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Abstract The unicost version of well-known set covering problem (SCP) is central to a wide variety of practical

applications for which finding an optimal solution quickly is crucial. In this paper, we propose a new local search-

based algorithm for the unicost SCP which follows the general framework of the popular stochastic local search

with a particular focus on the hyperedge selection strategy and weight diversity strategy. Specifically, a strategy

as called hyperedge configuration checking strategy is proposed here to avoid the search trajectory which leads

to local optima. Additionally, a new weight diversity strategy is proposed for the diversification of search results,

by changing the weight of both covered and uncovered vertices in the current solution. The experimental results

show that our algorithm significantly outperforms the state-of-the-art heuristic algorithm by one to two orders

of magnitudes on the 85 classical instances. Also, our algorithm improves the current optimal solutions of

11 instances.
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1 Introduction

The unicost set covering problem (SCP) is a prototypical NP-complete (Non-deterministic Polynomial)

problem [1] which consists in finding the smallest size subset whose union equals the set of all vertices

when the cost of each hyperedge is equal. Otherwise, the problem is called the non-unicost SCP or weight

SCP. This problem is known to be equivalent to the classical integer linear program [2] and minimum

hitting set [3,4] and can be formulated as a minimum vertex cover [5,6] in hypergraphs. The SCP plays

a prominent role in various areas of artificial intelligence and has been widely used due to its theoretical

interest and significance in numerous practical applications like crew scheduling problem [7], model-based

diagnosis [8, 9], multiple-query optimization problem [10, 11], and so on.
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The most popular practical algorithms for SCP can be divided into two classes: exact algorithms and

incomplete algorithms. For exact algorithms, a large amount of effort has been made, including [12–18].

The advantage of these algorithms is that they guarantee the optimality of the solutions they find,

but they may fail to get a solution within reasonable time in conditions of large-scale SCP instances.

Comparatively, incomplete algorithms cannot determine with certainty whether the returned solution

is best. However, for large-scale instances incomplete algorithms are often applied without substantial

computational effort and usually perform surprisingly effectively on some random or hard instances.

In the last decade, many advances in incomplete algorithms have been designed. In [19], a local search

algorithm for SCP is proposed with three characteristics: 3-flip neighborhood, searching the infeasible

region, and using the information from the Lagrangian relaxation to reduce the size of the problem.

In [20], a reactive tabu search algorithm with variable clustering for the unicost SCP is proposed. Then,

a dynamic primal-dual algorithm [21] applies the tabu search based on primal intensive scheme with a

Lagrangian-based dual intensive scheme. Different relaxation heuristics are designed for SCP [22]. Apply-

ing Meta-RaPS [23] to solve SCP is simple and easy to code. In [24], a GRASP algorithm incorporating

a local improvement procedure based on the heuristics is proposed to solve SCP. Normalization rules [25]

demonstrate their superiority to the classical Chvátal rule, especially when solving large-scale and real-

world instances. The other type of solving SCP method includes ABC (Artificial Bee Colony) [26, 27],

ACO (Ant Colony Optimization) [28, 29], GA (Genetic Algorithm) [30], and so on. In this paper, we

highlight the work of electromagnetism metaheuristic method EM [31] which after generating a pool of

solutions to create the initial population applies a fixed number of local search and movement itera-

tions and also uses mutation to further escape from local optima. The results show that this method

outperforms most previous heuristic approaches.

In this paper, we follow this line of research by proposing a new local search algorithm for unicost

SCP. As is well known, the cycling problem is a key issue of local search algorithms. Accordingly,

several strategies have been proposed to tackle this. Among these, tabu mechanism [32] and random

walk strategy [33] may be the two most widely used methods. Recently, the configuration checking

strategy [5,34–39], proposed by Cai et al., was another successful method in avoiding cycling search. The

main idea of configuration checking is to take the circumstances of the solution component (i.e., a basic

element of the solution, which can be a variable or a vertex, for example) into account when selecting a

solution component to change its value. The tabu mechanism forbids reversing the recent changes, where

the forbidding strength is controlled by a parameter called tabu tenure. Usually, this tabu tenure is set to

be 1 to avoid manual parameter adjustment. For a given solution component, if it is forbidden to select

by the tabu mechanism, it is also forbidden by the configuration checking strategy, while its reverse is not

necessarily true. The random walk strategy with a probability picks the solution component randomly and

with another probability greedily makes the best possible local move. If this random probability′s value is

large, for a candidate solution, this strategy could lead to a random move. In this sense, the advantage of

configuration checking over random walk strategy and tabu mechanism is that its forbidding strength is

between forbidding strengths of the tabu mechanism and the random walk strategy and appears neither

too weak nor too strong. Up to now, the configuration checking strategy has been successfully used to

solve minimum vertex cover, which is seen as one of the best known combinatorial optimization problems

in the past decades. Also, different kinds of variants of configuration checking have also been proposed,

as can be seen in [34–36,38].

In this paper, to make configuration checking applicable to the unicost SCP, a novel variant of con-

figuration checking, hyperedge configuration checking, is proposed first. This strategy remembers the

circumstance of a hyperedge when it is removed or added and prevents it from being added into the can-

didate solution if its circumstance has not been changed since its last changing, where the circumstance

of a hyperedge refers to truth value of all its neighbors.

Second, a new hyperedge selection and weight diversity strategies are proposed. We consider some

special vertices covered by one or more hyperedges of the candidate solution in the phase of adding

or removing hyperedges, distinguishing this property from previous vertex properties. We apply the

hyperedge configuration checking and this vertex property to design a novel hyperedge selection strategy
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which allows us to make better use of the relevant information of candidate solution to avoid the recently

visited solution and minimize search stagnation. Furthermore, we also design a new weight diversity

strategy for the diversification of search results.

Finally, a novel stochastic local search algorithm for unicost SCP called uSLC is proposed by incorporat-

ing all the above strategies: hyperedge configuration checking strategy, hyperedge selection strategy, and

weight diversity strategy. We use the benchmark instances of the OR-Library [40] and BHOSLIB [41]

to conduct extensive experiments to compare our algorithm against a state-of-the-art SCP algorithm,

EM [31]. In the 70 random instances where the number of hyperedges is larger than the number of ver-

tices, the experiment shows that our algorithm uSLC outperforms EM by one to two orders of magnitudes

in terms of run time. In particular, some instances have the maximum speed-up of 103 times. In the

rest 10 combinatorial and logical instances where the number of hyperedges is smaller than the number

of vertices, the speed-up is also 9 times on average. In the BHOSLIB benchmark, our algorithm uSLC

could find all optimal solutions. It is also proved that our algorithm improves 11 current best solution

values.

The remainder of this paper is organized as follows: Section 2 provides some necessary background

knowledge. Then, Sections 3 and 4 present the hyperedge configuration checking, a novel hyperedge

selection strategy, and a new weight diversity strategy. After that, Section 5 develops our algorithm

uSLC. Then, Section 6 shows the experimental results on 85 instances and gives a detailed analysis.

Finally, Section 7 gives the conclusion and future direction.

2 Preliminaries

We call an undirected hypergraph G=(V , E) with a vertex set V {v1, v2, . . . , vm} of m vertices and a

hyperedge set E {e1, e2, . . . , en} of n hyperedges whose union equals the vertex set V . An undirected

hyperedge containing just two vertices is a simple undirected edge. Each vertex v is associated with a

weight w(v), which is assigned to 1 initially. A vertex v is said to be incident with a hyperedge e when

v ∈ e.

The aim of unicost SCP is to find the smallest hyperedges to cover all vertices. A candidate solution

CS is a subset of hyperedges. A vertex is covered by a candidate solution if this vertex is incident with a

hyperedge in this candidate solution. Two hyperedges are neighbors when they cover at least one vertex

simultaneously. We use N(e) to denote the set of neighbor hyperedges of a hyperedge e.

The previous local search algorithms never take circumstance information into consideration, but only

select variables based on their information, such as score [42, 43] and age [44]. However, configuration

checking combines the circumstance information with the traditional strategies on the selecting procedure.

Configuration checking is an effective method to handle the cycling problem, which has already

been successfully used in minimum vertex cover problem [5, 45], SAT (Boolean Satisfiability Prob-

lem) [34–36, 46], and MaxSAT [39]. The idea of configuration checking prevents local search algorithms

from encountering a previously visited scenario. Configuration checking remembers the circumstance in-

formation of each variable and forbids selecting variable x whose circumstance information has not been

changed since the last time x was selected. In the context of SAT and MaxSAT, the configuration of a

variable x refers to a vector consisting of Boolean values of x’s all neighboring variables [35,37,39], while

in [38] the configuration of a variable x refers to the states of all clauses in which x appears.

Definition 1. A variable x is defined as a configuration changed variable if and only if after the last

time x was flipped, at least one neighbor y of x has been flipped.

An implementation of the configuration checking strategy is to apply a Boolean array confchange for

variables, where confchange(x)=1 means x is a configuration changed variable, and confchange(x)=0

on the contrary. During the local search procedure, the variables with confchange(x)=0 are forbidden

to be selected in the greedy mode.

In the beginning of local search, for each variable x, the value of confchange(x) is initialized as 1.

Afterward, when selecting variable x, confchange(x) is set to 0, and for each variable y of x’s neighbor,
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confchange(y) is set to 1.

3 Hyperedge configuration checking

In recent years, in the field of local search algorithms, quite a lot of heuristic strategies have been

put forward. Among them, configuration checking strategy stands out for its accessible and superior

experimental results. Inspired by this idea, we adopt the configuration checking strategy to solve unicost

SCP. In this paper, this strategy is not exactly the same as the previous configuration checking. Compared

with the previous one which is used to solve the minimum vertex cover in simple graph, the application

of configuration checking is extended into hypergraph to solve the unicost SCP.

In our new algorithm, we propose an alternative configuration checking strategy, called hyperedge

configuration checking. At first, before giving some rules of hyperedge configuration checking, the concept

of hyperedge configuration is provided. The hyperedge configuration of a hyperedge refers to the truth

values of all its neighbor hyperedges. We give the formal definition of hyperedge configuration in unicost

SCP as follows.

Definition 2. Given a hypergraph G=(V ,E) and a candidate solution CS, the hyperedge configuration

of e is a vector consisting of Boolean values of all hyperedges in N(e) under this candidate solution CS.

Given a hypergraph G, the hypergraph configuration checking can be described as follows. When

selecting a hyperedge and adding it into a candidate solution, for a hyperedge e, if the circumstance of e

never changes, that is, the hyperedge configuration of e has not changed since e’s last changing, then it

should not be added. This strategy effectively prevents the local search algorithm from encountering a

previous scenario.

We implement the hyperedge configuration checking strategy with a |N |-size Boolean array ECC

whose size equals the number of hyperedges in unicost SCP. Each hyperedge keeps an ECC value, that

is, ECC[e]=1 means this hyperedge could be selected in the next adding procedure, and on the contrary

otherwise. During the search procedure, the ECC array is maintained as follows.

ECC-RULE1. At the start of local search, for each hyperedge e, ECC[e] is initialized as true.

ECC-RULE2. When removing e from a candidate solution CS, ECC[e] is reset to false, and for

e′ /∈ CS and e′ ∈ N(e), ECC[e′] is reset to true.

ECC-RULE3. When adding e into a candidate solution CS, for e′ /∈ CS and e′ ∈ N(e), ECC[e′] is

reset to true.

After removing one hyperedge, the ECC values of all neighbors of this hyperedge not in the CS are

assigned as true and the ECC value of this removed hyperedge is assigned as false. When adding one

hyperedge, the changing process is the same as the removing phase except the ECC value of the current

hyperedge is set to false.

4 Hyperedge selection strategy and weight diversity strategy

During the local search process, the core operation is how to select a hyperedge to remove from or add

into a candidate solution, which directly affects the efficiency and quality of the solution. For this reason,

we use the vertex property to define the new score function and combine this function with the proposed

hyperedge configuration checking to guide a novel hyperedge selection strategy scheme, which includes

two rules: REMOVE-RULE and ADD-RULE. Also, after removing and adding hyperedges, we need to

update the weights of some vertices to search the solution spaces as much as possible. Therefore, we also

give the new weight diversity strategy to update the covered and uncovered vertices, respectively, by the

candidate solution.

4.1 A novel hyperedge selection strategy

Some covered special vertices by the candidate solution are considered and we use the covered degree to

define these special vertices, which is formally defined as follows.
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Definition 3. For a hypergraph G and a candidate solution CS, the covered degree of a vertex v is

defined as the number of hyperedges, including this vertex v, in the candidate solution. A vertex with

the covered degree d is said to be d-covered vertex.

This definition is similar to the definition of satisfaction degree of clauses in SAT [34]. According to

Definition 3, a d-covered vertex is covered by the candidate solution if d > 0, otherwise uncovered on the

contrary. In the following, we give the formal definition of d-score and d-rscore.

Definition 4. For a hyperedge e and a candidate solution CS, d-score(e) is defined as the sum of weights

of d-covered vertices that would become (d+1)-covered by adding this hyperedge into CS. Similarly, d-

rscore(e) is defined as the sum of weights of (d+1)-covered vertices that would become d-covered vertices

through removing this hyperedge from CS.

The previous SCP algorithms only use 0-score and 0-rscore to guide the local search. This simple score

function is not enough information to exactly guide the local search. In this work, d-covered vertices

are the most useful to solve the unicost SCP when adding hyperedges into the candidate solution, as

these vertices may become uncovered easily in the next process for computing unicost SCP. Thus, it is

beneficial when taking into account the transformations between d-covered and (d+1)-covered vertices in

the candidate solution. Based on these considerations, we design a new score function, which is formally

defined as follows.

Definition 5. For a hypergraph G=(V , E), a hyperedge e, and a candidate solution CS, the score

function denoted by score is a function such that

score(e) =















m−1
∑

d=0

d− score(e), e /∈ CS,

0− rscore(e), e ∈ CS,

(1)

where m is the number of vertices in the hypergraph G.

0-score and 0-rscore describe the greediness of adding and removing hyperedges at the current local

search iteration. Also, d-score can forecast the subsequent greediness of adding hyperedges, which would

have more d-covered and (d+1)-covered vertices. To combine with the current greediness and subsequent

greediness, a new score function is a linear combination of d-score and (d+1)-score. For most instances,

the score function is more effective to compute unicost SCP than only using 0-score and 0-rscore. This

new function is simple, but is very useful to compute the unicost SCP with some forward predictions.

Our novel hyperedge selection strategy scheme applies hyperedge configuration checking and new score

function to determine which hyperedge to be removed or added, which is maintained according to the

following rules.

REMOVE-RULE. Picking one hyperedge e, which has the smallest score value, breaking ties in

favor of the oldest one.

ADD-RULE. Picking one hyperedge e with ECC[e]=true, which has the greatest score value,

breaking ties in favor of the oldest one.

When finding one hyperedge removed from CS, we try to find one hyperedge with the smallest score

value, which means that this process should keep a candidate solution CS less uncovered hyperedges to

not influence damaging the effectiveness of candidate solution. When selecting one hyperedge to add

into CS, this strategy speeds up to find the solution in the search space with finding the hyperedge with

the greatest score value. To avoid visiting the previous candidate solution, ECC value of this added

hyperedge should be true.

4.2 A novel weight diversity strategy

In this subsection, we present a new weight diversity strategy, which plays an important role in our

algorithm.

The proposed method works as follows. In each iteration, we use a new strategy to maintain vertex

weighting diversity. After removing and adding hyperedges, vertex weighs of the uncovered vertices in
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a candidate solution CS are increased by the value of parameter p. On the other hand, vertex weights

of covered vertices of a candidate solution are decreased by another parameter p. This new preventative

strategy is defined as follows.

DIVER-RULE1. w(v)=w(v)+p, for uncovered vertices of the candidate solution.

DIVER-RULE2. If w(v)> p, then w(v)=w(v)−p, for covered vertices of the candidate solution.

We then use two rules to prioritize vertices for selecting the next move hyperedge. To the best of our

knowledge, two proposed diversity rules use vertex weight for learning the previous visiting paths, which

is different from the previous method. In [5], the edge weighting with forgetting in the NuMVC works

as follows. In each iteration, edge weights of uncovered edges are increased by one. When the average

weight achieves threshold, all weights are reduced to forget the earlier weighting decisions applying the

formula w(e)=w(e)∗α.

5 A new local search algorithm for unicost SCP

We use the hyperedge selection and weight diversity strategies to improve the local search algorithm and

propose a new algorithm called uSLC for the unicost SCP computation. We outline our algorithm uSLC,

as described below.

Algorithm 1 uSLC algorithm

1: initialize ECC according to ECC-RULE 1

2: initialize the weight of vertices and the score of hyperedges

3: generate the initial candidate solution CS

4: CS∗ ← CS

5: while stop criterion is not satisfied do

6: if there are no uncovered vertices then

7: CS∗ ← CS

8: e← select one hyperedge from CS according to REMOVE-RULE

9: CS ← CS \ {e}

10: update ECC according to ECC-RULE 2

11: continue

12: end if

13: e← select one hyperedge from CS according to REMOVE-RULE

14: CS ← CS \ {e}

15: update ECC according to ECC-RULE 2

16: select an uncovered vertex v randomly

17: e← select one hyperedge from v according to ADD-RULE

18: CS ← CS ∪ {e}

19: update ECC according to ECC-RULE 3

20: diversify vertex weight according to DIVER-RULE 1 and DIVER-RULE 2

21: end while

22: return CS∗

In the beginning, ECC is initialized as 1 for each hyperedge, which means all hyperedges are allowed

to be added into a candidate solution CS. Also, the weight of each vertex is initialized as 1, and the

score values of hyperedges are computed accordingly. The current candidate solution CS is generated

with the greedy algorithm. The greedy initialization algorithm finds a solution for the unicost SCP by

iteratively selecting the hyperedge that covers as many remaining uncovered vertices as possible until CS

covers all vertices. Then, CS∗ stores this solution. When we say the oldest one, we refer to the one with

the minimum step number value, in which one hyperedge is picked most recently.

After the initialization, the loop (lines 5–21) is executed until a stop criterion is satisfied. During the

search procedure, whenever a better solution is found, the best solution CS∗ will be updated (line 7),

which means uSLC will try to find the solution of smaller size. Then, our algorithm picks one hyperedge

removed from CS according to REMOVE-RULE (line 8), so that our algorithm can go to search for a

set cover of size |C|=|C∗|−1 (line 9). Then, our algorithm updates ECC values with ECC-RULE2 (line

10).
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Table 1 Instances features

Set Vertices Hyperedges Density No. of instances Problem type

SCP4 200 1000 2 10 Random

SCP5 200 2000 2 10 Random

SCP6 200 1000 5 5 Random

SCPA 300 3000 2 5 Random

SCPB 300 3000 5 5 Random

SCPC 400 4000 2 5 Random

SCPD 400 4000 5 5 Random

SCPE 50 500 20 5 Random

SCPNRE 500 5000 10 5 Random

SCPNRF 500 5000 20 5 Random

SCPNRG 1000 10000 2 5 Random

SCPNRH 1000 10000 5 5 Random

In each iteration of this loop, uSLC swaps two hyperedges in the following ways. If finding a hyperedge

with the smallest score value, then this selected hyperedge is removed from a candidate solution, breaking

ties in favor of the oldest hyperedge (line 13). After removing the picked hyperedge from the candidate

solution (line 14), uSLC updates the ECC according to ECC-RULE2 (line 15). uSLC keeps track of the

hyperedge last inserted into a candidate solution CS and prevents it from being added immediately. After

removing a hyperedge, uSLC selects a vertex randomly from all uncovered vertices (line 16) and picks

one of the hyperedges covering this vertex to add into a candidate solution as follows: if some hyperedges

of this vertex satisfy ECC[e]=1, then uSLC selects the one with the highest score value, breaking ties in

favor of the oldest hyperedge (line 17). Along with adding this hyperedge, the value of ECC is updated

accordingly (line 19).

At the end of each iteration, uSLC updates the weights of vertices (line 20). Our algorithm uses the

weight diversity strategy. Specifically, the weights of uncovered vertices are increased by p and then the

weights of covered vertices are decreased by p.

6 Results

In this section, to demonstrate the effectiveness of our improving algorithm, we compare uSLC with

EM [31], which is the best computing unicost SCP solver. To evaluate the performance of uSLC, we

adopt two performance measurements, the run time (measured in CPU seconds) and the size of solution

value.

The benchmarks. The instances of random, combination, and logic domains are selected from OR-

Library [40] and BHOSLIB [41] generated randomly based on the model RB [46–50]. In total, 85 problem

instances were selected. The characteristics of the instances selected are summarized in Tables 1 and 2.

As previous studies are devoted to the unicost problem, the weights associated with the vertices appearing

in each instance were ignored.

Implementation. Our algorithm uSLC is implemented in C and compiled by gcc with the −O2

option. For all instances, the random seed used in the execution of uSLC has been fixed to 0.

Computation platform. It is important to note that Naji-Azimi [31] carried out the computation

experiments on a 1.7 GHz PC. Therefore, our experiment is also run at 1.7 GHz and with a 2 GB RAM

under LINUX.

In our experiments, each instance terminates upon finding an optimal solution or reaching a given cutoff

time which is set to 4000 s for each instance except for the challenging instance SCPCYC11, for which

the cutoff time is set to 18000 s. We use the time required to reach the optimum as the main criterion

for comparing our algorithm with EM. Our tested instances are divided into two groups, including the

first group where the number of hyperedges is larger than the number of vertices and the second group

where the number of hyperedges is smaller than the number of vertices.
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Table 2 Details of the individual instances

Instance Vertices Hyperedges Density Problem type

scpclr10 511 210 12.3 Combinatorial

scpclr11 1023 330 12.4 Combinatorial

scpclr12 2047 495 12.5 Combinatorial

scpclr13 4095 715 12.5 Combinatorial

scpcyc06 240 192 2.1 Logical

scpcyc07 672 448 0.9 Logical

scpcyc08 1792 1024 0.4 Logical

scpcyc09 4608 2304 0.2 Logical

scpcyc10 11520 5120 0.8 Logical

scpcyc11 28160 11264 0.02 Logical

frb30-15-1 17827 450 14.1 Model RB

frb30-15-2 17874 450 14.2 Model RB

frb30-15-3 17809 450 14.1 Model RB

frb30-15-4 17831 450 14.1 Model RB

frb30-15-5 17794 450 14.1 Model RB

Figure 1 Scatter plot: uSLCp14 versus the other values

of parameter p.

Figure 2 Scatter plot: uSLC versus uSLC1.

First, there is a parameter p in our algorithm uSLC , which specifies a novel weight diversity strategy.

We investigate how uSLC performs with different settings of this parameter. The investigation is carried

out on OR-Library. Figure 1 presents the performance of uSLC with various values of p. As we can

see from Figure 1, the parameter p assigned to 14 yields relatively good performance for most cases

and exhibits better robustness over the instances than other assignments. Therefore, the parameter p is

assigned to 14.

We design four algorithms: uSLC1 without hyperedge configuration checking; uSLC2 without a novel

hyperedge selection strategy, which would randomly select the removed and added hyperedges; uSLC3

without a novel weight diversity strategy, where uncovered vertices will be increased by one and when

the average vertex weight is larger than threshold, we will update all vertex weights; and uSLC with a

novel hyperedge selection strategy based on hyperedge configuration checking and a novel weight diversity

strategy.

Figures 2–4 plot the run times of our approach uSLC versus the algorithms uSLC1, uSLC2, and uSLC3,

along with the 1X, 10X, and 100X lines, clearly showing the superiority of the proposed strategies and

hyperedge configuration checking. As shown, uSLC is clearly faster than uSLC1, uSLC2, and uSLC3.

To have a fair comparison, we should only consider the instances whose solution values are the same
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Figure 3 Scatter plot: uSLC versus uSLC2. Figure 4 Scatter plot: uSLC versus uSLC3.

with that obtained by our algorithm uSLC and EM and this comparison is shown in the following tables

giving the run time.

Tables 3 and 4 summarize the experimental results on the first group by our algorithm uSLC and the

reference algorithm EM. For each algorithm, we show the solution value obtained and the run time with

which the best solution is found.

As is obvious from Table 3, uSLC shows significant superiority to SCP4-6 and SCPA-E. It significantly

outperforms EM in terms of run time. Particularly, for the instances of SCP5, the run time of our

algorithm is almost 218 times and more than two orders of magnitudes less than that of EM. The

experimental results on the SCPA, SCPB, SCPC, SCPD, and SCPE are presented in Table 3. For

these 25 instances, the speed-up is 113 times on average. More importantly, the instance scpc1 shows a

maximum speed-up of 1152 times on these five instance sets.

Table 4 shows the comparative results obtained on the SCPNRE, SCPNRF, SCPNRG, and SCPNRH.

For SCPNRE, SCPNRF, and SCPNRG, the run time of uSLC is always much shorter than that of the

corresponding EM. uSLC can find the same size of solution value as EM except scpnre1. However, for

SCPNRH, EM consumes much less run time than our algorithm in solving scpnrh4.

EM improved four additional best known solutions (scp46, scp48, scp64, and scpd1) and first found

the current best solution values of scpnrg1 and scpnrg2 with different parameter settings. Our proposed

algorithm uSLC can also obtain the same solution values of these instances with fixed parameter settings.

Therefore, the effectiveness and performance of uSLC are not subject to its parameters. More importantly,

uSLC improves the current best solution values for 11 instances as reported in Table 5.

Table 6 lists the number of optimal or best solutions found by four state-of-the-art algorithms, uSLC,

EM [31], GRASP [24], and R-Gr [51] with the cutoff time of 15000 s. uSLC finds all the best-known

solutions for the 70 unicost random instances in the first group except for scpnre1.

For 10 instances in the second group, we use the new initialization method where the size of the

candidate solution is initialized to the given upper bound, because with the previous initialization one

cannot obtain a good initial solution. The experimental results of EM and uSLC on the SCPCLR and

SCPCYC are presented in Table 7. For SCPCLR, uSLC dramatically outperforms EM once again except

scpclr12. For SCPCYC, our algorithm runs faster than EM on the scpcyc6, scpcyc7, scpcyc8, scpcyc9,

and scpcyc11, while the solution values of scpcyc10 by EM could be found more quickly than that of our

algorithm. Note that in [31], through applying different parameters and seeds, EM obtains better results

in cases of scpcyc9, scpcyc10, and scpcyc11. In fact, our algorithm can obtain the same results using

different parameters. The performance of uSLC on the BHOSLIB is displayed in Table 8. Our algorithm

uSLC finds all the optimal solutions for five instances and exhibits great performance on the BHOSLIB

benchmark.
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Table 3 Experiment results on the SCP4–6 and A–E

Instance EM sol EM t (s) uSLC sol uSLC t (s)

scp41 38 22.7 38 0.22

scp42 37 1.57 37 0.02

scp43 38 3 38 0.15

scp44 38 74.38 38 3.33

scp45 38 2.4 38 0.76

scp46 38 3.17 38 0.03

scp47 38 17 38 0.65

scp48 38 3.07 38 0.09

scp49 38 0.57 38 0.11

scp410 38 6.72 38 2.6

scp51 34 6.84 34 0.4

scp52 34 220.05 34 0.43

scp53 34 25.91 34 2.26

scp54 34 27.16 34 0.1

scp55 34 5.84 34 0.43

scp56 34 297.62 34 0.37

scp57 34 6.34 34 0.06

scp58 34 61.41 34 0.19

scp59 35 33.3 35 0.04

scp510 34 7.87 34 10.8

scp61 21 1.87 21 0.29

scp62 20 79.71 20 0.94

scp63 21 0.08 21 0.01

scp64 21 10.89 21 0.11

scp65 21 2.09 21 0.21

scpa1 39 28.85 39 1.71

scpa2 39 182.56 39 1.32

scpa3 39 140.21 39 0.61

scpa4 38 18.74 38 0.56

scpa5 38 7.81 38 0.43

scpb1 22 44.32 22 0.64

scpb2 22 7.39 22 0.15

scpb3 22 7.04 22 0.52

scpb4 22 29.04 22 0.79

scpb5 22 42.86 22 0.87

scpc1 43 921.96 43 1.06

scpc2 43 1023.79 43 1.99

scpc3 43 918.46 43 3.12

scpc4 43 28.49 43 8.22

scpc5 43 1007.09 43 7.47

scpd1 25 49.06 25 1.63

scpd2 25 18.76 25 2.34

scpd3 25 73.53 25 0.37

scpd4 25 50.56 25 5.47

scpd5 25 212.56 25 1.06

scpe1 5 0.01 5 0.01

scpe2 5 0.01 5 0.01

scpe3 5 0.01 5 0.01

scpe4 5 0.05 5 0.01

scpe5 5 0.02 5 0.01
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Table 4 Experiment results on the SCPNR E–H

Instance EM sol EM t (s) uSLC sol uSLC t (s)

scpnre1 16 1305.72 17 20.78

scpnre2 17 22.61 17 0.03

scpnre3 17 50.67 17 14.16

scpnre4 17 43.31 17 2.94

scpnre5 17 10.78 17 0.02

scpnrf1 10 145.71 10 17.41

scpnrf2 10 1325.44 10 155.45

scpnrf3 10 1399.77 10 52.69

scpnrf4 10 120.2 10 40.24

scpnrf5 10 1651.14 10 8.1

scpnrg1 63 101.75 63 5.45

scpnrg2 63 127.87 63 2.35

scpnrg3 63 124.47 63 1

scpnrg4 63 117.15 63 0.51

scpnrg5 63 32.38 63 6.51

scpnrh1 34 755.72 34 452.92

scpnrh2 34 464.4 34 439.31

scpnrh3 34 1760.62 34 75.25

scpnrh4 34 227.73 34 809.13

scpnrh5 34 1912.47 34 561.47

Table 5 Improved solution value found by uSLC

Instance EM sol uSLC sol uSLC t (s)

scp46 37 37 2.41

scp48 37 37 2.4

scp64 20 20 1.1

scpa2 39 38 17.15

scpa4 38 37 265.59

scpd1 24 24 7.1

scpd2 25 24 475.14

scpd3 25 24 304.93

scpd4 25 24 269.9

scpd5 25 24 755.43

scpnrg1 62 61 266.17

scpnrg2 62 61 137.43

scpnrg3 63 61 172.58

scpnrg4 63 61 149.03

scpnrg5 63 61 275.61

Table 6 Number of optimal/best-known solutions

SCP4-6 SCPA-E SCPE-H Total

uSLC 25/25 25/25 19/20 69/70

EM 25/25 19/25 15/20 59/70

GRASP 17/25 13/25 14/20 44/70

R-Gr 1/25 7/25 6/20 14/70

7 Summary and future work

This paper presents the local search algorithm named uSLC for solving the unicost SCP. We propose some

new vertices weight rules to design the hyperedge selection scheme and weight diversity strategy to escape

from current and previous local optimal solutions. Also, we use the hyperedge configuration checking
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Table 7 Experiment results on the SCPCLR and SCPCYC

Instance EM sol EM t (s) uSLC sol uSLC t (s)

scpclr10 25 0.57 25 0.01

scpclr11 23 15.53 23 0.97

scpclr12 23 109.69 23 430.87

scpclr13 23 3539.45 23 1152.7

scpcyc6 60 0.08 60 0.03

scpcyc7 144 1.97 144 1.21

scpcyc8 344 303.4 344 30.95

scpcyc9 812 407.63 812 316.47

scpcyc10 1915 1892.06 1915 2645.95

scpcyc11 4272 12922.03 4272 11161.3

Table 8 Experiment results on the BHOSLIB

Instance uSLC sol uSLC t (s)

frb30-15-1 420 382.45

frb30-15-2 420 7.15

frb30-15-3 420 64.03

frb30-15-4 420 33.77

frb30-15-5 420 629.44

strategy to remember the relevant information of removed and added hyperedges. The experimental

results show that uSLC performs essentially better than EM on most instances.

As for future work, given the success of uSLC in this paper, we consider that it may further improve the

current algorithm of computing the unicost SCP if we combine other ideas such as the ACO [29]. Also,

we would like to test our algorithm on other instances, including some hitting set instances. Envisioned

research directions about the proposed strategies include applying the new score function to other local

search algorithms and trying to find some other important properties of local search algorithms.
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