Tilting-Twisting-Rolling: A Penbased Technique for Compass Geometric Construction

Fei Lyu, Feng Tian*, Guozhong Dai, Hongan Wang

- 0
- 1 Introduction
- TTR Technique
- 3 Experiment
- 4 Conclusion

Background

Introduction

TTR Technique

Experiment

- Pen-based devices offer a direct way to construct geometry
 - Rough sketches
 - Precise geometry
- One common approach to create precise geometry: Free stroke beautification
 - However, in areas like education, it is necessary to present precise geometry during the drawing process
 - E.g. geometry classes where geometry construction with ruler and compass is used to understand fundamental concepts

Related Work

Introduction

TTR Technique

Experiment

Our idea

Introduction

TTR Technique

Experiment

Conclusion

• To better support geometry construction with a pen, we propose a Tilting-Twisting-Rolling (TTR) technique to facilitate constructing geometry like arcs through an uninterrupted pen action.

- 1 Introduction
- TTR Technique
 - 3 Experiment
 - 4 Conclusion

Virtual Compass Design

Introduction

TTR Technique

Experiment

Conclusion

• Our design is based on a virtual compass metaphor

the drawing leg of the compass

$$\Delta x = \left(altAdjust - \frac{\left| altitude \right|}{altF} \right) \times sin\left(\frac{azimuth}{aziF} \right) \times cos(altitude)$$

$$\Delta y = \left(altAdjust - \frac{\left| altitude \right|}{altF} \right) \times cos\left(\frac{azimuth}{aziF} \right) \times cos(altitude)$$

$$Mx = Ox + 2 * \Delta x$$

$$My = Oy - 2 * \Delta y$$

the position of the top point of the compass

$$Height = \sqrt{ArmLen^{2} - \Delta x^{2} - \Delta y^{2}}$$

$$Tx = Ox + \Delta x$$

$$Ty = Oy - \Delta y - Height$$

TTR Technique

Experiment

Visualization Techniques

• real-time visual feedback of the drawing action

TTR Technique

Introduction

Experiment

- 1 Introduction
- TTR Technique
- Experiment
 - 4 Conclusion

Experiment

Introduction

TTR Technique

Experiment

Conclusion

 We conducted an experiment to compare user performance in drawing arcs between the Tilting-Twisting-Rolling (TTR), and traditional state-switching tool, like HabilisDraw (HD)

Experiment Design

Introduction

TTR Technique

Experiment

- 12 subjects, within-subject design
- In each trial, a template arc was displayed on the screen, and subjects were
 told to replicate the arc with the given tool, the TTR or HD tool, as quickly as
 possible. Nine different arcs were used in the study, and each arc appeared
 twice during 18 trials. The order of the experimental conditions was
 counterbalanced using a Latin square control for order effects.

Measurement

Introduction

TTR Technique

Experiment

- task completion time
- error rate
- questionnaire
 - fast to construct an arc
 - error prone
 - easy to learn
 - comfortable to use
 - smooth in using
 - fun to use

Result

Introduction

TTR Technique

Experiment

Introduction

TTR Technique

Experiment

- 1 Introduction
- TTR Technique
- 3 Experiment
- Conclusion

Discussion

Introduction

TTR Technique

Experiment

- Results of the experiment demonstrate that in arc constructions, TTR technique can significantly reduce the error rate
 - most errors in HD were related to subjects' misconception of current states
- Our results also indicate that TTR technique improve the user experience in geometry construction
- Error rate vs. Error prone

Future Work

Introduction

TTR Technique

Experiment

- Our research can be extended in two ways
 - study the integration of tilting, twisting, and rolling and investigate how they may be better combined and how they may interfere with each other
 - go beyond geometry drawing and design tilting, twisting, and rolling tools for more generic multi-state interaction

Thank You!

