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Abstract Wide-angle synthetic aperture radar (W-SAR) imaging accounts for multi-azimuthal scattering and

is feasible for retrieving more comprehensive features of complex targets. Because a typical target is seen as

composed of its components (typically, some simple geometric objects), a Gaussian amplitude-phase (GAP)

model has been developed for the analysis of multi-azimuthal scattering from these objects. Based on the time-

frequency analysis of wide-angle scattering, the parameters of the GAP model were estimated, including the

Gaussian variance, the surface curvature, and the number of objects in all imaged pixels. Numerical simulations

and real measurements demonstrate the capability of the GAP model for decomposing and recognizing complex

electric-large targets.

Keywords wide-angle SAR, Gaussian amplitude-phase, time-frequency, target decomposition, target recog-

nition

Citation Li Y C, Jin Y-Q. Target decomposition and recognition from wide-angle SAR imaging based on a

Gaussian amplitude-phase model. Sci China Inf Sci, 2017, 60(6): 062305, doi: 10.1007/s11432-016-0572-3

1 Introduction

Wide-angle synthetic aperture radar (W-SAR) integrates multi-aspect observations in the azimuthal

direction, which may improve the azimuthal resolution and yield comprehensive scattering features of

complex targets [1]. Usually, a complex target yields diverse azimuthal scattering data, with each imaged

pixel likely containing information on scattering from several structural components of the target. Thus,

analysis of W-SAR imaging data can sensitively determine target structural classification and recognition

of complex targets.

Feature classification by wide-angle imaging have been extensively studied, mostly in terms of sub-

aperture and time-frequency analysis [1–10]. Scattering persistence and azimuthal diversity in wide-

angle imaging were discussed. However, all of these approaches lack quantitative models to describe the

scattering diversity of widely imaged features.

In this paper, we present a Gaussian amplitude-phase (GAP) parameterized model and represents a

complex electric-large (e-large) target as composed of simple geometric objects. Using time-frequency
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Figure 1 Illustration of scattering mechanisms for simple geometric objects.

analysis to obtain the index spectrogram, the parameters of the GAP model were retrieved, including the

Gaussian variance, the surface curvature, and the number of objects for all W-SAR imaged pixels. In the

GAP model, the variance represents the scattering persistence in the azimuthal direction, related to the

object length or curvature; the curvature distinguishes flat surfaces from curved ones; and the number

of objects accounts for the overlapping scatterers. The retrieved GAP model parameters were then used

for decomposing and recognizing complex targets.

This paper is organized as follows. Section 2 describes a geometric approximation of scattering mech-

anisms. Section 3 develops the GAP model for a general complex target composed of simple geometric

objects. In Section 4, the Gabor transform of time-frequency analysis is applied for obtaining the az-

imuthal spectrogram for W-SAR imaging, following which the GAP parameters are estimated for each

imaged pixel. In Section 5, wide-angle scattering data from numerical simulations and real measurements

are applied to validate the GAP model for classifying complex targets. Finally, discussion and conclusion

are provided in Section 6.

2 Geometric approximation of scattering mechanisms

A complex e-large target may yield many scattering mechanisms, whose basic geometries are described in

Figure 1. Figure 1 illustrates the scattering from simple geometric objects owing to different scattering

mechanisms. For example, specular scattering from a plane can be described by a plate, while scattering

from one- and two- curved surfaces can be described by a cylinder and a sphere, respectively. Multiple

reflections yield multi-scattering, as shown in Figure 1. Double scattering between a cube and ground

is represented by a dihedral, triple scattering among two intersected cubes and the ground is described

by a trihedral, and double scattering between a curved object and the ground is described by a top-hat.

Here, very small edge diffraction and travelling waves are usually negligible.

Scattering from simple objects can be analytically calculated based on the geometrical optics (GO) or

physical optics (PO) [11]. Under the high-frequency approximation, the entire scattering from an e-large

target is contributed by these objects, i.e., local scattering centers [12]. As shown in Figure 2, a very

complex vessel can be seen as composed of simple objects, e.g., two vertical planes as a dihedral, three

vertical planes as a trihedral, the helicopter on the deck as a dihedral, the turret and the radar radome as

a top-hat, the radome on the tower as a sphere, and the fence around the deck as thin wires. Note that

some scattering caused by cavities or surface creeping waves is very small and usually can be neglected.
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(a)

(b)

Figure 2 (Color online) The vessel model and its decomposition. (a) The vessel model; (b) decomposed objects (S: sphere,

Th: top-hat, T: trihedral, D: dihedral, L: line, and P: plate).

3 Gaussian basis of azimuthal scattering from simple geometric objects

The angular pattern of scattering is closely related to the scatterer size, shape, and orientation. In

addition, a curved-surface object may shift the scattering phase owing to its radius [11]. Extracting the

features of these objects is usually difficult owing to high-order modelling and sensitivity of parameter

initialization [13]. We developed a simplified GAP model with the Gaussian basis to describe scattering

from simple geometric objects. The Gaussian function for modeling the scattering-related features has

been discussed in detail [14–16]. Here, we adopted the Gaussian basis for characterizing the azimuthal

scattering-based imaging of simple geometric objects.

3.1 Gaussian basis for the amplitude response

It has been shown that the angular pattern of scattering from simple geometric objects may vary as a

sinc(·), sin(·), cos(·) function, or may remain invariant, depending on the object type [11]. The scattering

amplitude can be approximated as a Gaussian function with variance corresponding to the azimuthal

angle. For example, let the lengths of a plate, a dihedral, and a horizontal cylinder be 15λ, 10λ, 5λ,

respectively. Figure 3 shows the main scattering lobes (marked curves), and the dashed curves are the

corresponding Gaussian fits to the main scattering lobes within the azimuthal width of 20◦. The scattering

from a trihedral is also shown in Figure 3. The standard deviations (stds) and the relative errors for the

fits in Figure 3 are listed in Table 1.

It can be seen that all main scattering lobes, for the four types of objects, are satisfactorily fitted by

Gaussian functions. The standard deviation indicates the scattering persistent width in the azimuthal

direction, which may be used for identifying the objects, e.g., trihedrals have large standard deviations

while plates have small standard deviations. The standard deviation may represent the azimuthal dis-
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Figure 3 Gaussian fits to the main lobe scattering curves for simple objects.

Table 1 Standard deviations and relative errors of Gaussian fits to scattering curves, for different objects

Type Plate Dihedral Cylindter Trihedral

Std. 0.0163 0.0244 0.0488 0.2440

Relative err. (%) 0.06 0.09 0.17 0.03
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Figure 4 Incident azimuth on a cylinder surface.

persed width of the scattering amplitude, whose mean value indicates the object’s orientation. Thus, a

Gaussian basis function for amplitude response is defined as

A(θ) = exp[−(θ − θo)
2/2σ2], (1)

where the variance σ denotes the scattering persistence, and θo indicates its orientation.

Note that the sphere and top-hat exhibit invariant scattering with respect to the azimuth. Usually, a

Gaussian model with a large variance is also taken as a model of a curved-surface object, e.g., a sphere

or a top-hat.

3.2 Gaussian basis for the phase shift

Planar-surface objects, e.g., a plate, a dihedral and a trihedral, do not cause scattering-induced phase

shift, and their geometric centers coincide with scattering centers. However, curved-surface objects, e.g.,

a sphere, a cylinder, and a top-hat, yield some phase shift on scattering and shift the scattering centers

relative to their geometric centers.

With respect to the geometric center in Figure 4, a phase shift owing to the scattering from a cylinder is

∆φ = 2k · rs = 2ka, (2)

where rs = a[cos θ, sin θ]T is a sliding point, and k = k[cos θ, sin θ]T is the incident wave vector.

Under a small angle approximation cos(θ − θc) ≈ 1 − (θ − θc)
2/2, and Eq. (2) at the center of the

incident angle span can be written as

∆φ = 2k · rsc + 2k · (rs − rsc) ≈ 2k · rsc + ka(θ − θc)
2, (3)
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where rsc represents a focused scattering center position on the cylinder surface rather than its geometric

center, while ka(θ − θc)
2 yields a small positional shift for rsc.

Without loss of generality, the position of a scattering center, r = [x, y]T, is defined to account for both

planar-surface and curved-surface objects. For a planar surface object, the scattering center r is located

at the object’s geometric center, while for a curved-surface object, r is located at the focused scattering

center on the object’s surface. Thus, in general, the scattering phase φ for an object is written as

φ = 2k · r + ka(θ − θc)
2, (4)

where ka(θ − θc)
2 is a special phase modulation for curved-surface objects.

To combine the amplitude and phase Gaussian basis, the GAP model is presented as

S(k, θ) = A exp{−(θ − θo)
2/2σ2 − i[2k · r + ka(θ − θc)

2]}, (5)

where θo, σ, a can be seen as the object’s attributes and the parameter A accounts for the scattering

contribution of the GAP model to the overall scattering.

3.3 Scattering center shift

The phase modulation φm = ka(θ − θc)
2 of the GAP model shifts the scattering center in the time

domain. In the xs − ys coordinate, with the incident direction along the xs axis, this shift is written as

rshift = [∆x,∆y]T,

∆x = c∆t/2, ∆y = λfd/2Ω. (6)

The shift ∆x in the range direction is related to the echo delay ∆t, and the shift ∆y is related to the

Doppler frequency, where Ω = dθ/dt and

∆t = − 1

2π

dφm

df
= a(θ − θc)

2, fd = − 1

2π

dφm

dt
= 2Ωa(θ − θc)/λ. (7)

Substituting (7) into (6), we obtain that the scattering center moves by

rshift(θ) =

[

∆x

∆y

]

=

[

a(θ − θc)
2/2

a(θ − θc)

]

. (8)

Defining the rotation angle τ between the incident coordinate xs − ys and the target coordinate x− y,

and the shift of the scattering center in the target coordinate is written as T̄ (τ) · rshift(θ), with the

rotation matrix

T̄ (τ) =

[

cos τ − sin τ

sin τ cos τ

]

. (9)

4 Gabor transform of the GAP model

To bridge azimuthal scattering in the frequency and time domains, the joint time-frequency analysis has

been applied to transform azimuthal scattering to the imaging spectrogram for feature analysis [5–7].

The Gabor transform is a linear time-frequency analysis [17]. The Gabor transform function is defined as

G(θ; θi, r
′) = exp[−(θ − θi)

2/2σ2
g − i2k · r′], (10)

where σg is the width of the Gabor window, θi is a uniformly discrete angle within [θmin−σg, θmax+σg],

and r′ = [x′, y′]T denotes the position vector in the time domain. σg is related to the azimuthal resolution

δa of the Gabor transform

σg = λ/
√
2δa. (11)
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Figure 5 (Color online) Gabor transform from azimuthal scattering to azimuthal spectrogram. (a) Gabor window;

(b) azimuth spectrogram.

The Gabor transform of scattering data Y (k, θ) yields a complex spectrogram at the azimuth θi,

y(θi, r
′) =

∫

Y (k, θ)G∗(θ; θi, r
′)dk, (12)

where the superscript ∗ denotes a conjugate. Thus, a Gabor transform for scattering data can be con-

sidered as the scattering imaging with a Gaussian window. A sequential Gabor transform was applied

to Y (k, θ) to obtain spectrograms at the azimuthal angles, θ1, θ2, . . . , θNθ
, and the results are shown in

Figure 5, where Nθ is the number of Gabor transforms. Each spectrogram y(θi, r
′) corresponds to the

scattering imaging at the azimuthal center θi. All imaged pixels were stacked at the same position r′,

as indicated by the black dots in Figure 5(b), to form a vector y = [y(θ1, r
′), y(θ2, r

′), . . . , y(θNθ
, r′)]T,

which represents a spectral line at one imaged pixel.

Similarly, a Gabor transform was applied to (5) as well as imaging with a Gaussian window

s(θi, r
′) =

∫

S(k, θ)G∗(θ; θi, r
′)dk

= A

∫

exp[−(θ − θo)
2/2σ2 − (θ − θi)

2/2σ2
g ] exp[i2k · (r′ − r)− ika(θ − θc)

2]dk. (13)

Substituting θ′ = θ − θi and the small angle approximation sin θ′ ≈ θ′, cos θ′ ≈ 1 into (13), the phase

term becomes

2k · (r′ − r)− ka(θ − θc)
2 ≈ −k(aθ′2 + 2pθ′ + 2q), (14)

with

p = (x′ − x) sin θi − (y′ − y) cos θi + a(θi − θc),

q = −(x′ − x) cos θi − (y′ − y) sin θi + a(θi − θc)
2/2.

Thus, the position r′ of the imaged pixels can be represented as

r′ = r + T̄ (θi) · rshift(θi)− T̄ (θi) · [q, p]T, (15)

where first and second terms on the right side represent scattering center position and shift, respectively.

If the imaging grids are sufficiently dense, the third term on the right-hand side of (15) can be neglected

as q = p = 0. It yields

r′ = r + T̄ (θi) · rshift(θi). (16)

Then, Eq. (13) becomes

s(θi, r
′) = Aδ(r′ − r − T̄ · rshift)

∫

exp
[

− (θi + θ′ − θo)
2/2σ2 − θ′2/2σ2

g

]

exp(−ikaθ′2)dk, (17)

where δ(·) is the Dirac delta function.
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Using the Gaussian integral (see Appendix), Eq. (17) becomes

s(θi, r
′) = A′ exp[−(ν1 + iν2)(θi − θo)

2]δ(r′ − r − T̄ · rshift) (18)

with

ν1 =
α(αβ + β2 + γ2)

2[(α+ β)2 + γ2]
, ν2 =

α2γ

2[(α+ β)2 + γ2]
, α =

1

σ2
, β =

1

σ2
g

, γ = 2kca.

The parameter ν2 can be used for categorizing two types of objects, based on ν2 > 0 or ν2 = 0. For

ν2 > 0, Eq. (18) yields a Gaussian phase, and owing to α > 0, β > 0, it is a curved-surface object for

γ > 0. Otherwise, for ν2 = 0, Eq. (18) yields γ = 0 as a planar-surface object (or a horizontal cylinder).

Note that more than two geometric objects can contribute to a given imaged position. In addition,

contributions from different objects might be obtained by varying the incidence. Thus, assuming a total

of M objects at one imaged pixel, Eq. (18) is modified as

s(θi, r
′) =

M
∑

m=1

A′
m exp[−(ν1,m + iν2,m)(θi − θo,m)2]δ(r′ − r − T̄ · rshift). (19)

Based on (12) and (19), the spectrograms of scattering data and the GAP model become the same

after an observed noise w(θi) is added,

y(θi, r
′) =

M
∑

m=1

A′
m exp[−(ν1,m + iν2,m)(θi − θo,m)2]δ(r′ − r − T̄ · rshift) + w(θi). (20)

Parametric estimation of (20) using the least-squares (LS) method suffers from some problems, such

as the modeling order at each imaged position and coupling between the model parameters. Scattering

imaging can be treated as a sparse signal representation [18]. Compressed sensing, e.g., using a greedy

algorithm with the orthogonal matching pursuit (OMP) [19], can be used for solving [20].

Sampling the spans of σ, θo, a in uniform intervals, Mσ,Mθ,Ma respectively, for a sequential Nθ-Gabor

transform, a dictionary of parametric spectrograms is produced

Φ̄=















exp[−(ν1,111 + iν2,111)(θ1 − θo,111)
2] · · · exp[−(ν1,MσMθMa

+ iν2,MσMθMa
)(θ1 − θo,MσMθMa

)2]

exp[−(ν1,111 + iν2,111)(θ2 − θo,111)
2] · · · exp[−(ν1,MσMθMa

+ iν2,MσMθMa
)(θ2 − θo,MσMθMa

)2]
...

...

exp[−(ν1,111 + iν2,111)(θNθ
− θo,111)

2] · · · exp[−(ν1,MσMθMa
+ iν2,MσMθMa

)(θNθ
− θo,MσMθMa

)2]















.

(21)

Using the dictionary Φ̄ for transforming (20), we obtain

y = Φ̄ ·A+w (22)

with

y = [y(θ1, r
′), y(θ2, r

′), . . . , y(θNθ
, r′)]T,

w = [w(θ1), w(θ2), . . . , w(θNθ
)]T,

A = [A′
1, A

′
2, . . . , A

′
MσMθMa

]T.

Based on the sparse constraints on the number of objects, the cost function for the parametric estima-

tion [20] can be written as

Â = min
A

‖ A ‖0, s.t. ‖ y − Φ̄ ·A ‖22 6 ǫ, (23)

where the ℓ0 pseudo-norm ‖ · ‖0 counts the nonzero entries of the amplitude vector of the object. However,

because this problem is a non-convex and NP-hard one, the relaxed expression for the ℓ1 norm, ‖ A ‖1,
is used to obtain a convex problem

Â = min
A

‖ y − Φ̄ ·A ‖22 + η‖ A ‖1, (24)

where η is a regularization parameter. Then, the OMP method is employed to solve (24) for estimating

the parameters [19].
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Table 2 Parameters of the six objects used for validating the model.

Object Position (m) Length (m) Height (m) Radius (m) Orientation (◦)

Dihedral1 (−3.5, 3.5) 0.6 0.1 – 5

Dihedral2 (3.5, 3.5) 0.6 0.1 – −8

Cylinder1 (0, 0) 0.9 – 0.15 0

Cylinder2 (3.5, 3.5) 0.9 – 0.15 4

Sphere (−3.5,−3.5) – – 0.5 –

Trihedral (3.5,−3.5) – 0.08 – 0

5 Experimental validation

5.1 Simulation of simple geometric objects based on the scattering models

Scattering from simple geometric objects, such as dihedral, trihedral, cylinder, and sphere, can be calcu-

lated analytically [11]. To test the model, we assumed six objects that were located on a plane, as shown

in Figure 6(a), with sizes and locations listed in Table 2. Note that dihedral2 and cylinder2 are closely

located in Figure 6(a). In this test, the center frequency was 10 GHz, the bandwidth was 500 MHz,

and the azimuthal synthetic aperture was 30◦. There were 500 and 100 sampling points for the frequen-

cy and azimuth, respectively, and these points were distributed evenly. The wide-angle imaging of the

total aperture is shown in Figure 6(b), and these results were obtained using the back-projection (BP)

algorithm.

The scattering data for these objects were transformed into a group of spectrograms using sequential

Gabor imaging. To obtain the resolution of 0.3 m in the cross-range direction, σg was calculated using (11).

The azimuthal angles θ1, θ2, . . . , θN were sampled uniformly in the [−15◦ + σg, 15
◦ − σg] interval, and

the number of sampling points was Nθ = 25. Figure 7 (a) and (b) show the amplitude and the phase of

spectral lines for the six imaged objects, at their center positions.

The results show that the spectral amplitudes of dihedral1, cylidner1, and trihedral objects follow

Gaussian curves, but the spectral phases appear to remain invariant in the azimuth. Specifically, the

spectral amplitude and phase of the sphere follow Gaussian curves and its amplitude variance is large,

because scattering from a sphere is isotropic in the azimuthal direction, making its spectral lines in

Gaussian-distributed and sliding the scattering center.

It can also be seen that the scattering curves for dihedral2 and cylinder2 are at the same location, but

have different orientations, exhibiting two peaks for the spectral amplitudes (Figure 7(a), dih-cyl) and a

step-like change in the spectral phases (Figure 7(b)).

Based on the results, it can concluded that large-variance Gaussian amplitudes represent wide-angle

persistence, and the spectral phase, being either a line or a curve, indicates a planar-surface or curved-

surface scatterer, respectively. The number of amplitude peaks may indicate the number of objects at

the same imaging position. The phase variation can also indicate whether it is caused by a larger number

of scatterers.

5.2 Scattering classification of a backhoe

The wide-angle scattering data of a backhoe at X-band [21] were employed to validate the GAP model.

The wideband data were chosen with the span [8.5, 11.5 GHz] from the azimuthal angle of 80◦ to that

of 100◦, under nadir observation. Figure 8 (a) and (b) show the backhoe model and the results of its

wide-angle imaging.

A sequential Gabor transform was adopted for the backhoe data, with σg = 0.0707 and Nθ = 30. Three

points, P1, P2, and P3, in Figure 8(b) were specifically chosen for comparing the GAP model results to

the data, and the comparison results are shown in Figure 9. The point P1 is at the scoop side edge and it

shows planar scattering from the scoop side surface, which coincides with the linear invariant phase (blue

curve) in Figure 9(a). The point P2 contains the bracket and others and yields two spectral amplitude

peaks. The point P3 is seen on a wheel, which can be validated by the Gaussian phase in Figure 9(b).
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Figure 6 (Color online) Wide-angle imaging of six objects. (a) Locations of objects; (b) imaging results.
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Figure 7 (Color online) Azimuthal spectral lines for six objects. (a) Amplitude; (b) phase.
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Figure 8 (Color online) The backhoe model and the results of wide-angle imaging. (a) The backhoe model; (b) wide-angle

imaging.

Figure 10 shows the GAP model parameters obtained after processing all imaged pixels with amplitudes

above 5 dB. Figure 10(a) shows the scattering mechanisms, i.e., the number of objects, which coincides

with the backhoe model (e.g., the front and back scoop sides), and two or more objects account for high-

order scattering from the backhoe. The normalized σ/σg in Figure 10(b) can be categorized into three

regions to represent glint, narrow-angle, and persistent scattering, respectively. In Figure 10(c), based

on the parameter a, the objects are categorized as planar-surface or curved-surface ones. Certainly, the

classification in Figure 10 (a)–(c) might be only a rough indication of the attributes affected by scattering,

such as the shape of an object, its orientation, type, and intersection.
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Figure 9 (Color online) Spectrograms of three points for the backhoe model (blue curves: the spectrograms, red curves:

the GAP model estimations). (a) P1; (b) P2; (c) P3.

 

 

Background

1

2

�3

(a)
 

 

Background

�1

(1,1.414)

�1.414

(b)

 

 

Background

Plane

Curved

(c)

Figure 10 (Color online) Pixel classification of backhoe imaging. (a) Number of objects (red: 1, yellow: 2, white: 3

or more); (b) scattering persistence (red: σ/σg 6 1, yellow: 1 < σ/σg <
√
2, white:

√
2 6 σ/σg); (c) scatterer type

(red: planar-surface object, a 6 λ/2; yellow: curved-surface object a > λ/2).

5.3 Scattering classification of a scaled vessel

As another example, the 1/50 scaled model of a vessel in Figure 2 was adopted for demonstrating scat-

tering classification. The parameters of this vessel model, measured in a chamber, were the 147–153 GHz

frequency span and the 85◦–95◦ azimuthal span, with an elevation angle of 45◦. The frequency sampling

step was 7.5 MHz and the azimuthal sampling step was 0.01◦. The results of the scattering-based imaging

of the vessel model, obtained using the BP algorithm, are shown in Figure 11.

Using the Gabor window parameters σg = 0.05 and Nθ = 25, a sequential Gabor transform was

adopted for obtaining the vessel’s spectrogram. Similarly, three points in Figure 11, P1, P2, and P3,
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Figure 12 (Color online) Spectrograms for three points in the vessel model (blue curves: the spectrograms, red curves:

the GAP model estimations). (a) P1; (b) P2; (c) P3.

were chosen for analysis. Figure 12 (a)–(c) show the comparison of spectrograms (blue curves for data,

and red curves for the GAP model). The points P1, P2, and P3 represent one curved-surface object,

two overlapping objects, and one planar-surface object, respectively. Even though the estimation is quite

rough, P1 indicates a curved-surface object on a tower, P2 indicates the front chimney, and P3 indicates

a dihedral geometry on the bottom of the back chimney.

Figure 12 shows that the GAP model results are in a good correspondence with the actual data. In

Figure 13, the vessel imaging data for pixel amplitudes above −10 dB are plotted for the number of

objects, normalized scattering persistence σ/σg, and object type.

The vessel complexity imposes serious layover in imaging, and most of the imaged pixels contain more

than one object, as shown in Figure 13(a). In addition, the dominant scattering scatterers significantly

change with the azimuth, which actually causes more objects to be associated with one pixel. According

to the component decomposition of the vessel model in Figure 2, the vessel is seen as composed of many

simple geometric objects. Owing to the diversity of the scattering persistence of different objects, the

classification in term of the scattering persistence and object type in Figure 13 (b) and (c) only presents

a rough interpretation of the vessel model.

6 Conclusion

Wide-angle synthetic aperture radar (W-SAR) scattering and imaging involve diverse patterns of scatter-

ing, as evident from wide azimuthal angles. Based on the decomposition of electric-large complex targets

into simple objects (as main components), the Gaussian amplitude-phase (GAP) model in the time do-

main called the parametric spectrogram was derived for characterizing azimuthal scattering from simple
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Figure 13 (Color online) Pixel classification of vessel imaging. (a) The number of objects (red: 1, yellow: 2, white: 3

or more); (b) scattering persistence (red: σ/σg 6 1, yellow: 1 < σ/σg <
√
2, white:

√
2 6 σ/σg); (c) scatterer type

(red: planar-surface object, a 6 λ/2; yellow: curved-surface object a > λ/2).

geometric objects. Using the Gabor transform, the parameters of the GAP model, such as the scattering

persistence, orientation, the number and type of the objects in the imaged pixels, were estimated using

the OMP algorithm. Experimental W-SAR data of a backhoe and a vessel model were employed for

validating the GAP model performance on object classification tasks.
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Appendix A Calculation of (17)

Eq. (17) is a double integral over both the frequency and the azimuthal angle. Replacing k by the central frequency kc,

Eq. (17) becomes a single integral over θ′,

s(θi, r
′) = A′δ(r′ − r − T̄ · rshift)

∫

exp[−(θi + θ′ − θo)
2/2σ2 − θ′2/2σ2

g ] exp(−ikcaθ
′2)dθ′. (A1)

It is known that
∫

∞

−∞

exp(−tx2)dx =
√

π/t. (A2)

It can be seen that the Gabor function has a Gaussian window, which makes the amplitude of the Gabor function

decrease exponentially with increasing |θ′|. Beyond the span of θ′ = ±3σg , the amplitude quickly decreases to less than 1%

of the maximum. Thus, it remains only to integrate over a limited range of |θ′|.
Defining α = 1/σ2, β = 1/σ2

g , γ = 2kca, with variable substitution, Eq. (A1) becomes

s(θi, r
′) = A′δ(r′ − r − T̄ · rshift)

∫

exp[−(α+ β + iγ)θ′2/2− α(θi − θo)θ
′ − α(θi − θo)

2/2]dθ′. (A3)

Substituting t1 = (α + β + iγ)/2, t2 = α(θi − θo)/2, t3 = α(θi − θo)2/2 into (A3), it becomes

s(θi, r
′) = A′δ(r′ − r − T̄ · rshift)

∫

exp(−t1θ
′2/2− 2t2θ

′ − t3)dθ
′

= A′δ(r′ − r − T̄ · rshift)
∫

exp(−t1(θ
′2 + t2/t1)

2 + t22/t1 − t3)dθ
′. (A4)

Then, Eq. (A4) can be approximately calculated as

s(θi, r
′) ≈ A′

√

π/t1 exp(t
2
2/t1 − t3)δ(r

′ − r − T̄ · rshift). (A5)

Finally, substituting t1, t2, t3 into (A5), we obtain

s(θi, r
′) = A′ exp[−(ν1 + iν2)(θi − θo)

2]δ(r′ − r − T̄ · rshift), (A6)

with

ν1 =
α(αβ + β2 + γ2)

2[(α + β)2 + γ2]
, ν2 =

α2γ

2[(α + β)2 + γ2]
,

where A′ has combined a amplitude
√

2π/(α + β + iγ).
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