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Abstract The fusion of multiple video sensors provides an effective way to improve the robustness and accuracy

of video surveillance systems. In this paper, an adaptive fusion method based on a decentralized Kalman filter

(DKF) and sensor confidence is presented for the fusion of multiple video sensors. The adaptive scheme is

one of the approaches used for preventing the divergence problem of the filter when statistical values of the

measurement noises of the system models are not available. By introducing the sensor confidence, we can

adaptively adjust the measurement noise covariance matrix of the local DKFs and thus, determine the weight of

each sensor more correctly in the fusion procedure. Also, the DKF applied here can make full use of redundant

tracking data from multiple video sensors and give more accurate fusion results in an efficient manner. Finally,

the fusion result with improved accuracy is obtained. Experimental results show that the proposed adaptive

decentralized Kalman filter fusion (ADKFF) method works well in the case of real-world video sequences and

exhibits more promising performance than single sensors and comparative fusion methods.
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1 Introduction

With the significant progress in sensor technology and its applications, an increased requirement to

improve the ability to remotely monitor a complex environment has made automatic surveillance systems

a promising research field over the last few decades [1, 2]. One of the most important goals of these

recent surveillance systems is the automatic assessment of what is happening in the monitored scene and

presenting suspect cases to the system. These tasks can be carried out by getting the targets’ trajectories

in the monitored place and analyzing them by comparing them with the existing well-studied patterns [3].

To obtain trajectories with better robustness and accuracy of the moving targets in the monitored place,

multiple sensors are placed in the same area to produce redundant information and used to improve the

monitoring accuracy of the surveillance [4, 5]. Then, a data fusion technique can be used for improving

the performance of the systems by taking advantage of the redundant trajectory data from the source
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sensors [6, 7]. With the development of multisensor systems and communication techniques, data fusion

has been increasingly used in surveillance systems [8].

Sensor fusion can be applied in different ways and at different levels. Signal-level fusion is the lowest

level of sensor fusion; it involves the use of fusion techniques to generate a composite image. However,

images need to be spatially registered correctly before fusion can actually be performed [9, 10]. Feature-

level sensor fusion is a higher-level fusion method; here, the sensors to be fused can have very different

fields of view, and thus, signal-level fusion cannot be applied to them [11]. Accordingly, it is necessary

to extract features, such as position, velocity, trajectory, and posture, from source sensors that are to be

fused in a shared representation format.

As mentioned above, we focus on the fusion of the trajectory feature in this paper, such a fusion

can be achieved by extracting data regarding the position of a target and projecting them to a shared

map of the monitored environment. There are a host of multisensor fusion methods that can accomplish

this task. One traditional approach is called centralized Kalman filter (CKF) fusion. It sends all the

observation source data from the local sensors to a fusion center to generate the fused estimates and

involves minimal information loss [12]. However, in this method, all the observation data are treated as

one observation matrix and the fusion center bears most of the computational burden. Also, the CKF

may be relatively less accurate and stable when it encounters serious data errors or heavy noise [13].

Another classic method is federated Kalman filter fusion, which can generate a more accurate fused

estimate using information sharing factors (ISF) [14]. However, ISF are calculated using a covariance

matrix, which invariably contains some estimation errors [15].

Also, researchers have proposed many other approaches, such as fusion techniques using steady-state

Kalman filters [16], covariance intersection (CI) Kalman fuser [17], standard DKF fusion [18], and sequen-

tial CI fusion [19]. Among them, the DKF fusion approach is more robust, flexible, and efficient, and it is

widely used in multisensory data fusion. Also, some adaptive fusion methods have been proposed to ob-

tain more robust and accurate fusion results; these adaptive strategies include weighted strategies [15,20]

and fuzzy logic-based strategies [21, 22]. However, these fusion methods are barely applied in real-world

video sensor fusion and do not consider the confidence of the source sensors; the data from a malfunc-

tioning sensor will affect the fusion process and lead to an inaccurate result. The existing confidence

function of a source sensor [23,24] cannot always be employed in most of the practical video surveillance

situations [25].

Aimed at solving these problems, a feature-level approach of adaptively fusing video sensors in a

surveillance system is proposed in this work. The main contribution of this paper is the introduction

of the video sensor confidence to adaptively adjust the measurement noise covariance of local DKFs in

the fusion procedure and then, apply the adaptive fusion method to real-world video sensor fusion. This

adaptive approach can give a more accurate weight of each video sensor in the fusion procedure and then,

perform adaptive fusion on the basis of these weights. Also, the DKF processes the sensor measurements

locally to produce local estimates. This can reduce the burden of the fusion center and thus, improve

the robustness and efficiency of the system. The proposed method is also compared with other fusion

techniques, and a more thorough experimental section is presented.

The remainder of the paper is organized as follows. Section 2 gives a brief review of the video sensor

confidence function called appearance ratio (AR). Section 3 describes the proposed adaptive video sensor

fusion method in detail. Experimental results and analysis are discussed in Section 4, and the conclusion

is presented in Section 5.

2 Confidence function: AR

In a surveillance system, different quality of sensors, view angles, distances between sensor and target,

and light conditions can differently affect the ability of the sensors to detect a moving target. The

fusion process generally employs a weighting strategy to adjust different source measurements. Making

no distinction between the measurements from the source sensors can affect the stability of the filter
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Figure 1 (Color online) Frames of detection results from

underpass video sequences. The first row is from camera 1

sequence, and the second row is from camera 2 sequence.

Figure 2 AR values of the detection results according to

camera 1 and camera 2 for the underpass video sequences.

and yield an inaccurate estimate [3]. Therefore, to obtain a fused result with better performance than

the result achieved from an individual sensor, we cannot equally weight the measurements of source

sensors [25].

The AR measurement described in [26] establishes a model that estimates the discernibility of an

extracted block from the referenced background. It indicates the confidence level of the detected blocks

bmj,t, where j denotes the number of blocks, t represents the time, and m indicates the number of sensors.

Then, the AR is given as follows:

AR(bmj,t) =

∑

c̄

∑

x,y∈bm
j,t

Dc̄(x, y)
∑

c̄

∑

x,y∈bm
j,t

δ(Rc̄(x, y))
, (1)

where D denotes the absolute difference map between the current frame and the referenced background

R, c̄ represents the number of color bands of the associated frames, and δ refers to the spread of each

pixel, which is defined as (2). In this paper, we use the RGB (red, green and blue) model; therefore, c̄

represents one of the three color bands (red, green or blue). Therefore, Dc̄(x, y) denotes the value of band

c̄ of the difference map at position (x, y), and Rc̄(x, y) represents the value of band c̄ of the referenced

background image at pixel (x, y),

δ(Rc̄(x, y)) = max(Rc̄(x, y), 255−Rc̄(x, y)). (2)

As can be seen from (2), δ computes the maximum difference that pixel (x, y) of the current frame

image can show against the corresponding pixel of the referenced background. Therefore, D denotes the

real absolute difference between the current frame and the background while δ represents the maximum

difference. Then, AR is generated using (1); it ranges in the interval [0,1], which indicates the confidence

level of the detected results from the source sensors.

Figure 1 shows some frames of the detection results of video sequences called underpass. In these

videos, a person is moving through an underpass with poor illumination conditions. Figure 2 gives the

confidence values (AR) of the detected results associated with the moving people in Figure 1. From

Figure 2, we can see that the confidence curve of the detected blocks from camera 1 is higher than that

from camera 2. This coincides with the fact that the person is more discernible in the illumination

condition of camera 1 as he moves through the underpass.

3 Adaptive multiple video sensors fusion architecture

A schematic representation of the proposed adaptive fusion method for video surveillance is presented in

Figure 3. A tracking technique is applied for detecting moving targets for each sensor, and it provides the
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Figure 3 (Color online) Schematic representation of the proposed adaptive multiple video sensors fusion framework.

Figure 4 Homographic transformation between camera planes and top-view plane.

position of the detected target. Then, the positions of the targets are projected onto a shared top-view

map of the observed area by homographic transformation and filtered by the local adaptive DKFs to

get the optimal estimates. Finally, a fused estimate with more robustness is obtained by fusing all local

estimates in the fusion center. For the sake of simplicity, here, we consider two sensors, but this method

can be extended to more than two sensors.

3.1 Target’s position projection

In order to fuse the position data from different video sensors, a shared coordinate frame is required.

Here, the position data from a source sensor are projected onto a shared top-view map by homographic

transformation, as illustrated in Figure 4. The shared top-view map usually covers the monitored area

of the surveillance system.

The homographic transformations can be easily obtained from the connection between the salient

points of the camera planes and the corresponding points of the top-view plane [27]. It will be set up in

the surveillance system and give the projection between camera planes and the top-view plane.

When homographic transforms are found, the projection can be performed. The position (xc, yc) is

the center of the target detected by the tracker. In this study, we project this point onto the bottom of

the bounding box enclosing the target and suppose that point (xg , yg) touches the ground. Then, point

(xg, yg) from each sensor is projected onto the top-view map by homographic transformation.
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3.2 Adaptive decentralized Kalman filter fusion

In this work, an adaptive decentralized Kalman filter fusion (ADKFF) method is proposed to carry out

the fusion task. This approach can adaptively adjust the measurement noise covariance matrix of the

local DKFs and thus, determine the weight of each sensor more correctly in the fusion procedure. Then,

the fused result will benefit from the source sensors with higher confidence.

When performing this fusion method, the predicted states x̂m
k|k−1 are first obtained from the estimated

state x̂m
k−1|k−1 at time k − 1, where m = 1, 2, . . . ,M denotes the number of source sensor. Then, with

the observations zmk and sensor confidence ARm
k , these predicted states are corrected and the corrected

estimates x̂m
k|k at time k are obtained. Meanwhile, the corrected estimates are fed back to the prediction

step for the next iteration. Finally, a fused state x̂k at time k is generated with the local estimates x̂m
k|k.

3.2.1 Local DKFs

In a situation that mainly focuses on the fusion method, we assume that the local DKF process has a

state vector x ∈ ℜn and the process is governed by

xk = Ak−1xk−1 + wk−1, (3)

with a measurement z ∈ ℜr that is defined by

zk = Hkxk + vk. (4)

In the above equations, the random variables wk and vk represent the process and measurement noise

with the covariance Qk and Ck, respectively; they are zero mean Gaussian white noise having zero cross-

correlation with each other [28]. The state transition matrix Ak−1 relates the state at the previous time

step k − 1 to the state at the current time step k with process noise wk. Hk represents the observation

transition matrix and relates the state xk to the measurement zk.

In practical object tracking, x̂m
k−1|k−1 denotes the state of sensor m (m = 1, 2, . . . ,M) at time k − 1.

Then, the prediction x̂m
k|k−1 is generated by (5) and the corresponding prior estimate error covariance

Pm
k|k−1 is given by (6):

x̂m
k|k−1 = Ak−1x̂

m
k−1|k−1, (5)

Pm
k|k−1 = Ak−1P

m
k−1|k−1A

T
k−1 +Qk−1. (6)

With these predictions, the estimate of the next time x̂m
k|k is obtained as follows:

x̂m
k|k = x̂m

k|k−1 +Km
k (zmk −Hm

k x̂m
k|k−1), (7)

Km
k = Pm

k|k−1(Hk)
T[HkP

m
k|k−1(Hk)

T + Cm
k ]−1, (8)

Pm
k|k = [I −Km

k Hk]P
m
k|k−1, (9)

whereKm
k denotes the local DKF gain matrix for sensorm at time k and Pm

k|k represents the corresponding

posteriori estimate error covariance.

3.2.2 Adjustment of measurement error covariance matrix

In the procedure described above, the measurement error covariance matrix C models the uncertain and

inaccurate information of the filter. It reflects the precision of the source sensors and plays an important

role in the state estimate. In the traditional method, this matrix is usually set a fixed value, which

implies that the corresponding sensor is also set a fixed confidence. This will significantly affect the

fusion result. For solving this problem, in this study, the sensor confidence is applied to adaptively adjust

the measurement error covariance matrix. It is defined by

Cm
k =

(

cxxm,k 0

0 c
yy
m,k

)

. (10)
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It is assumed that the measurement error is not cross-correlated. Thus, we set cxy and cyx to 0. The

function for the cxx and cyy is defined as follows:

cxxm,k = c
yy
m,k = GD × [1−AR(bmj,k)], (11)

where GD denotes the maximum value of the measurement error variance and is usually assigned an

experimental value to determine the measurement error covariance matrix according to a specific situation.

The measurement error covariance is then adjusted using this function and the position of the detected

targets with a relatively high AR values is assigned more trust. Otherwise, the detected targets with

relatively small AR values are assigned less trust.

The measurement with a relatively small eigenvalue of matrix Cm
k for the corresponding sensor m has

a greater precision and vice versa. Then, AR values from the source sensors can be used for adjusting

the measurement error covariance matrix through which source estimates will be given a different weight

in the fusion procedure. The matrix Cm
k will finally affect the fused estimate by influencing the corrected

estimate x̂m
k|k, the local Kalman filter gain matrix Km

k and their corresponding estimate error covariance

matrix Pm
k|k, as shown in (7)–(9).

3.2.3 Fusion center

When the local prediction x̂m
k|k−1, corrected estimate x̂m

k|k, the corresponding error covariance Pm
k|k−1 and

Pm
k|k are ready, a fused estimate x̂k can be generated from the fusion center. The fusion center also has

two steps, namely prediction step and correction step. The prediction step is performed on the basis of

the previous corrected estimate as follows:

x̂−
k = Ak−1x̂k−1, (12)

P−
k = Ak−1Pk−1A

T
k−1 +Qk−1. (13)

The final fusion result x̂k is obtained from the correction step, which is calculated on the basis of the

local estimates as in (14) and (15). It will be fed back to the next prediction step [18].

x̂k = Pk

[

(P−
k )−1x̂−

k +
M
∑

m=1

(Pm
k|k)

−1
x̂m
k|k −

M
∑

m=1

(Pm
k|k−1)

−1
x̂m
k|k−1

]

, (14)

(Pk)
−1 = (P−

k )−1 +

M
∑

m=1

(Pm
k|k)

−1
−

M
∑

m=1

(Pm
k|k−1)

−1
. (15)

In the fusion procedure described above, the posteriori estimate error covariance Pm
k|k is affected by

sensor confidence and thus, adaptively adjusts the weight of each source sensor. Finally, the fusion result

will contain more information from the sensors with greater confidence.

4 Experimental results

In this section, two experiments are implemented on real-world video sequences to demonstrate the

effectiveness of the proposed fusion method. In the experiments, the trajectory result from the proposed

ADKFF method is compared with those from single sensors, centralized Kalman filter fusion (CKFF),

federated Kalman filter fusion (FKFF), and decentralized Kalman filter fusion (DKFF) methods without

considering the sensor confidence against the referenced ground truth trajectory. Also, we compare

the ADKFF method with the adaptive federated Kalman Filter fusion (AFKFF) [15] and fuzzy logic-

based adaptive Kalman filter fusion (FL-AKFF) [22] methods. These two latter methods are adaptive

methods that use different strategies to adaptively adjust the filter’s measurement covariance in their

fusion procedure. All the Kalman filters use the random shift model, which is a classic model usually

used in video tracking. The maximum value of the measurement error variance GD in (11) is usually set

to 6 in a practical video surveillance situation. The ground truth is obtained manually by slowly tracing

the mouse position as the user tracks a target in a video sequence and then, smoothing the trajectory to

get a more accurate ground truth.
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Figure 5 (Color online) Frames of detection results from

subway sequences. The first row shows frames from

camera 1 and the second row shows frames from camera

3.

Figure 6 Target detection confidence according to cam-

era 1 and camera 3 for subway sequences.

4.1 Comparison with CKFF, FKFF, and DKFF methods

In the first experiment, the PETS2006 datasets1) is used. Here, we employ a segment of Scenario 3

(Take 7-A) and call it subway sequences. One person enters the scene, walks through the passageway,

and makes a curved trajectory. We consider only camera 1 and camera 3 because camera 2 contains no

informative data for our purpose (the target is barely detectable and far away from the camera’s point of

view). Because of the challenge from different camera views, background ambiguities, and illumination

conditions, this segment becomes a valid sequence for testing multisensor fusion. Some frames of detected

target from the different cameras are shown in Figure 5. Frames in the first row are from the camera 1

and the corresponding frames from camera 3 are shown in the second row.

As we will see, the background in camera 1 can affect the detector, as from its angle the illumination

condition is poor and the background is ambiguous. On the other hand, as can be seen from the figure,

camera 3 gives a brighter and clearer scene; the target is also more discernable from its view angle.

The results from camera 3 are therefore more reliable than those from camera 1 with respect to target

detection. The confidence values associated with the detection results also confirm the conclusion that

the results from camera 3 are clearly better than those from camera 1, as shown in Figure 6.

The trajectory results from the single sensors and four fusion methods are shown in Figure 7. As

shown in the figure, by comparing the trajectories results from single sensors and the CKFF, FKFF, and

DKFF methods, we find that the fused trajectories obtained from the FKFF and DKFF methods give

more accurate results than that obtained using the CKFF method. Also, the fusion result obtained from

DKFF is slightly better than that obtained using FKFF. As can be seen from Figure 7(d), the ADKFF

method gives the best fusion result, which is more coincident with the ground truth trajectory. Also, the

fusion result is mainly benefited from camera 3 that provides higher confidence in the target detection.

This excellent performance is attributed to the use of the confidence-based adaptive adjusting model in

the fusion procedure.

For further comparison, the position distance error (the distance between the estimated position and

the corresponding ground truth position) of the fusion results obtained using the four aforementioned

fusion methods against the ground truth is shown in Figure 8. As can be seen from the figure, considering

the closeness of fused trajectories with respect to the ground truth, we find that the proposed ADKFF

method gives the lowest distance error and therefore has the best performance.

A more objective account of the performance for the single sensors and the fusion methods is reported

in Table 1, where the root mean square error (RMSE) and the average position error (APE) of the

1) It is available on http://www.cvg.rdg.ac.uk/PETS2006/.
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Figure 7 Trajectory results associated with the two cameras, ground truth, and the (a) CKFF, (b) FKFF, (c) DKFF,

and (d) ADKFF methods for subway sequences.

Table 1 RMSE and APE for subway sequences

X-error Y -error APE

Camera 1 14.0750 25.4559 29.0879

Camera 3 5.2310 4.9507 7.2023

CKFF 8.5688 12.9289 15.5107

FKFF 6.0083 12.6347 13.9906

DKFF 6.7301 11.3297 13.1779

ADKFF 4.6595 7.2846 8.6474

trajectories with respect to the ground truth are calculated. A lower metric denotes a better performance.

As can be seen from Table 1, the objective results coincide with those shown in Figure 7; the FKFF and

DKFF methods perform better than the CKFF method, and the proposed ADKFF method exhibits

the best performance. This is different from the known conclusion that the CKFF should be optimal

theoretically.

In a traditional Kalman filter, the covariance matrix of process noise and observation noise is assumed

to be available. However, in most practical applications, we cannot get an accurate covariance matrix

of noise and usually approximate it. In Kalman filter, the quality of approximation is closely related

to the quality of the statistical property of priori noise. An inaccurate priori statistical property of the

input noise is known to considerably deteriorate the performance of the Kalman filter and even leads to

a divergence of the filter [22]. In the case of a simulation, the observation data are generated using a

linear model with a known covariance matrix of noise and are filtered by the same linear model; therefore,

the fusion results can be theoretically optimized. However, the observation data used in this study are

obtained from target tracking (not generated by a known model) in a practical real-world situation, but

they are filtered with the given linear model, which did not perfectly fit the theoretical conditions of

optimal CKFF. Also, the CKFF method cannot isolate the source data with considerable error, while the

FKFF and DKFF methods provide improved error correction and enhanced redundancy management.

Therefore, when we use real-world noisy data from a tracker, the CKFF method cannot provide an

optimal result because of a lack of perfect theoretical conditions, and the advantages of the FKFF and

DKFF methods are then reflected.

4.2 Comparison with adaptive methods AFKFF and FL-AKFF

In the second experiment, the AFKFF [15] and FL-AKFF [22] methods which also use adaptive strate-

gies are compared with the proposed ADKFF method to demonstrate the effectiveness of the proposed

method. The robot sequences from two cameras that observe a robot running across a floor are used in

this experiment.

Figure 9 illustrates some detection results of the robot sequences. As shown in Figure 9, the video
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Figure 8 The position distance error of the fused trajectory result estimated using the CKFF, FKFF, DKFF and the

ADKFF methods for subway sequences.
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Figure 9 (Color online) Frames of detection results from

robot sequences. The first row shows frames from camera

1, and the second row shows frames from camera 2.

Figure 10 Target detection confidence according to cam-

era 1 and camera 2 for robot sequences.

sequence obtained from camera 1 is underexposed. The poor illumination condition can clearly influ-

ence the tracker and eventually affect the detection results, which is common in practical surveillance

situations. However, camera 2 provides more abundant and clear information for target detecting. The

confidence values associated with the detection results from camera 1 and camera 2, as shown in Fig-

ure 10, also confirm the conclusion that the results from camera 2 are obviously better than those from

camera 1.

The trajectory results associated with the single sensors and three fusion methods are presented in

Figure 11. Obviously, by comparing the results shown in the figure, we conclude that the trajectory result

obtained from the proposed ADKFF method is considerably closer to the ground truth than that from

the AFKFF and FL-AKFF methods and the FL-AKFF performs better than AFKFF. Also, as can be

seen, the fusion result of the proposed method is mainly benefited from camera 2, which provides higher

confidence in the target detection. This behavior coincides with the confidence result shown in Figure 10.

Also, the excellent performance discussed above can be attributed to the use of the sensor confidence and

DKF in the fusion procedure.

The position distance errors of the fusion results according to the three fusion methods against the
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Figure 11 Trajectory results associated with the two cameras, ground truth, and (a) AFKFF, (b) FL-AKFF, and

(c) ADKFF methods for robot sequences.

ground truth are shown in Figure 12. As can be seen from the figure, the fusion result from the AFKFF

method had the greatest position error, and the proposed ADKFF method yielded the fusion result with

the least position error, and therefore, this method exhibited the best performance.

For a further comparison, the objective metrics, namely RMSE and APE, are used for evaluating the

fusion performance. The result is reported in Table 2. From the objective results, we can see that the

result obtained from the proposed ADKFF method with the least error and these quantitative results

are coincident with the visual effect, as shown in Figures 11 and 12, respectively. Therefore, it can

be concluded that the proposed ADKFF method exhibits better performance than the AFKFF and

FL-AKFF methods.

The comparison results of the three adaptive fusion methods show that the proposed ADKFF method

outperforms the other two methods and that the FL-AKFF method performs better than the AFKFF

method. These results can be attributed to the fact that the AFKFF and FL-AKFF methods essentially

use a strategy that enhances the consistency between the actual covariance value of the residual and the

theoretical value. Therefore, these two methods can adaptively adjust the measurement error covariance

in the inner system. However, the ADKFF method uses the sensor confidence from the outer system and

the sensor confidence is independent of the fusion system and has a more accurate ability to adjust the

measurement error covariance adaptively. Also, FL-AKFF performs better than AFKFF because of the

application of the fuzzy logic inference system to the adjustment of the measurement error covariance;

the fuzzy logic inference system has a relatively good ability to adjust the measurement error covariance.

5 Conclusion

In this paper, we proposed an adaptive video sensor fusion method based on DKF and sensor confidence.

The proposed method can effectively improve the robustness and accuracy of tracking results by auto-
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Figure 12 The position distance error of the fused trajectory result achieved using the AFKFF, FL-AKFF and proposed

ADKFF methods for robot sequences.

Table 2 RMSE and APE for robot sequences

X-error Y -error APE

Camera 1 20.3655 7.1487 21.5837

Camera 2 7.5412 4.0542 8.5619

AFKFF 5.8346 4.4208 7.3203

FL-AKFF 5.5758 3.8297 6.7644

ADKFF 4.9831 3.4663 6.0702

matically fusing the position data of the tracking targets from the source video sensors. In the fusion

procedure, a sensor confidence function is taken into account to evaluate the performance of the sensor

in target detection, and then, the confidence value is used for automatically adjusting the measurement

noise covariance matrix of the local filters and adaptively determines the weight of each video sensor more

correctly in the fusion process. Also, the application of DKF can make full use of the redundant tracking

data from multiple video sensors and give more accurate fusion results in an efficient manner. Thus, the

position errors due to inaccurate target tracking and position projection can be reduced. Experimental

results of visual and objective evaluations also demonstrate that the proposed ADKFF method has better

performance than the other comparative fusion methods. In future, we intend to address the development

of a more efficient confidence function and fusion model for nonlinear situations.
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