007/s11432-016-9125-2

c© Science China Press and Springer-Verlag Berlin Heidelberg 2017 info.scichina.com link.springer.com

. RESEARCH PAPER .
Special Focus on Formation Control of Unmanned Systems

Formation control with disturbance rejection for a

class of Lipschitz nonlinear systems

Chunyan WANG1,4, Zongyu ZUO2, Qinghai GONG3,4 & Zhengtao DING1,4*

1School of Electrical and Electronic Engineering, University of Manchester, Sackville Street Building,

Manchester M13 9PL, UK;
2The Seventh Research Division, and Science and Technology on Aircraft Control Laboratory, Beihang University,

Beijing 100191, China;
3Beijing Aerospace Automatic Control Institute, P.O.Box 142-402, Beijing 100854, China;

4Sino-British Joint Advanced Control System Technology Laboratory, James Lighthill Building,

Manchester M13 9PL, UK

Received April 26, 2017; accepted June 8, 2017; published online June 13, 2017

Abstract In this paper, we consider the leader-follower formation control problem for general multi-agent

systems with Lipschitz nonlinearity and unknown disturbances. To deal with the disturbances, a disturbance

observer-based control strategy is developed for each follower. Then, a time-varying formation protocol is

proposed based on the relative state of the neighbouring agents and sufficient conditions for global stability

of the formation control are identified using Lyapunov method in the time domain. The proposed strategy

and analysis guarantee that all signals in the closed-loop dynamics are uniformly ultimately bounded and the

formation tracking errors converge to an arbitrarily small residual set. Finally, the validity of the proposed

controller is demonstrated through a numerical example.
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1 Introduction

In recent years, cooperative control of a group of agents has been extensively researched due to its

high potential in many applications, such as cooperative monitoring, surveillance, rural search and res-

cue. Different strategies, including centralized, decentralized, and distributed ones, have been used for

controlling such systems [1]. Compared with centralized systems, multi-agent systems with distributed

control strategy have preferred flexibility and robustness. By using local neighbor-to-neighbor interac-

tion, distributed multi-agent systems can reduce the signal communication and computational workload

efficiently. Consensus control is one of the most important topics in distributed cooperative control and

many theoretic and practical issues have been analysed and reported in literatures [1–7], to cite a few.

Theoretical explanation is given in [2] to prove that the nearest neighbour rule can force the agents to stay

*Corresponding author (email: zhengtao.ding@manchester.ac.uk)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-016-9125-2&domain=pdf
https://doi.org/10.1007/s11432-016-9125-2
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-016-9125-2


Wang C Y, et al. Sci China Inf Sci July 2017 Vol. 60 070202:2

together and move in the same direction without centralized coordination. A general consensus frame-

work is given in [3] for a group agents with integrator-type dynamics. Since then, consensus problems

have been intensively studied in different directions in literatures [8–14]. The results for consensus control

can be divided into leader-follower type consensus (also named consensus tracking), which has a reference

consensus value, and leaderless consensus, where the consensus value is depended on the connections and

initial conditions of the agents.

Formation control is one of the most important applications in cooperative control. Different con-

trol strategies have been used for formation control, such as actual leader [15], virtual leader [16], be-

havioural [17], etc. A survey on various classifications of formation control is given in [18]. Consensus

based formation control strategies have also been investigated [19–25]. The role of Laplacian eigenval-

ues in determining formation stability is investigated in [19]. In [20], it is pointed out that consensus

based formation control strategies are more general and contain many existing actual/virtual leader and

behavioural approaches as special cases. Most of the early results on formation control focus on simple

agent dynamics such as first or second-order integrator dynamics. In reality, some practical physical

systems cannot be feedback linearised as first or second-order dynamical model. Formation control for a

class of high-order linear multi-agent systems with time delays are studied in [22]. The applications of

formation control in various areas could be found in [23–25]. It is worth noting that only linear dynamics

are considered in the above results.

In many scenarios, external disturbances are unavoidable and will degrade the performance of the

designed systems. In extreme cases, external disturbances will induce the loss of stability of the closed-

loop systems. Many control methods have been used to deal with different external disturbances. For

systems with bounded external disturbances, H∞ control method is reliable and has been extensively

investigated in literatures [26–28]. For some periodic disturbances which have inherent characteristics such

as harmonics and unknown constant load, disturbance observer can be designed based on the state/output

information and then the disturbance estimate can be used in the design of control input to cancel the

disturbances directly [29]. Typical results for disturbance observer design may be found in [29–34].

Output regulation design is also an efficient way to deal with deterministic disturbances. Many results

have been published in this area for single systems [35, 36] and multi-agent systems [37–40].

In this paper, we consider the time-varying formation problem for Lipschitz nonlinear multi-agent

systems subject to external disturbances. Compared with the previous work, the key features of this

paper are as follows: (i) the time-varying formation problem is considered for general systems with

directed topology; (ii) external disturbances with unknown amplitudes and phases are considered in the

formation control design; (iii) the influence of the Lipschitz nonlinearity is taken into account in the

stability analysis. A disturbance observer-based control strategy is developed and sufficient conditions

for global stability of the formation problem are derived with Lyapunov method. The proposed strategy

and analysis guarantee that the formation tracking errors are uniformly ultimately bounded for any initial

conditions. A numerical example is provided to demonstrate the proposed design.

The remainder of this paper is organized as follows. In Section 2, the problem formulation is introduced.

Section 3 presents some notations and preliminary results. Section 4 presents the main results on the

formation control and disturbance rejection. Simulation results are given in Section 5. Section 6 concludes

the paper.

2 Problem statement

Consider a group of N + 1 agents, consisting of N followers and one leader indexed by 0:

ẋi(t) = Axi(t) +Bui(t) + φ(xi(t)) +BFωi(t), (1)

where for agent i, i = 0, 1, . . . , N , xi ∈ R
n is the state, ui ∈ R

m is the control input, A ∈ R
n×n, B ∈ R

n×m

and F ∈ R
m×s are constant matrices with (A,B) being controllable, the unknown nonlinear function
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φ : Rn → R
n, φ(0) = 0, is assumed to satisfy the Lipschitz condition as

‖φ(α) − φ(β)‖ 6 γ‖α− β‖, ∀α, β ∈ R
n,

where γ > 0 is the Lipschitz constant, and ωi ∈ R
s is a disturbance that is generated by a linear exogenous

system

ω̇i(t) = Sωi(t), (2)

with S ∈ R
s×s is known and (S,BF ) is observable. For the leader-follower structure, it is reasonable to

assume that the leader has no neighbours, and the leader’s control input is zero, i.e. u0 = 0, ω0 = 0.

The objective of this paper is to design a distributed formation protocol for each follower, such that

the formation tracking errors ei(t) = xi(t)−di(t)−x0(t) are uniformly ultimately bounded for any initial

condition xi(0), i = 0, 1, . . . , N , where di(t) is a specified time-varying formation pattern between the

leader and the ith follower. For the convenience, we define d0(t) ≡ 0, e0(t) ≡ 0.

Assumption 1. The eigenvalues of S are distinct, and lie on the imaginary axis.

Assumption 2. The specified formation vector d(t) =
[

dT1 (t), d
T
2 (t), . . . , d

T
N (t)

]T
is bounded with

di(t), ∀ i = 1, 2, . . . , N continuously differentiable, i.e., ‖d(t)‖ 6 ǫ0, where ǫ0 is a positive constant.

Assumption 3. The ith agent can obtain its neighbors’ formation information via the inter-agent

communication.

Remark 1. Assumption 1 is commonly used in output rejection and disturbance rejection design

[29,35]. System (2) can represent unknown constant disturbances, or sinusoidal functions with unknown

amplitudes and phases, or some other functions which can be approximated by sinusoidal functions with

a bias. Assumption 3 does not imply loss of generality because there are always communications between

the ith agent and its neighbors.

3 Preliminary results

3.1 Notations

In this paper, let IN and 1 denote the identity matrix of dimension N and a column vector with all entries

equal to one, respectively. Let Rn×m represent a set of n×m real matrices, and 0n×m denote the matrix

with all zeros. Given a real vector x ∈ R
n, ‖x‖ is the Euclidean norm of x. For a matrix P , λmin(P )

and λmax(P ) represent its minimum and maximum eigenvalue, respectively. Given two matrices X and

Y , X⊗Y denotes the Kronecker product of the matrices. diag(Ai) denotes a block-diagonal matrix with

Ai, i = 1, . . . , N, on the diagonal entry. Given two symmetric real matrices A and B, A > B denotes that

A−B is positive definite.

3.2 Graph theory

The communication connections among agents are described by a graph G (V , E), where V represent the

agents and E represent the connections between the agents. In the directed graph, (i, j) ∈ E represents the

communication from the ith agent to the jth agent, but not vice versa. In the undirected graph, (i, j) ∈ E

means that the information can be exchanged between the ith agent and jth agent. For N + 1 agents,

the associated adjacency matrix of G is defined as A = [aij ](N+1)×(N+1) ∈ R
(N+1)×(N+1). If there is a

connection from agent j to agent i, aij = 1; otherwise aij = 0. The Laplacian matrix L = [lij ](N+1)×(N+1)

associated with A is defined by lii =
∑N+1

j=1 aij and lij = −aij when i 6= j.

Assumption 4. The communication topology G contains a directed spanning tree with the leader as

the root.

With Assumption 4, we know that the Laplacian matrix L of the communication topology G has simple

zero eigenvalue with right eigenvector 1 = [1, 1, . . . , 1]
T
and all the other eigenvalues of L have positive
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real parts [7]. Since the leader has no neighbours, the Laplacian matrix L has the following structure

L =

[

0 01×N

L2 L1

]

,

where L1 ∈ R
N×N and L2 ∈ R

N×1. It can be seen that L1 is a nonsingular M-matrix. We also have the

following result for L1:

Lemma 1 ([23]). For the nonsingular M-matrix L1, there exists a positive diagonal matrix Q such that

QL1 + LT
1 Q > ρ0I (3)

for some positive constant ρ0. Q can be constructed by letting Q = diag{q1, q2, . . . , qN}, where q =

[q1, q2, . . . , qN ]T =
(

LT
1

)−1
[1, 1, . . . , 1]T.

3.3 Preliminary results

Lemma 2 ([41]). For a given continuous system ż = y(z, t), y(·) is assumed locally Lipschitz in z. If

there exists a differentiable function V (z, t) > 0 such that

β1(‖z‖) 6 V (z, t) 6 β2(‖z‖),

V̇ (z, t) 6 −β3(‖z‖) + ι,

where ι > 0 is a constant, β1, β2 belong to class K∞ functions, and β3 belongs to class K function. The

solution z(t) of the system ż = y(z, t) is uniformly ultimately bounded.

Lemma 3 (Young’s Inequality). For nonnegative real numbers a, b, if p, q are real numbers that satisfy
1
p
+ 1

q
= 1, then ab 6 ap

p
+ bq

q
.

Lemma 4 (Schur Complement Lemma). For any constant symmetric matrix

S =

[

S11 S12

S12 S22

]

,

the following statements are equivalent:

(1) S < 0,

(2) S11 < 0, S22 − ST
12S

−1
11 S12 < 0,

(3) S22 < 0, S11 − S12S
−1
22 ST

12 < 0.

4 Main results

With the formation tracking errors ei(t) = xi(t)− di(t)− x0(t), we have

ėi(t) = Aei(t) +Bui(t) + εi(t) +BFωi(t) +Adi(t)− ḋi(t), (4)

where εi(t) = φ(xi)−φ(x0). Define e(t) = [eT1 (t), e
T
2 (t), . . . , e

T
N (t)]T. Then, the leader-follower formation

of system (1) is achieved when limt→∞ e(t) = 0, as e = 0 implies that x0 = x1 − d1 = · · · = xN − dN .

Therefore, the formation problem of system (1) is transformed into the regulator problem of system (4).

With the relative state of the neighbouring agent

zi(t) =
N
∑

j=0

aij [(xi(t)− di(t))− (xj(t)− dj(t))]

=

N
∑

j=0

aij [ei(t)− ej(t)]



Wang C Y, et al. Sci China Inf Sci July 2017 Vol. 60 070202:5

=

N
∑

j=1

aij [ei(t)− ej(t)] + ai0ei(t)

=

N
∑

j=1

lijej(t), (5)

a formation controller is proposed as

ui(t) = cKzi + vi(t)− Fω̂i,

where c > 2qmax/ρ0 is a positive real constant with qmax = max{q1, q2, . . . , qN}, vi(t) ∈ R
m is the external

command input, ω̂i(t) is generated by the following disturbance observer:

{

ω̂i = ηi + Lzi,

η̇i = Sηi + (SL− LA) zi − cLBK
∑N

j=1 lijzj,
(6)

where K ∈ R
m×n and L ∈ R

s×n are the control and the observer gain to be designed later.

By (5), the closed-loop error dynamics of the ith agent can be obtained as

ėi(t) =Aei(t) + cBK

N
∑

j=1

lijej(t) + εi(t)−BFω̃i(t) +Bvi(t) +Adi(t)− ḋi(t), (7)

where ω̃i(t) = ω̂i − ωi. Therefore, the formation of systems (1) is achieved if the following systems

ėi(t) =Aei(t) + cBK
N
∑

j=1

lijej(t) + εi(t)−BFω̃i(t) (8)

are asymptotically stable, and

lim
t→∞

(

Bvi(t) +Adi(t)− ḋi(t)
)

= 0, (9)

∀ i = 1, 2, . . . , N .

With the controller and observer shown in (5) and (6), K and L are chosen as

K = −BTP, (10)

L = ρ1M
−1(BF )T, (11)

where P > 0, M > 0 are constant matrices to be designed, ρ1 is a scaler.

Theorem 1. For systems (8), the robust stability problem with disturbance rejection can be solved by

the control algorithm (5) with (10) and (11) if there exist positive definite matrices P, M and constants

ρ1, κ > 0, such that

[

AW +WAT − 2BBT + 2κI W

W − qmin

2γ2r1+κ1

]

< 0, (12)

MS + STM − r2F
TBTBF + r3I < 0 (13)

are satisfied with W = P−1, r1 = qmax(ρ1σ
2
max(L1) + 1)/κ, r2 = 2ρ1/c− qmax/κq

−1
min, qmin = min{q1, q2,

. . . , qN}, qmax = max{q1, q2, . . . , qN}, κ1 is any positive number.

Proof. Systems (8) can be written in the compact form as

ė(t) =(IN ⊗ A)e(t) + c(L1 ⊗BK)e(t) + ε(t)− (IN ⊗BF )ω̃(t), (14)
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where ε =
[

εT1 , ε
T
2 , . . . , ε

T
N

]T
, ω̃ =

[

ω̃T
1 , ω̃

T
2 , . . . , ω̃

T
N

]T
. For disturbance observer error ω̃i(t), with condition

(9), a direct differentiation gives that

˙̃ωi(t) = η̇i(t) + L

N
∑

j=1

lij ėj(t)− Sωi(t)

= Sω̃i(t)− LBF

N
∑

j=1

lijω̃j(t) + L

N
∑

j=1

lijεj , (15)

which can be written in the compact form as

˙̃ω(t) = (IN ⊗ S)ω̃(t)− (L1 ⊗ LBF )ω̃(t) + (L1 ⊗ L)ε. (16)

Consider the Lyapunov function candidate

V (t) = eT(t) (Q⊗ P ) e(t) + ω̃T(t) (Q⊗M) ω̃(t). (17)

The derivative of V (t) along the trajectory of (14) and (15) can be obtained as

V̇ (t) = eT(t)
(

Q⊗
(

PA+ATP
)

− c
(

QL1 + LT
1 Q

)

⊗ PBBTP
)

e(t) + 2

N
∑

i=2

qie
T
i (t)P (εi −BFω̃i(t))

+ ω̃T(t)
(

Q⊗
(

MS + STM
)

− ρ1(QL1 + LT
1 Q)⊗ FTBTBF

)

ω̃(t)− 2ρ1ω̃
T(t)(QL1 ⊗ (BF )T)ε

6 eT(t)
(

Q⊗
(

PA+ATP
)

− cρ0I ⊗ PBBTP
)

e(t) + 2

N
∑

i=2

qie
T
i (t)P (εi −BFω̃i(t))

+ ω̃T(t)
(

Q⊗
(

MS + STM
)

− ρ1ρ0I ⊗ FTBTBF
)

ω̃(t)− 2ρ1ω̃
T(t)(QL1 ⊗ (BF )T)ε

6 eT(t)
(

Q⊗
(

PA+ATP+2κPP
)

−cρ0I ⊗ PBBTP
)

e(t) +
qmax

κ
‖ε‖2 − 2ρ1ω̃

T(t)(QL1 ⊗ (BF )T)ε

+ ω̃T(t)

(

Q⊗

(

MS + STM +
qmax

κqmin
FTBTBF

)

− ρ1ρ0I ⊗ FTBTBF

)

ω̃(t)

6 eT(t)
(

Q⊗
(

PA+ATP + 2κPP − 2PBBTP
))

e(t) + r1 ‖ε‖
2

+ ω̃T(t)
(

Q⊗
(

MS + STM − r2F
TBTBF + r3I

))

ω̃(t), (18)

where r1 = qmax(ρ1σ
2
max(L1) + 1)/κ, r2 = 2ρ1/c− qmax/κq

−1
min, r3 = qmaxρ1κλmax(F

TBTBF )/qmin.

The nonlinear term ε(x) in the new system (7) is related to state x(t). For the formation stability

analysis, a bound of this term needs to be found in terms of the transformed state e(t).

Lemma 5. For the nonlinear function ε(x) in (7), a bound can be established in terms of the state

e(t) as

‖ε‖2 6 2γ2(‖e(t)‖
2
+ ‖d(t)‖

2
). (19)

Proof. Based on the state transformation ei(t) = xi(t)− di(t)− x0(t), and εi = φ(xi)− φ(x0), we have

‖εi‖ = ‖φ(xi)− φ(x0)‖ 6 γ ‖xi − x0‖ . (20)

It then follows that

‖εi‖ 6 γ ‖ei(t) + di(t)‖ 6 γ (‖ei(t)‖ + ‖di(t)‖) , (21)

and

‖ε‖2 =
N
∑

i=1

‖εi‖
2
6 2γ2

N
∑

i=1

(

‖ei(t)‖
2 + ‖di(t)‖

2
)

= 2γ2
(

‖e(t)‖2 + ‖d(t)‖2
)

, (22)

where we have used
∑N

k=1 ‖ei‖
2
= ‖e‖

2
and the inequality (a + b)2 6 2(a2 + b2). This completes the

proof.
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From (18) and (19), we obtain that

V̇ (t) 6 eT(t)
(

Q⊗
(

PA+ATP + 2κPP − 2PBBTP + 2γ2r1/qminI
))

e(t)

+ ω̃T(t)
(

Q⊗
(

MS + STM − r2F
TBTBF + r3I

))

ω̃(t) + 2γ2r1 ‖d(t)‖
2

6 eT(t) (Q⊗ P1) e(t) + ω̃T(t) (Q⊗M1) ω̃(t) + 2γ2r1 ‖d(t)‖
2
, (23)

where

P1 =PA+ATP + 2κPP − 2PBBTP + 2γ2r1/qminI, (24)

M1 =MS + STM − r2F
TBTBF + r3I. (25)

With (24) and (25), it can be shown by Schur Complement that conditions (12) and (13) are respectively

equivalent to P1 < −κ1/qminI and M1 < −κ1/qminI, which further implies from (23) that V̇ (t) <

−κ1(‖e(t)‖
2+ ‖ω̃(t)‖2)+2γ2r1‖d(t)‖

2. Since d(t) is bounded as mentioned in Assumption 2, the positive

term could be very small by choosing appropriate free scaler κ. By Lemma 2, we have that the tracking

error e(t) is uniformly ultimately bounded and the disturbance rejection is achieved.

Remark 2. The state transformation can only apply to the linear parts, and the nonlinear functions

remain functions of the original state, which leads to extra complexity in the stability analysis. Due to

the nonlinear terms, the formation tracking errors can only be uniformly ultimately bounded instead of

converging to zero. If the Lipschitz constant γ ≡ 0, the formation tracking errors will converge to zero

and the systems (8) will asymptotically stable at the origin. Besides, for the disturbance observer (6),

the information of neighbors’ neighbors is required due to the non-identical disturbances with unknown

amplitudes and phases.

Remark 3. The formation feasibility condition (9) can be checked in a way similar to the linear mult-

agent systems counterpart in [22]. Let B̂ = [B̄T, B̃T]T be a nonsingular matrix with B̄ ∈ R
m×n and

B̃ ∈ R
(n−m)×n such that B̄B = I and B̃B = 0. First step is to check the feasibility of the following

condition

lim
t→∞

(

B̃Adi(t)− B̃ḋi(t)
)

= 0, ∀ i = 1, 2, . . . , N. (26)

If (26) is satisfied, then the external command input vi(t) is chosen as vi(t) = −B̄Adi(t) + B̄ḋi(t) to

guarantee that

lim
t→∞

(

B̄Adi(t) + vi(t)− B̄ḋi(t)
)

= 0, ∀ i = 1, 2, . . . , N. (27)

With (26) and (27), the condition (9) is guaranteed. The proof is given by Theorem 3 in [22].

Remark 4. Note that qmin, qmax, r1, r2, and r3 can be easily calculated from the Laplacian matrix of any

given network connection. It is worth mentioning that the Laplacian matrix L is a global information. In

this sense, the formation control protocols proposed in this paper are not fully distributed. The results in

this paper can be extended to the fully distributed cases by following the procedures shown in [29,41–43].

5 Simulation

In this section, we will demonstrate the formation control method with disturbance rejection under the

leader-follower setup of five subsystems subject to the connection topology specified by the following

adjacency matrix

A =



















0 0 0 0 0

1 0 0 1 0

0 1 0 0 0

0 0 1 0 1

1 1 0 0 0



















.
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1                         2                                   3

5                                  4

Figure 1 (Color online) Communication topology.

The communication graph is shown in Figure 1, from which it shows that only the followers indexed

by 1 and 4 can get access to the leader and the communication topology contains a directed spanning

tree. The dynamics of the ith agent are described by (1), with

A =

[

−1 1

0 0

]

, B =

[

0

1

]

, φ(xi) = g

[

sin(xi1(t))

sin(xi2(t))

]

.

In this scenario, it is supposed that external disturbances exist in the control channel. The external

disturbance wi(t) is generated by (2) with

S =

[

0 −0.1

0.1 0

]

, F =
[

1 1
]

,

which represents an external periodic disturbance with known frequency but without any information

of its magnitude and phase. The Lipschitz constant is γ = g = 0.03. It can be checked that both

Assumptions 1 and 4 are satisfied. The Laplacian matrix L1 associated with A is that

L1 =













2 0 −1 0

−1 1 0 0

0 −1 2 −1

−1 0 0 2













.

Following Lemma 1, we obtain that Q = diag{0.3846 0.3571 0.5556 0.7143} and ρ0 = 0.2573. With

qmax = 0.7143 and 2qmax/ρ0 = 5.5523, we set c = 6 in the control input (5).

The initial states of agents are chosen randomly within [−20, 20]. With the conditions (12) and (13),

feasible solutions of the feedback gain K and the observer gain L are found to be

K =
[

0.0333 −0.6113
]

, L =

[

0 21.6926

0 1.6114

]

.

The formation is defined as follows:

di(t) =

[

sin(t+ (i−1)π
2 )− cos(t+ (i−1)π

2 )

2 sin(t+ (i−1)π
2 )

]

,

which presents a periodic time-varying formation and keep rotating around the leader.

Simulation study has been carried out with different disturbances for the followers. The trajectories of

five agents are shown as Figure 2. Figure 3 shows the trajectory snapshots with t = 0 s, 5 s, 10 s, 15 s, 20 s.

It can be seen that the time-varying formation is achieved with predefined formation reference. The for-

mation tracking errors between the four followers and the leader are shown in Figures 4 and 5. The

disturbance observation errors are shown in Figure 6. From the results shown in these figures, we can see

that all the five agents reach formation although they are subject to different disturbances. Therefore,

the conditions specified in Theorem 1 and (26)–(27) are sufficient to guarantee the formation disturbance

rejection.
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Figure 6 (Color online) The estimation errors of the disturbance observers.
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6 Conclusion

In this paper, the formation control problem for a class of Lipschitz nonlinear multi-agent systems with

external disturbances has been addressed. Disturbance observer and time-varying formation protocol are

proposed for each follower based on the relative state and formation information of the neighbouring

agents. The influence of the Lipschitz nonlinearity has been taken into account in the formation stability

analysis and sufficient conditions for global stability of the formation control are identified using Lya-

punov method in the time domain. The proposed strategy and analysis guarantee that all signals in the

closed-loop dynamics are uniformly ultimately bounded and the formation tracking errors converge to an

arbitrarily small residual set. Finally, the effectiveness of the theoretical results has been illustrated by a

numerical example.
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