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Appendix A Background

Appendix A.1 Ant Colony Optimization for the TSP

In computational complexity theory, the TSP is an NP-hard problem. It plays a prominent role in research as well as in a

number of application areas [1]. The objective of this problem is to find a minimum-weight Hamilton cycle in a complete

weighted directed graph G = (V,A, d), where V = 1, 2, ..., n is a set of vertices (cities), E = {(i, j)|(i, j)εV × V } is a set of

edges (paths), and d : E → N is a function assigning a weight or distance (positive integer) dij to every edge (i, j).

Dorigo et al. [2] proposed a basic ACO algorithm named the ant system (AS) to solve the TSP. It involves using many

artificial ants to perform parallel searches on a graph. Each ant moves independently on the graph until it has traveled

to all of the vertices on the graph. Because each ant constructively builds a route, this process is referred to as the

tour construction, which is the first stage. The second stage is the pheromone update. To obtain a better solution, each

ant strengthens the pheromone on its path to guide other ants. The ants stochastically move to the next city based on

the heuristic information obtained from the pheromone trail and inter-city distances. However, a pheromone-evaporation

process is also applied to avoid falling into local optimum solutions.

In the tour-construction stage, each ant independently selects a route for traveling to all cities. Take ant k, for example;

when this ant is placed at city i, the probability of visiting city j is calculated by (A1):

Pki,j =
[τi,j ]

α[ηi,j ]
β∑

lεNk
i

[τi,l]α[ηi,l]β
, jεNk

i , (A1)

where τi,j is the pheromone value on the path from city i to city j. ηi,j = 1/di,j is a heuristic value. α and β are configurable

parameters that represent the relative influences of the pheromone trail and the heuristic information, respectively. Nk
i is

the number of cities that can be reached by ant k when at city i. The cities outside Nk
i are recorded in an array called the

tabu list. Ant k stochastically moves to the next city using a roulette-wheel selection procedure [3], which is also known as

fitness proportionate selection in genetic algorithms.

In the pheromone-update stage, each path holds a pheromone value that guides the ants’ travel. The initial pheromone

values are set equally. When the ants finish their travel, the pheromones on all the paths evaporate, as described in (A2):

τi,j ← (1− ρ)τi,j ,∀(i, j)εL, (A2)

where ρ is the evaporation rate, which ranges between 0 and 1. Then, the ants update the pheromone value of their travelled

paths separately, as described in (A3):

τi,j ← τi,j +
m∑
k=1

∆τki,j , ∀(i, j)εL, (A3)

where ∆τki,j is the amount of pheromone that ant k deposits on path e(i, j), which is defined as follows:

∆τki,j =

{
Q/Lk, if ant k goes through e(i, j),

0, otherwise,
(A4)

where Q is a constant and Lk is the tour length of ant k.

Algorithm A1 presents the general ACO framework in pseudo-code. In the tour-construction stage, m ants travel to n

cities sequentially. In the pheromone-update stage, each ant deposits the pheromone on the n paths of its travel, one by one.

These two stages are performed until the termination criterion is reached. In this work, we focus on the GPU acceleration
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Algorithm A1 ACO metaheuristic pseudo-code

1: InitializeData();

2: t:= 0;

3: repeat

4: TourConstruction();

5: PheromoneUpdate();

6: t:= t+1;

7: until Termination criterion()

8: end
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Figure A1 OpenCL compute device architecture [7].

of the ACO algorithm; further information on the original sequential algorithm can be found in [3].

Appendix A.2 GPU Computing

In this section, we briefly introduce the GPU architecture and programming model, for a better understanding of our work.

GPUs, formerly designed as a fixed-function rendering devices, have evolved into highly parallel and many-core general-

purpose computing devices, which work in a SIMD (single instruction, multiple data) manner. This architecture puts more

emphasis on data processing than data caching and flow control; thus, it is very suitable for computation-intensive and

highly data-parallel computation. More detailed material about the GPU architecture can be found in [4–6].

The Open Computing Language (OpenCL) and CUDA are two prevalent and successful programming models in the field

of GPU computing; they share many similarities. We chose OpenCL to implement the parallel ACO algorithm. OpenCL

is an open standard for general-purpose parallel programming across CPUs, GPUs, and other processors [7]. It provides

software developers with low-level access to the hardware of these heterogeneous processing platforms and is portable in both

code and performance [8, 9]. As a programming language, OpenCL supports application programming interfaces (APIs)

for coordinating parallel computation across heterogeneous processors, and the C programming language for cross-platform

ability with a well-specified computation environment.

In OpenCL, a GPU is regarded as a compute device. From a hardware point of view, a compute device is comprised

of one or more compute units (CUs), which are further divided into one or more processing elements (PEs) (Figure A1).

Computations on the GPU occur within the processing elements. The global memory, constant memory, and texture

memory together represent the GPU’s off-chip memory. Generally, a CPU in the OpenCL architecture is referred to as a

host. The OpenCL application submits commands from the host to execute computations on the PEs within a GPU.

Execution of an OpenCL program on hardware is based on kernels. A kernel instance is called a work-item, which is

the smallest execution unit and more generally called a thread. The host calls the GPU function using the kernel, which

defines the computation to be executed by many work-items organized in work-groups. In a work-group, work-items are

further grouped into wavefronts (warps) coordinated by a scheduler at runtime. They execute concurrently on the PEs of

a single CU. The number of work-items in a work-group is also referred to as the work-group size or local size, while the

total number of work-items is the global size. The number of work-items in a wavefront is regarded as the wavefront size,

which is an implementation-defined constant. Each work-item has an explicit identifier in a work-group named localid and

an implicit identifier named laneid (SIMD lane id) in a wavefront that is defined as: localid%wavefrontsize. Based on

the assumption that the work-items of a wavefront execute synchronously, we can exploit the wavefront-level parallelism by
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omitting memory-synchronization instructions when using local memory.

The hierarchical memory model of the GPU consists of global memory, constant memory, local memory, and private

memory. The global memory can be accessed by all work-items and is the largest memory region. The constant memory,

which can only be allocated and initialized on a host, is a read-only region in global memory. The local memory is shared

by work-items in a work-group; it is much faster than the global memory but has a limited size, typically within 100 KB.

The private memory is a private memory region of a work-item that cannot be observed by other work-items. This memory

contains the registers used by each PE.

Appendix A.3 Related Work

Appendix A.3.1 Basic Implementation of Parallel ACO on GPUs

Pioneer work on GPU-based parallel ACOs started with the emergence of the programmable shader. Catala et al. [10] and

Wang et al. [11] implemented ACOs using vertex processors and fragment processors on GPUs. After CUDA was introduced

by the Nvidia Corporation, researchers and developers could benefit from this GPU computing API, combining its ease of

programming with their need for computing power. Since then, parallel ACO algorithms have mainly been implemented

with CUDA [12–16]. These studies provide us with approaches focusing on accelerating ACO algorithms on GPUs.

Appendix A.3.2 Parallelization Models of GPU-based ACO

Parallel ACO algorithms can be implemented using GPU computing APIs, e.g., CUDA and OpenCL. Although a general

computing API provides us with a more convenient programming interface than a graphics API, it is still very important to

investigate parallel ACO models and strategies on GPU hardware to achieve the best performance. Since 2013, systematic

studies on GPU-based ACO have been proposed. Notably, Delévacq et al. [17] and Cecilia et al. [18] offer data-parallel ACO

models on GPUs with similar ideas that associated each ant with a work-group. This model is more suitable for a GPU

architecture than the traditional task-parallel ACO model. The advantage of the data-parallel approach is that low-latency

local memory becomes available for storing each ant’s data. In essence, this approach exploits the spatial locality of a GPU

memory system. Their experimental results confirmed that the data-parallel model largely outperforms the traditional

task-parallel counterpart on GPUs.

In addition, Delévacq et al. integrated a three-opt local search into the MAX-MIN ant system (MMAS) algorithm to

improve the solution quality. They also implemented and evaluated multiple ant colonies. They reported speedups as high

as 19.47x with a solution quality similar to that of the original sequential implementation using ANT sharedblock . Their results

also showed low speedups of up to only 5.84x using ANTthread. Cecilia et al. address the data-parallelism scheme and

proposed a new proportionate-selection method called I-Roulette that simulates the classic roulette-wheel selection process

while improving the GPU parallelism.

Appendix A.3.3 Optimization of GPU-based ACOs

Focusing on implementation strategies for higher efficiency, Uchida et al. [19] implemented ACOs for the TSP using CUDA,

while considering many GPU programming issues, e.g., the coalesced access of global memory and the shared memory bank

conflict. In addition, these authors proposed a strategy named Stochastic Trial to avoid the prefix-sum calculation as much

as possible. Dawson et al. [20] extended the data-parallel ACO approach. In the tour-construction stage, they proposed

a new parallel implementation of the roulette-wheel selection called Double-Spin Roulette to fully exploit the warp-level

parallelism, which significantly reduced the running time.

Appendix A.3.4 GPU-based ACOs on Open Platforms

CUDA is a powerful platform with mature toolkits, but it is a closed platform that only works on Nvidia GPUs. To

implement and test parallel ACOs on various devices, OpenCL is a good candidate. Recently, Angelo et al. [21] explored the

recent developments for parallel ACO algorithms on GPUs. They introduced parallelism strategies for each step of an ACO

algorithm in OpenCL. Guerrero et at. [22] implemented the ACO algorithm using OpenCL, and extensively experimented

with it on a wide variety of GPU platforms. They benchmarked the algorithm against existing implementations, and offered

extensive analyses.

Appendix A.3.5 Summary of Related Work

We summarize the previous work in Table A1. These studies intensively investigate ACO parallel-implementation strategies

on GPUs, including parallel models and new algorithms. They demonstrate the promising computational efficiency of GPU

platforms, while preserving the solution quality. They provide us with insights on the following major issues. First, several

parallelization models in the tour-construction stage are studied and compared, especially the roulette-wheel selection

process. Second, approaches for efficient management of the pheromone trails matrix are proposed. Third, GPU memory

strategies for efficient management of ACO data structures are supplied.

However, due to GPU resource limitations [17, 18, 20], these authors did not test any TSP instances larger than 2,392

cities. In this paper, we greatly extend previous work on large TSPs.
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Table A1 Summary of GPU-based parallel ACO proposals.

Author Year Algorithm Problem CPU GPU Speedup Largest

problem

Catala et al. [10] 2007 ACO Orienteering

problem

Intel Pentium IV

2.4 GHz

Nvidia GeForce

6600GT

80 Graph with

3,000 nodes

Wang et al. [11] 2009 MMAS TSP AMD 2.79 GHz Nvidia Quadro Fx

4500

1.38 TSP with

30 cities

Zhu and Curry [12] 2009 ACO Bound

constrained

optimiza-

tion

Intel Xeon E5420 Nvidia GeForce

GTX 280

403.91 -

Li et al. [13] 2009 MMAS TSP Intel Pentium

2.6GHz

Nvidia GeForce

8600GT

15.27 tsp2251

Bai et al. [14] 2009 MMAS TSP AMD Athlon

3600+

Nvidia GeForce

8800GTX

2.3 rd400

Fu et al. [16] 2010 MMAS TSP Intel Core i7 3.3

GHz

Nvidia Tesla C1060 31 pr1002

Bai et al. [15] 2011 MMAS

ACS

TSP AMD Athlon

3600+

Nvidia GeForce

8800GTX

45 u1060

Uchida et al. [19] 2012 AS TSP Intel Core i7 860 Nvidia GTX 580 43.47 pr2392

Delévacq et al. [17] 2013 MMAS TSP Intel Xeon E5640 Nvidia Tesla C2050 19.47 d2103

Cecilia et al. [18] 2013 AS TSP Intel Xeon E5620 Nvidia Tesla C2050 21 pr2392

Dawson et al. [20] 2013 AS TSP Intel Core i7 950 Nvidia GTX 580 82 pr2392

Angelo et al. [21] 2013 AS TSP - - - -

Guerrero et al. [22] 2014 AS TSP Intel Xeon E5620,

AMD Llano E350

and AMD Llano

A6-3420

Nvidia Tesla

C2050, AMD

FirePro V8800

and three AMD

HD6000-series

GPUs

21.5 pr2392

1)This is a TSPLIB instance, and the number represents its size.

Appendix B Proposed GPU Acceleration Strategies

Appendix B.1 Previous GPU-based ACO Algorithm Strategies

Appendix B.1.1 Data Parallel Model

From a hardware point-of-view, to fully exploit the computing power of a GPU, the thread strategy should be configured

properly using two parameters: the work-group size and the number of work-items. The work-group size should be a

multiple of the wavefront size to achieve higher hardware utilization. An easy strategy is to consider a work-item as an ant.

However, the memory bandwidth is limited by the hardware constraints and the complexity of the algorithm.

Delévacq et al. [17] suggested an ANTblock strategy to harness the benefits of a GPUs parallel data-processing capability

by associating each ant with a CUDA block. Cecilia et al. [18] proposed a similar idea that associated a work-group,

composed of w worker ants, with a queen ant. All w worker ants obtain a solution cooperatively, thus enhancing the

data parallelism by a factor of w. In this paper, we call these strategies ST-GROUP. The experimental results in [17]

and [18] both demonstrate the significantly larger acceleration ratio of the ST-GROUP strategy. Therefore, we selected the

ST-GROUP in the tour-construction step, which we will discuss in the next section. Our new approach is based on this

strategy.

Appendix B.1.2 GPU Memory Management

ACO has two types of data structures. The first type is city data, which contains the path-length data. These data could

be considered as an n × n matrix, where n is the number of cities. The data size increases dramatically with the number

of cities. It is suitable for writing to global memory because of the limitations of the local memory size. The second type

of data is the ant data. Each ant has its own private data to record the path and visits. These data are m× n, where m is

the number of ants.

As noted above, the ST-GROUP is a strategy based on data parallelism. Therefore, an ant data structure that is used

frequently in the tour-construction period could be saved to local memory to reduce the overhead of data accesses to global

memory. Typically, the ant data structure is a one-dimensional array with size n, e.g., the tabu list, city indices, city visits,

and transfer probabilities. Table B1 shows the data distribution of the GPU memory.
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Table B1 Data Distribution of GPU Memory

ACO structure Memory type Data size

City distance Global memory n * n

Pheromone information Global memory n * n

Parameters Constant memory -

Tabu list Global memory m * n

City visit Global memory m * n

Tabu list (per ant) Local memory n

City visit (per ant) Local memory n

Probability array (per ant) Local memory n

Temporary variable Private memory -

Appendix B.2 Our Approaches on Kernel Control

The GPU has some hardware-related limitations, e.g., the local memory of each work-group and registers for each PE.

As stated in [17, 20], the GPU memory feature reaches its limits on larger TSPs. If the kernel algorithm only considers

small-scale problems, the GPU would be out of resources when solving large-scale problems. On the other hand, a kernel

suited for large-scale problems would face efficiency degradation for small-scale problems. Therefore, we propose two kernels

in the tour-construction stage. One kernel is called KE-ALL, and the other is called KE-ONE. KE-ALL creates tours for

all of the ants when the tour-construction kernel is invoked by the host. It contains a loop with count n − 1 for the full

tour construction of each ant, as shown in Algorithm B1. The main concept is that m ants create their paths in parallel,

Algorithm B1 KE-ALL

1: i:=GetWorkGroupId();

2: InitializeData(i);

3: k:=0;

4: repeat

5: for each i→ m− 1 parallel do

6: Calculate transfer probabilities

7: Barrier();

8: Randomly select next city id

9: Barrier();

10: Move ant i to next city

11: end for

12: Barrier();

13: k:=k+1;

14: until k==n-1

15: end

using m work-groups. We use the GPU memory-synchronization function, e.g., barrier(), to guarantee that all work-items

in a work-group finish reading or writing data before the next calculation step.

Because this kernel contains a loop associated with the number of cities, and the register size of a work-group is limited,

it is not a scalable solution. KE-ONE moves all of the ants forward one step per call from the host. The loop control is

performed by the host to relieve the pressure on GPU registers, as shown in Algorithm B2.

Algorithm B2 KE-ONE

1: i:=GetWorkGroupId();

2: InitializeData(i);

3: for each i→ m− 1 parallel do

4: Calculate transfer probabilities

5: Barrier();

6: Randomly select next city id

7: Barrier();

8: Move ant i to next city

9: end for

10: end

This method could be adopted to solve a large-scale TSP. However, in the small-scale case, the CPU calls the GPU

kernel frequently, which has a considerable time cost.
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Lane8Lane7Lane6Lane5Lane4Lane3Lane2Lane1

P8P7P6P5P4P3P2P1

+
S7-8S6-7S5-6S4-5S3-4S2-3S1-2P1

+ + + + + +

S5-8S4-7S3-6S2-5S1-4S1-3S1-2P1

+ + + + + +

S1-8S1-7S1-6S1-5S1-4S1-3S1-2S1

+ + + +

if(lane_id > 0) P[local_id]=P[local_id-1]+P[local_id];

if(lane_id > 1) P[local_id]=P[local_id-2]+P[local_id];

if(lane_id > 3) P[local_id]=P[local_id-4]+P[local_id];

Figure B1 Optimization of parallel prefix sum on GPUs by exploiting wavefront-level parallelism, in which n = 8 and

Si−j is the sum of the items from index i to index j in array P .

Appendix B.3 Pheromone Update

The pheromone-update stage contains two steps. In the first step, each path evaporates independently, as configured by

the evaporation rate. This process could be fully parallelized by creating a thread for each path. Each thread reads the

pheromone value of its corresponding path to private memory, calculates the new pheromone value, and then writes it back

to global memory. The next process is initiated by the ants, which deposit pheromones along their paths. Unlike the prior

step, two or more ants can walk along the same path. Global-memory writing conflicts occur in this situation. However,

modern GPUs support atomic instructions, e.g., the atomic add function, to guarantee that the pheromone value could

be updated by several ants in parallel. Algorithm B3 presents the pheromone-update kernel. The global synchronization

method is needed to avoid data-writing conflicts, because there is no synchronization mechanism between work-groups [24].

In practice, this kernel is divided into two kernels that are called sequentially by the host.

Algorithm B3 Pheromone Update Kernel

1: i:=GetGlobalId();

2: for each i→ n ∗ n− 1 parallel do

3: Pheromone evaporate

4: end for

5: Global synchronization

6: for each i→ m− 1 parallel do

7: for each k → n− 1 parallel do

8: Ant j deposit pheromone on its path k using atomic add operation

9: end for

10: end for

11: end

Appendix B.4 Parallelism Optimization Strategies

In the tour-construction process, the selection operates on the probability array to select which city to move to next.

Because only one city index value must be saved for the next movement, selecting a city in parallel on the GPU is not

straightforward. However, parallel reduction [25] and scan techniques [27] for each work-group have been proposed to

address this issue. The sequential roulette-wheel method could be parallelized using several steps.

First, the prefix sum of the probabilities array is calculated in parallel. This process is also called a parallel scan

operation. Our implementation is shown in Figure B1. The host preliminarily generates a random array and sends it to

GPU memory. Each ant receives a random number r, which is uniformly between 0 and S1−j . The parallel-search method

is used to determine the next city index by finding the first element in P that is larger than r. We exploit parallelism in

each wavefront by having the lanes within a wavefront execute synchronously. Thus, the thread communication overhead

is reduced.

After the ants have travelled to all of the cities, we use the parallel-reduction method to sum up the travel length of each

ant and to find the shortest travel length for all of the ants. Since parallel reduction is a very commonly used technique,

we suggest that readers refer to [25] for detailed information.
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Figure B2 Node-swap process for GPUs. (1) The roulette-wheel selection process produces the result selected city; (2)

the current city that the cursor points to is swapped with the selected city in global memory; (3) the cursor moves forward

one step.

Appendix B.4.1 Advantages of the TR Approach

The advantages of the TR approach are as follows:

1) Fewer random numbers generated. In the previous GPU-based parallel roulette-wheel selection approach [18],

each ant requires n (the number of cities) random numbers to construct a path of the entire tour. In our TR approach,

each ant requires only one random number, which saves considerable computation time.

2) Improved memory locality. To efficiently utilize the GPU registers, the tile size should match the register’s size

within a work-group. For example, the variables that are repeatedly accessed are saved in registers (see Algorithm 1, line 3).

3) Reduced scan computation. A full scan of the entire probability array often wastes time. For example, if the

selected city lies in the first tile, then computation for the other tiles is useless. In our TR approach, if a tile is selected,

the scan of the remaining tiles is omitted (see Algorithm 1, lines 11 to 13).

Appendix B.4.2 GPU-based Implementation of the STC

We use the tour list and cursor to replace the tabu list and city visit list. A node-swap operation is defined to operate on

the tour list. In step 1 of our algorithm, the scale of the tour list decreases as Ck increases, thus reducing the amount of

computations. In Algorithm B4, we present a new GPU strategy called ST-DYNAMIC, which dynamically changes the

work-group size for each movement of ants. We call this type of strategy a dynamic work-group. The main idea of this

approach is to tune the work-group size in each step. We set the work-group size to a power of 2 because this size is suitable

for the parallel-reduction method.

Each ant reads the tour-list data from global memory to local memory using the readTourListOfAnt() method with

a parameter cursor to only copy the cities have not been visited. Then, the ant randomly selects a city to visit from

localCityList in local memory and saves it to nextCityId. By the performing node-swap operation, the visited city is

placed at the position to which the cursor points. Figure B2 illustrates the node-swap process on GPUs. In this case,

Algorithm B4 Dynamic Strategy

1: i:=GetGlobalId();

2: repeat

3: workGroupSize := nearestPowerOf2 (n - cursor);

4: totalThreadNum := workGroupSize * m;

5: SetGPUKernel (workGroupSize, totalThreadNum);

6: for each i→ m− 1 parallel do

7: localTourList = readTourListOfAnt(i, cursor, n);

8: Parallel calculate transfer probability of cities in localTourList

9: Barrier();

10: Parallel calculate next city id of ant i and set value in nextCityId

11: Barrier();

12: RightShift(i, cursor, nextCityId);

13: end for

14: cursor[i]++;

15: until cursor[i] == n - 1

16: end

there are eight cities and the ant has traveled through C1 and C2. The cursor is pointing to C3. After the roulette-wheel

selection process, we obtain the selected city, which is C7. Then, C3 and C7 are swapped in global memory. Finally, the

cursor moves forward and points to C4 before the next selection process.

Appendix B.4.3 Time Complexity Analysis

The differences between ST-DYNAMIC and ST-GROUP are lines 7 to 12 in Algorithm B4. In this section, we analyze

both algorithms and predict the improvement of our algorithm. We can assume that a GPU work-group is a parallel
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Table C1 Average execution times (ms) of the CPU-based sequential version and the GPU-based parallel version.

Instances d198 lin318 pcb442 rat783 pr1002 fl1577 pr2392 pcb3038 fnl4461

CPU-based 15 54 198 1519 2909 10157 47987 115058 397991

GPU-based 1.09 2.06 5.72 37.64 61.62 270.73 1001.83 3315.79 8903.6

Table C2 Execution times (ms.) on GPU with different work-group size configuration.

Work-group Size d198 lin318 pcb442 rat783 pr1002 fl1577 pr2392 pcb3038 fnl4461

16 20.9 39.0 78.0 387.5 838.5 N/A1 N/A N/A N/A

32 19.03 35.8 62.5 252.2 593.5 3036.5 15399.1 31278.5 192960.3

64 18.57 34.3 55.2 195.0 381.5 1757.5 8321.5 32691.6 100197.1

128 18.72 34.4 52.3 162.3 280.5 1122.5 4869.5 18110.6 53760.8

256 20.12 37.4 55.6 156.1 239.5 835.5 3216.9 11141.5 31532.3

512 19.5 43.7 70.5 174.7 276.5 981.5 2621.5 8093.3 21691.8

1024 19.5 43.7 71.2 N/A N/A N/A 4281 7377.5 18564.7

2)N/A indicates not available due to register constraints.

Table C3 Optimized work-group size configuration.

Instances d198 lin318 pcb442 rat783 pr1002 fl1577 pr2392 pcb3038 fnl4461

Work-group size 64 64 128 128 256 256 512 1024 1024

random-access machine (PRAM) with n processors. In line 7, ST-GROUP reads the tabu list and the city-visit list from

global memory. In line 12, ST-GROUP writes the next city ID to the tabu list. We obtain the result of O(1) according to

Brent’s theorem in [26]. Therefore, we can focus on lines 8 and 10, in which the parallel reduction and parallel prefix-sum

method are used. The time complexity of these lines has been analyzed in [25] and [27]. In our implementation, with the

same steps of ST-GROUP, the number of operations decreases with increasing i; thus, reducing the threads launched in

each step.

Our algorithms time complexity is O(
∑n
i=1 logn), which is equal to O(logn!). In theory, the time complexities of the two

algorithms are both linearithmic. However, in practice, the work-items in a work-group cannot execute at the same time.

These work-items are organized into sub-groups called wavefronts or warps, which have additional execution overhead. In

ST-DYNAMIC, the number of warps decreases as the ant moves forward a warp-size step and is thus more efficient. The

performances of the algorithms are compared in the next section.

Appendix C Performance Evaluation

Appendix C.1 Experimental Configuration

Our experiments were carried out on an Intel Core i7-4770 (@3.4 GHz) machine with 8 GB DDR3 memory. The GPU

platform was an Nvidia Kepler card (GTX780) with 3 GB GDDR5 memory and 2,304 CUDA cores. The OS was Windows 7

64-bit Ultimate Edition. Our development environment was Microsoft Visual Studio 2012 with the AMD APP SDK version

2.9. Our experiment used a standard set of benchmark instances from the TSPLIB library [28]. We use single-precision

floating-point numbers for the pheromone information and city distances.

On the algorithm side, our key parameters were configured according to the experimental principles adopted by Dorigo

et al. [2]. We set m = n (n being the number of cities), α = 1, β = 2, and ρ = 0.5. On the hardware side, we chose the

optimal work-group configuration using the methodology proposed in [18].

We tested each TSP instance for a fixed number of iterations (1000 times in 10 independent runs), and used the average,

max, and min values for comparison. The sequential CPU version provided by Stüzle in [3] was the baseline algorithm.

The speedup was calculated by dividing the GPU algorithm time with the baseline time. The computation time of the

CPU-based version executed on our platform is provided in Table C1. Although we focused on the efficiency of the parallel

implementation using a GPU, the solution quality comparison between the sequential CPU and parallel GPU algorithm is

also provided to ensure the correctness of our algorithms.

Appendix C.2 Determination of the Optimized Work-group Configuration

The work-group size configuration affects on the parallelism efficiency. Table C2 demonstrates that the optimal group-size

configuration varies based on the size of the TSP problem. Therefore, the work-group size should be determined by the

problem size. When the work-group size is considerably larger than the problem size, thread execution time is wasted.

In contrast, an overly small work-group would cause serialization on a GPU. We obtained the optimized work-group sizes

listed in Table C3 based on experimental results.
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Figure C1 Speedup comparison of KE-ALL and our KE-ONE.

Appendix C.3 Comparison of KE-ALL and KE-ONE

As noted in the last section, the optimum work-group size varies based on the problem size; thus, our tests were based

on the optimized configurations listed in Table C3. In addition, in [22], TSP problems were divided into small, medium,

and large datasets. Figure C1 shows the effect of kernel-launch overhead on small- and medium-scale problems. Because

KE-ALL has only 1/n launch counts of KE-ONE, it is significantly faster for a small number of cities. However, as the

problem scale increases, the kernel-launch overhead is hidden by the kernel-execution time. Therefore, in TSP problems

with a city number equal to or less than 1,577, we recommend using the KE-ALL strategy because of its lower latency,

which obtains a solution in a few seconds. This could make the strategy more user friendly in certain real-time applications.

We attempted to run KE-ALL on a large dataset; however, it was not applicable due to register constraints. Thus, we

gained a speedup up to 47.2x in pr1002 with KE-ALL.

Appendix C.4 Evaluation of the Dynamic Work-group Kernel

To evaluate the contributions of STC and TR to acceleration, we firstly added STC to ST-GROUP (ST-GROUP-STC).

As shown in Figure 1, ST-GROUP-STC starts by accelerating ST-GROUP from pcb442 and improves with increases in

the problem size. Then, we added the TR method to ST-GROUP-STC (ST-GROUP-STC-TR), which results in nearly the

same contribution to the acceleration with the same trend.

Both the ST-GROUP-STC and ST-GROUP-STC-TR methods outperform ST-GROUP as the number of cities increases.

In theory, these methods have the same level of time complexity; however, in this case, the processor number in a work-group

is not always equal to the number of cities. Two situations are possible. In one situation, the work-group size is larger than

the city number. In the other situation, the work-group size is smaller than the city number. In the former situation, the

reduction of candidate cities was only limited help because both kernels are fully parallel. However, in the latter situation,

both kernels are forced to run serially to prepare data for reduction or prefix-sum calculation. Therefore, STC and TR

could further reduce the calculation time in larger problems. The work-group size of ST-GROUP is fixed, which means

that the GPU launches all of the work-items in a work-group, even if there are fewer cities to visit, which causes additional

overhead.

Furthermore, our ST-DYNAMIC method avoids this overhead by changing the work-group size for each step of the ants.

As the remaining city numbers decrease at runtime, the serialization level decreases, which reduces the calculation time.

We can also learn from Figure 1 that ST-DYNAMIC is more suitable for large datasets, and can solve problem sizes as

large as 4,461. The speedups are 41.8x and 44.7x in pr2392 and fnl4461 respectively with ST-DYNAMIC.

The speedup of all algorithms decreases at the scale of the pcb3038 problem for two reasons. First, the city number is

considerably larger than the work-group size; thus, some calculations are forced to serialize. Second, the global-memory

access counts increase, which have a higher latency than local memory accesses. Even in this situation, our ST-DYNAMIC

method is still the best one.

Appendix C.5 Comparison with Existing GPU ACO Algorithms

To ensure the efficiency of our algorithm, we compared it against the first data-parallel GPU implementation of AS (DP-

GPU-AS) provided by Cecilia et al. [18]. We rebuilt the original DP-GPU-AS on our hardware platform to ensure a fair

comparison. In this experiment, we chose the KE-ALL kernel, which performs better with smaller TSPs (198 to 2,392 cities

inclusive). The results show our algorithm is up to 3.6x faster than DP-GPU-AS (Table C4).

We also compared our algorithm with two improved GPU ACO algorithms [19,20]. Because no source code was provided

for either of them, we could not reproduce their results for a direct comparison. Therefore, we ran our program on a
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Table C4 Average execution times (ms) and speedups of our algorithm.

Instances d198 lin318 pcb442 rat783 pr1002 fl1577 pr2392

DP-GPU-AS 2.22 7.51 18.09 86.53 149.85 586.40 2026.47

Our KE-ALL 1.09 2.06 5.72 37.64 61.62 270.73 1001.83

Speedups 2.04x 3.65x 3.16x 2.30x 2.43x 2.17x 2.02x

Table C5 Average execution times (ms) on GTX580. Smaller is better.

Instances d198 a280 lin318 pcb442 rat783 pr1002 nrw1379 pr2392

Uchida et al. [19]. 2.64 5.06 8.97 11.54 56.73 87.06 x 2084.78

Dawson and Stewart [20] 1.16 2.68 3.39 7.79 42.7 85.11 323 1979.31

Our KE-ALL 1.12 2.41 2.92 7.32 26.69 53.58 143.43 904.10

Table C6 Solution-quality comparison results. We give the percentage deviations from the average CPU results in

parentheses for the GPU algorithm.

Instance CPU avg. CPU min. CPU max. GPU avg. GPU min. GPU max.

d198 17302 17018 17483 17371 (0.40%) 17200 17498

lin318 47406 47029 47878 47517 (0.23%) 47007 47928

pcb442 61752 60653 62378 61790 (0.06%) 60748 62823

rat783 10987 10762 11101 10994 (0.06%) 10786 11140

pr1002 328936 325376 333244 330234 (0.39%) 325100 332859

fl1577 26183 25689 26488 26159 (-0.09%) 25948 26361

pr2392 507012 501376 510957 506913 (-0.02%) 502677 511122

pcb3038 186249 185835 187900 186871 (0.33%) 186132 187853

fnl4461 250037 249630 250790 249887 (-0.06%) 249352 250036

GTX580 GPU with 512 CUDA cores, which is the same as [19, 20], and used the average execution time as an evaluation

criterion. The results demonstrate that the performance of our proposed GPU ACO algorithm is the best one (Table C5).

As aforementioned, we used a new SIMD-oriented algorithm for ACO and a new implementation of roulette-wheel selec-

tion in the tour-construction stage. We believe our ideas could accelerate other population-based metaheuristic algorithms.

Appendix C.6 Solution Quality

We followed the guidelines of Cecilia et al. [18] to evaluate the solution quality of our GPU-based ACO algorithm. Each

algorithm was tested by a fixed number of 1,000 iterations in 10 tries. To ensure a fair comparison, the algorithmic parameter

settings of both the CPU and GPU versions were set as described in Section 4.1.

The results indicate that the solution quality of our GPU algorithm is similar to the solution quality of the sequential

CPU algorithm (Table C6). The percentage deviations of the GPU average results from the CPU average results are within

0.4%. However, because of the limitations of the original Ant System algorithm as explained by Stützle and Hoos [29],

the solutions we obtained are not optimal. This could be improved by attaching a local search process to each ant. In

this paper, we focused on the computational performance of the GPU-based ACO algorithm. We will leave improving the

solution quality as our future work.
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