
SCIENCE CHINA
Information Sciences

June 2017, Vol. 60 068102:1–068102:3

doi: 10.1007/s11432-015-0594-2

c© Science China Press and Springer-Verlag Berlin Heidelberg 2017 info.scichina.com link.springer.com

. HIGHLIGHT .

Dynamic strategy based parallel ant colony

optimization on GPUs for TSPs

Yi ZHOU1,2, Fazhi HE1* & Yimin QIU3

1State Key Laboratory of Software Engineering, School of Computer Science, Wuhan University, Wuhan 430072, China;
2School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430081, China;

3School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

Received August 13, 2016; accepted September 12, 2016; published online February 27, 2017

Citation Zhou Y, He F Z, Qiu Y M. Dynamic strategy based parallel ant colony optimization on GPUs for

TSPs. Sci China Inf Sci, 2017, 60(6): 068102, doi: 10.1007/s11432-015-0594-2

Metaheuristics are a type of approximate opti-
mization algorithms for solving hard and complex
problems in science and engineering [1]. They
can be defined as algorithm templates that can
be easily adapted to solve specific optimization
problems. Motivated by search behavior, most re-
searchers divide metaheuristics into two classes:
trajectory-based and population-based [1]. Ant
colony optimization (ACO) is a population-based
metaheuristic inspired by the social behavior of
ants [2]. In ACO, one of the most significant fea-
tures is positive feedback, which benefits from the
pheromone left by ants that can guide the ex-
ploration process. ACO has been used to solve
NP-hard problems, such as the traveling sales-
man problem (TSP) and the quadratic assignment
problem (QAP). ACO application areas include
network routing, molecular modeling, data min-
ing, etc.

In recent years, new hardware that delivers mas-
sive amounts of parallel-processing power, e.g., the
Cell Broadband Engine, field-programmable gate
arrays, and graphics processing units (GPUs), has
become available. Using classic parallel models on
a GPU platform is a topic of considerable inter-
est [3]. Using GPUs, the computational efficiency
of ACO algorithms is significantly improved [4–6].

However, due to GPU resource limitations, the
largest number of TSP cities in previous GPU
benchmarks has been 2392 [4–6]. Parallel strate-
gies suitable for TSPs larger than 2392 cities re-
main unknown.

Our contribution. This article presents ideas to
optimize existing GPU-based ACO algorithms for
the TSP. We extend previous GPU-based ACO al-
gorithms in two aspects: problem scale and com-
putational efficiency. To solve larger problems, we
present and evaluate two kernel strategies. To fully
exploit GPU computing power, we propose a new
algorithm in the tour-construction stage. Our ma-
jor contributions are as follows:

(1) We propose suitable kernel strategies for
solving problems on different scales. Two kernel
strategies in the tour-construction stage, KE-ALL
and KE-ONE, are presented and evaluated.

(2) We present a new parallel implementation
of roulette-wheel selection, named Tiling Roulette
(TR), on a GPU.

(3) We design a new algorithm in the
tour-construction stage named single-instruction,
multiple-data (SIMD)-oriented tour construction
(STC) and implement this algorithm on a GPU
with a novel dynamic work-group strategy (ST-
DYNAMIC).

*Corresponding author (email: fzhe@whu.edu.cn)

The authors declare that they have no conflict of interest.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-015-0594-2&domain=pdf&domain=pdf&date_stamp=2017-5-18
https://doi.org/10.1007/s11432-015-0594-2
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-015-0594-2


Zhou Y, et al. Sci China Inf Sci June 2017 Vol. 60 068102:2

(4) We evaluate our algorithm with the stan-
dard TSP library (TSPLIB) for a large range of
problems with as many as 4461 cities; a range of
this size has not been reported in previous GPU-
based ACO public references [4–6]. We can ob-
tain a speedup factor of 44x compared to the CPU
counterpart [2] with the same solution quality.

(5) We also compare our algorithm with the ex-
isting data-parallel implementation of ACO on a
GPU by Cecilia et al. [5] within 2392 cities.

Methodology. We refer the interested reader to
the supplementary file for the detail of ACO algo-
rithm and our GPU-based approaches. We intro-
duce two novel optimization methods as follows.

(1) Optimization of Roulette-Wheel selection.
The roulette-wheel selection can be parallelized
using the parallel prefix-sum and parallel search
methods. We optimize this process with a method
called Tiling Roulette.

We present the pseudo-code of our approach in
Algorithm 1. First, we divide the probability ar-
ray into t (t = n/tile size) equal-sized tiles, and
the tile size is equal to the work-group size. Sec-
ond, we perform a parallel scan operation sequen-
tially from tile 0 to tile t− 1. If the sum of a tile
is larger than the random value rand value gen-
erated previously, this tile is selected. Third, the
work-items search in parallel for the first element
in the selected tile that is larger than rand value;
they later write the result to selected id.

Algorithm 1 Pseudo-code of the TR selection process

Input: prob: probability array; prob sum: sum of the
probability array;

Output: selected id: result city index of the selection;
1: local float tile[tile size];
2: local int selected id;
3: private float tile item, tile item scanned, tile sum =

0;
4: int i = 0, tid = get local id(0);
5: float rand value = rand01() * prob sum;

{For each item in a tile, do parallel scan. The tiles are
processed serially.}

6: for i=tid; i < n; i+=tile size do

7: tile[tid] = tile item = prob[i] + tile sum;
8: tile item scanned = parallel scan(tile);
9: barrier();
10: tile sum = tile[tile size − 1];

{If the tile is selected, break the loop.}
11: if tile sum > rand value then

12: break;
13: end if

14: end for

{Parallel search the city id in the selected tile.}
15: if (tile item scanned − tile item) < rand value and

tile item scanned > rand value then

16: selected id = i;
17: end if

The advantages of the TR approach are as fol-

lows:

(i) Fewer random numbers generated.

(ii) Improved memory locality.

(iii) Reduced scan computation.

(2) Tour-construction algorithm. We present
the proposed tour-construction algorithm, which is
tailored for a GPU. The algorithm is called SIMD-
oriented tour construction that is based on the fol-
lowing definitions.

Definition 1. Lk is a tour list of n cities belong-
ing to ant k and initializes with an ascending order
of city numbers from 1 to n. Lk

i,j is a subset of Lk

with city indices ranging from i to j.

Definition 2. Ck is a cursor (integer value) of
ant k that initially points to the first element of
Lk.

Definition 3. Si,j is a node-swap operator on
the elements of Lk

i,j , which swaps nodes Lk
i and

Lk
j .

Because each ant travels to cities separately in
the same manner, we consider one ant for the al-
gorithm. The tour construction for ant k contains
the following steps:

(i) Randomly select a city from Lk
Ck,n

called

Lk
j .

(ii) Perform SCk,Lk
j
, and then, increase Ck by

1.

(iii) Repeat steps 1 and 2 until Ck equals n. Lk
1,n

is the travel path of ant k.

Based on the above approach, we present a new
GPU strategy called ST-DYNAMIC, which dy-
namically changes the work-group size for each
movement of ants (Algorithm B5).

Experimental results. Our experiments were
carried out on an Intel Core i7-4770 (@3.4 GHz)
machine with an Nvidia Kepler GPU (GTX780).
The experiments used a standard set of benchmark
instances from the TSPLIB library. The detail of
the experimental configuration was shown in Ap-
pendix C.1.

The basic GPU data-parallel algorithm is
named ST-GROUP. As shown in Figure 1, ST-
GROUP-STC starts by accelerating ST-GROUP
from pcb442 and improves with increases in the
problem size. Then, we added the TR method to
ST-GROUP-STC (ST-GROUP-STC-TR), which
results in nearly the same contribution to the
acceleration with the same trend. Our ST-
DYNAMIC is the fastest method. It is more suit-
able for large datasets, and can solve problem sizes
as large as 4461. The speedups are 41.8x and
44.7x in pr2392 and fnl4461 respectively with ST-
DYNAMIC.



Zhou Y, et al. Sci China Inf Sci June 2017 Vol. 60 068102:3

1.9 
4.6 

7.6 

13.5 

17.4 

13.0 

19.8 
17.2 

20.1 

2.0 
4.9 

8.5 

16.5 

20.4 
18.0 

25.8 

21.2 

27.0 

2.1 
4.8 

9.1 

17.9 

23.4 24.2 

33.4 

26.6 

34.6 

2.4 

5.7 

10.0 

21.9 

28.2 
31.4 

41.8 

34.7 

44.7 

0

5

10

15

20

25

30

35

40

45

50

d198 lin318 pcb442 rat783 pr1002 fl1577 pr2392 pcb3038 fnl4461

S
p

ee
d

u
p

TSPLIB instances

ST-GROUP

ST-GROUP-STC

ST-GROUP-STC-TR

ST-DYNAMIC

Figure 1 Speedup comparison of Kernel ST-GROUP and our three strategies.

To ensure the efficiency of our algorithm, we
compared it against the first data-parallel GPU
implementation of AS (DP-GPU-AS) provided by
Cecilia et al. [5]. The results show our algorithm
is up to 3.6x faster than DP-GPU-AS (Table C4).
We also compared our algorithm with two im-
proved GPU ACO algorithms [4, 6] on a GTX580
GPU with 512 CUDA cores. The results demon-
strate that the performance of our proposed GPU
ACO algorithm is the best one (Table C5).

The solution quality comparison results indicate
that the solution quality of our GPU algorithm
is similar to the solution quality of the sequential
CPU algorithm. The percentage deviations of the
GPU average results from the CPU average results
are within 0.4%.

Conclusion. We proposed a new parallel ACO
algorithm tailored for GPUs to achieve higher per-
formance, and implemented this algorithm using
a dynamic work-group strategy. We used a large
range of TSP instances, varying from 198 to 4461
cities, to evaluate our algorithm. As a result, we
obtained an outstanding speedup of up to 44x in
the TSP problem compared to the CPU counter-
part.

We also compared our algorithm with the ex-
isting GPU data-parallel ACOs. The results indi-
cated that our algorithm was the best in terms of
computational performance.

In future work, we will optimize our algorithm
using quantitative performance analysis and al-
gorithmic optimization approaches [7] to be suit-
able for middle-scale TSP problems and other
GPU architectures. We will also try to extend
the idea of GPU acceleration to other population-
based metaheuristic methods. We may also ap-
ply the GPU acceleration method to the fields of
CAD/graphics/images/video [8–10].

Acknowledgements This work was supported by

National Science Foundation of China (Grant Nos.

61472289, 61502353) and Hubei Province Science

Foundation (Grant No. 2015CFB254). The authors

thank Dr. Cecilia for providing the CUDA source code

in [5], which is a great benchmark for comparison.

Supporting information Appendixes A–C, includ-

ing Algorithm B5, Tables C4 and C5. The supporting

information is available online at info.scichina.com and

link.springer.com. The supporting materials are pub-

lished as submitted, without typesetting or editing.

The responsibility for scientific accuracy and content

remains entirely with the authors.

References

1 Blum C, Roli A. Metaheuristics in combinatorial opti-
mization: overview and conceptual comparison. ACM
Comput Surv, 2003, 35: 268–308

2 Dorigo M, Stützle T. Ant Colony Optimization. Cam-
bridge: MIT Press, 2004. 65–90

3 Alba E, Luque G, Nesmachnow S. Parallel metaheuris-
tics: recent advances and new trends. Int Trans Oper
Res, 2013, 20: 1–48

4 Uchida A, Ito Y, Nakano K. An efficient GPU imple-
mentation of ant colony optimization for the traveling
salesman problem. In: Proceedings of the 2012 3rd In-
ternational Conference on Networking and Computing
(ICNC), Okinawa, 2012. 94–102

5 Cecilia J M, Garćıa J M, Nisbet A, et al. Enhancing
data parallelism for ant colony optimization on GPUs.
J Parallel Distr Com, 2013, 73: 42–51

6 Dawson L, Stewart I. Improving ant colony optimiza-
tion performance on the GPU using CUDA. In: Pro-
ceedings of the 2013 IEEE Congress on Evolutionary
Computation (CEC), Cancun, 2013. 1901–1908

7 Zhou Y, He F Z, Qiu Y M. Optimization of parallel
iterated local search algorithms on graphics processing
unit. J Supercomput, 2016, 72: 2394–2416

8 Wu Y Q, He F Z, Zhang D J, et al. Service-oriented
feature-based data exchange for cloud-based design
and manufacturing. IEEE Trans Serv Comput, 2016,
doi: 10.1109/TSC.2015.2501981

9 Li K, He F Z, Chen X. Real time object tracking via
compressive feature selection. Front Comput Sci-Chi,
2016, 10: 689–701

10 Cheng Y, He F Z, Wu Y Q, et al. Meta-operation con-
flict resolution for human-human interaction in collab-
orative feature-based CAD systems. Cluster Comput,
2016, 19: 237–253

info.scichina.com
link.springer.com

