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Abstract PRIDE is a lightweight block cipher proposed at CRYPTO 2014 by Albrecht et al., who claimed

that the construction of linear layers is efficient and secure. In this paper, we investigate the key schedule

and find eight 2-round iterative related-key differential characteristics, which can be used to construct 18-round

related-key differentials. A study of the first subkey derivation function reveals that there exist three weak-key

classes, as a result of which all the differences of subkeys for each round are identical. For the weak-key classes,

we also find eight 2-round iterative related-key differential characteristics. Based on one of the related-key

differentials, we launch an attack on the full PRIDE block cipher. The data and time complexity are 239 chosen

plaintexts and 292 encryptions, respectively. Moreover, by using multiple related-key differentials, we improve

the cryptanalysis, which then requires 241.6 chosen plaintexts and 242.7 encryptions, respectively. Finally, we use

two 17-round related-key differentials to analyze full PRIDE, which requires 235 plaintexts and 254.7 encryptions.

These are the first results on full PRIDE, and show that the PRIDE block cipher is not secure against related-key

differential attack.
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1 Introduction

Recently, lightweight block ciphers have become more and more important owing to the emergence of

low-resource devices such as sensor networks, RFID tags, mobile phones, and smart cards. During the

last decade, a large number of lightweight block ciphers have been published for such resource-constrained

environments, including PRESENT [1], PRINTcipher [2], LED [3], LBlcok [4], PRINCE [5], NSA standard

SIMON, and SPECK [6].

PRIDE [7], proposed at CRYPTO 2014, is a software-optimized lightweight block cipher with a good

linear layer. The design goals of PRIDE place no specific restrictions on its key schedule. In terms of

both speed and memory, PRIDE is comparable to SIMON and SPECK for the same platform. Some

cryptanalytic results have been obtained on PRIDE. Zhao et al. [8] analyzed the results of a differential

attack. Yang et al. [9] then presented an improved differential analysis of 19-round PRIDE. Dinur [10]

devised new cryptanalytic time–memory–data tradeoff attacks on FX-constructions and applied these to

PRIDE.
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Table 1 Summary of attacks on PRIDE

Cryptanalysis Total rounds Attack rounds Data Times Reference

Differential 20 18 260CP 264 [8]

Differential 20 19 262CP 263 [9]

Related-key differential 20 20 239CP 292 Subsection 5.2

Multiple related-key differential 20 20 241.6CP 242.7 Subsection 5.2

Related-key differential 20 20 234CP 288 Subsection 5.3

Multiple related-key differential 20 20 235CP 254.7 Subsection 5.3

Based on related-key attack [11] and differential cryptanalysis [12], related-key differential attack was

introduced by Kelsey et al. [13]. In this approach, the attacker can take control of the key difference

and observe the operation of a cipher under several different keys. The utilization of the key difference

to kill the state difference leads to more efficient characteristics and great improvements in some results.

Combining related-key attack with other cryptanalysis approaches such as boomerang attack, rectangle

attack, and impossible differential attack has led to a number of results on various block ciphers, including

AES [14, 15] and KASUMI [16], among others.

In this paper, we focus on cryptanalysis of the new block cipher PRIDE under related-key attack.

By observing the key schedule and linear layer, we find eight 2-round iterative related-key differential

characteristics. We then discuss the first subkey derivation function g
(1)
r and find that there exist two

differences ∆g
(1)
r (k1,2) = 0x80 and ∆g

(1)
r (k1,2) = 0x20 for which all the differences of subkeys for each

round are identical. Also, the difference ∆g
(1)
r (k1,2) = 0x20 leads to three weak-key classes with 2126.4

or 2122 keys. Based on this discovery, we find that there are another eight 2-round iterative related-key

differential characteristics. All the 2-round iterative characteristics can extend to 17- or 18-round related-

key differentials. Moreover, based on one of the 18-round related-key differentials and some observations

on the linear layer, we present an attack on full PRIDE with 239 chosen plaintexts and 292 encryptions. By

using multiple related-key differentials, we improve the cryptanalysis, which then requires 241.6 plaintexts

and 242.7 encryptions. Finally, we utilize two 17-round related-key differentials to analyze full PRIDE,

which requires 235 plaintexts and 254.7 encryptions. These are the first results on full PRIDE, and they

show that the PRIDE block cipher is not secure against related-key differential attack. These results also

suggest that designers should take the key schedule into consideration, as has been done by Huang and

Lai [17] in their investigation of the effective key length for a block cipher against a meet-in-the-middle

attack. Our results, given in Subsections 5.2 and 5.3, are summarized and compared with previous results

in Table 1.

The rest of this paper is organized as follows. Section 2 introduces our notation and Section 3 gives

a brief description of the lightweight block cipher PRIDE. Section 4 describes some 2-round iterative

related-key differential characteristics of PRIDE as well as other characteristics under three weak-key

classes. Section 5 describes related-key differential attack on full PRIDE. Finally, Section 6 gives our

conclusion.

2 Notation

The following notation is used in this paper:

Ir: the input value of the rth round;

Xr: the state after the ⊕ key of the rth round;

Yr: the state after the S-box of the rth round;

Zr: the state after the P -layer of the rth round;

Wr: the state after the M -layer of the rth round;

Or: the output of the rth round;

X [n1, . . . , nt]: the n1, . . . , ntth nibbles of the state;

∆M : the difference between M and M ′.
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Figure 1 The round function of PRIDE.
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Figure 2 Overall structure of PRIDE.

Table 2 The S-box of PRIDE

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 0 4 8 f 1 5 e 9 2 7 a c b d 6 3

3 Description of PRIDE

PRIDE is an SPN-type lightweight block cipher with a block size of 64 bits and a 128-bit key. The round

function consists of three operations: the state is XORed with the subkey, fed into 16 identical 4-bit

S-boxes in parallel, and then permuted and processed by the linear layer (see Figure 1). The cipher has

20 rounds, the first 19 of which are identical, and the linear layer of the last round is not necessary (see

Figure 2).

The PRIDE S-box is given in Table 2.

The linear layer L of PRIDE is divided into three parts: a permutation layer P , a matrix layer M , and

another permutation P−1, which is the inverse of P . The matrix layerM is given byM = L0×L1×L2×L3.

The linear layer is defined as follows:

L := P−1 ◦ (M) ◦ P.

The definitions of P (Table A1), P−1 (Table A2), and Li are given in detail in the Appendix A.

The 128-bit master key K of the block cipher PRIDE is divided into two 64-bit parts (k0||k1). k0 is

used for pre- and post-whitening. k1 is divided into eight 8-bit words

k1 = k1,1||k1,2||k1,3||k1,4||k1,5||k1,6||k1,7||k1,8

and used to generate the subkeys fr(k1), defined by

fr(k1) = k1,1||g
(1)
r (k1,2)||k1,3||g

(2)
r (k1,4)||k1,5||g

(3)
r (k1,6)||k1,7||g

(4)
r (k1,8),
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Table 3 2-round iterative related-key differential characteristics

Notation The difference of the intermediate state

∆Ir 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

∆Xr 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

∆Yr 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

∆Zr 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆Wr 1000 1000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆Ir+1 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000

∆Xr+1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000

∆Yr+1 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000

∆Zr+1 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆Wr+1 1000 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆Ir+2 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

where the subkey derivation functions are

g(1)r (x) = (x+ 193r) mod 256,

g(2)r (x) = (x+ 165r) mod 256,

g(3)r (x) = (x+ 81r) mod 256,

g(4)r (x) = (x+ 197r) mod 256,

which are simply modulo-256 additions with one of four constants.

4 Related-key differential attack on PRIDE

In this section, after investigating the key schedule of the block cipher PRIDE, we present eight 2-round

iterative related-key differential characteristics. We then discuss g
(1)
r and find four 2-round iterative

related-key differentials with ∆g
(1)
r (k1,2) = 0x80 and four 2-round characteristics under some weak-key

classes.

4.1 Related-key differential characteristics of PRIDE

Because there are four nonlinear functions g
(i)
r (i = 1, 2, 3, 4) in the key schedule, we first consider related

keys for which the input difference of g
(i)
r is the same. Assume that we are given a key K = k0||k1 and a

related key K ′ = k0||k
′
1, where

k′1 = k1,1 ⊕ 0x88||k1,2||k1,3||k1,4||k1,5||k1,6||k1,7||k1,8,

that is, ∆k1 = k1 ⊕ k′1 = 0x88||0||0||0||0||0||0||0, which leads to the following equation:

∆fr(k1) = 0x88||0||0||0||0||0||0||0, r = 1, . . . , 20.

At the same time, we have

∆P−1(fr(k1)) = 0x80||0||0x80||0||0||0||0||0, r = 1, . . . , 20,

so that all the differences of subkeys for each round are identical.

Theorem 1. Assume that there are two related keys (K,K ′) as presented above. Then there exist

2-round iterative related-key differential characteristics with probability 2−4.

Proof. According to the difference distribution of the PRIDE S-box, S(0x8) = 0x8 holds with probabil-

ity 2−2, which can be used to find 2-round iterative related-key differential characteristics with probability

2−4 (see Table 3).
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Table 4 Eight 2-round iterative characteristics

2-round characteristic ∆P−1(fr(k1)) ∆fr(k1)

8000 8000 8000 0000
2r
−−→ 8000 8000 8000 0000 8000 8000 0000 0000 8800 0000 0000 0000

0800 0800 0800 0000
2r
−−→ 0800 0800 0800 0000 0800 0800 0000 0000 4400 0000 0000 0000

0080 0080 0080 0000
2r
−−→ 0080 0080 0080 0000 0080 0080 0000 0000 2200 0000 0000 0000

0008 0008 0008 0000
2r
−−→ 0008 0008 0008 0000 0008 0008 0000 0000 1100 0000 0000 0000

8000 8000 0000 0000
2r
−−→ 8000 8000 0000 0000 8000 8000 0000 0000 8800 0000 0000 0000

0800 0800 0000 0000
2r
−−→ 0800 0800 0000 0000 0800 0800 0000 0000 4400 0000 0000 0000

0080 0080 0000 0000
2r
−−→ 0080 0080 0000 0000 0080 0080 0000 0000 2200 0000 0000 0000

0008 0008 0000 0000
2r
−−→ 0008 0008 0000 0000 0008 0008 0000 0000 1100 0000 0000 0000

Therefore, there exist 2-round iterative related-key differential characteristics under ∆K:

8000800080000000
1r
−→ 8000800000008000

1r
−→ 8000800080000000,

where ∆k0 = 0 and ∆k1 = 8800000000000000. Then, according to Table 3, there are two active S-boxes

in the 2-round path, so the probability of the 2-round iterative related-key differential characteristics is

2−4.

The 2-round iterative related-key differential characteristics show that there are two S-boxes in every

two rounds. Thus, we can also consider characteristics on which one round has a nonactive S-box while

the other has two S-boxes. In fact, such 2-round iterative related-key differential characteristics do exist.

For example, a 2-round iterative related-key differential characteristic with ∆k1 = 8800000000000000 can

be represented as follows:

8000800000000000
1r
−→ 0000000000000000

1r
−→ 8000800000000000,

which can be used to construct 17- and 18-round related-key differentials with probabilities 2−32 and

2−36, respectively. All the related-key differentials can be used in an attack on full PRIDE.

There are a total of eight 2-round iterative related-key differential characteristics, as listed in Table 4.

Corollary 1. Assume that there are two related keys (K,K ′) as presented above. Then there exist

2n-round related-key differential characteristics with probability 2−4n.

It is obvious that if 2−4n > 2−64, then the related-key differentials can be used to attack the block

cipher PRIDE. Because 2n = 20 for the PRIDE block cipher, the related-key differentials can be applied

to analyze full PRIDE.

4.2 Other iterative characteristics

Based on the analysis in Subsection 4.1, if we change the positions of the input difference and the

key difference, then there also exist other 2-round iterative related-key differential characteristics with

probability 2−4. However, when the positions are changed, it is obvious that only the first 16 bits of k1
are nonzero, which means that the input difference of g

(1)
r is nonzero. In order to retain the iterative

characteristics, it is necessary that all the differences of subkeys for each round are identical. Therefore,

we first discuss g
(1)
r .

Assume that the key difference occurs in k1,2 and that ∆k1,2 = δ; the differences after the function g
(1)
i

are δi, i = 1, . . . , 20. The 2-round iterative characteristics require that all the differences of subkeys for

each round be identical, that is, δ1 = δ2 = · · · = δ20. We have computationally generated all differences

and values for k1,2 (see Table 5).

Table 5 shows that there are five cases meeting the condition that all the differences of subkeys for

each round are identical. However, the difference 0xa0 cannot be used to construct the 2-round iterative

related-key differential characteristics with probability 2−4. When the input difference of g
(1)
r is nonzero,

the 2-round iterative related-key differential characteristics are as presented in Table 6.

Of course, according to Tables 5 and 6, we see that there are four 2-round iterative related-key dif-

ferential characteristics with ∆k1,2 = 0x80 and four 2-round iterative characteristics in the weak-key
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Table 5 Key differences and values for g
(1)
r

∆k1,2 ∆g
(1)
r (k1,2) Key values Number of keys

0x20 0x20 0x0-0xb, 0x20-0x2b, 0x40-0x4b, 0x60-0x6b, 12 × 8 = 96

0x80-0x8b, 0xa0-0xab, 0xc0-cxb, 0xe0-0xeb

0x80 0x80 0x0-0xff 256

0xa0 0xa0 0x0-0xb, 0x20-0x2b, 0x40-0x4b, 0x60-0x6b, 12 × 8 = 96

0x80-0x8b, 0xa0-0xab, 0xc0-cxb, 0xe0-0xeb

0x60 0x20 0x3f,0x5f,0xbf,0xdf 4

0xe0 0x20 0x1f,0x7f,0x9f,0xff 4

Table 6 Other eight 2-round iterative characteristics

2-round characteristic ∆P−1(fr(k1)) ∆fr(k1)

0000 8000 8000 8000
2r
−−→ 0000 8000 8000 8000 0000 8000 8000 0000 0880 0000 0000 0000

0000 0080 0080 0080
2r
−−→ 0000 0080 0080 0080 0000 0080 0080 0000 0220 0000 0000 0000

8000 8000 8000 0000
2r
−−→ 8000 8000 8000 0000 8000 0000 8000 0000 8080 0000 0000 0000

0080 0080 0080 0000
2r
−−→ 0080 0080 0080 0000 0080 0000 0080 0000 2020 0000 0000 0000

0000 8000 8000 0000
2r
−−→ 0000 8000 8000 0000 0000 8000 8000 0000 0880 0000 0000 0000

0000 0080 0080 0000
2r
−−→ 0000 0080 0080 0000 0000 0080 0080 0000 0220 0000 0000 0000

8000 0000 8000 0000
2r
−−→ 8000 0000 8000 0000 8000 0000 8000 0000 8080 0000 0000 0000

0080 0000 0080 0000
2r
−−→ 0080 0000 0080 0000 0080 0000 0080 0000 2020 0000 0000 0000

class with ∆k1,2 = 0x20, which has 2126.4(= 12× 8 × 2120) keys, or with ∆k1,2 = 0x60, 0xe0, which has

2122(= 4× 2120) keys.

5 Key recovery of the block cipher PRIDE

In this section, we first give some observations that can be used to filter the data. We then present an

attack on full PRIDE using 241 chosen plaintexts and 292 encryptions. By using multiple related-key

differentials, the cryptanalysis requires 241.6 chosen plaintexts and 242.7 encryptions. Finally, if we use

17-round related-key differentials with probability 2−32 to analyze full PRIDE, the complexity of the

cryptanalysis is 235 chosen plaintexts and 254.7 encryptions.

5.1 Some observations

Observation 1. If the input difference of L−1
0 is ∆W = (∗000 ∗ 000 0000 ∗ 000), then its output

difference is ∆Z = (0000 0000 ∗ 000 0000) with probability 2−2. If the input difference of L−1
3 is

∆W = (∗000 ∗ 000 0000 ∗ 000), then its output difference is ∆Z = (0000 0000 ∗ 000 0000) with

probability 2−2.

Since L−1
0 (∗000 ∗ 000 0000 ∗ 000) = (∗000 ∗ 000 ∗ 000 ∗ 000), (∗000 ∗ 000 ∗ 000 ∗ 000) =

(0000 0000 ∗ 000 0000) holds with probability 2−2. The situation for L−1
3 is similar to that for L−1

0 .

Observation 2. If the input difference of L−1
1 is ∆W = (0000 0 ∗ 00 0000 ∗ ∗00), then its output

difference is ∆Z = (0000 0000 ∗ 000 0000) with probability 2−2. If the input difference of L−1
2 is

∆W = (0 ∗ 00 0000 ∗ ∗00 0000), then its output difference is ∆Z = (0000 0000 ∗ 000 0000) with

probability 2−2.

Since ∆Z = L−1
1 (∆W ) = (0000 00∗∗ ∗∗∗0 0000), where ∆W = (0000 0∗00 0000 ∗∗00), it is possible

to construct a linear equation set as follows:
{

∆W [6]⊕∆W [13] = 0,

∆W [6]⊕∆W [14] = 0.
(1)

If these two equations are satisfied, then ∆Zr = (0000 0000 ∗ 000 0000) holds with probability 2−2. The

proof for L−1
2 is similar to that for L−1

1 .
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Table 7 Cryptanalysis on full PRIDE

Notation The difference of the intermediate state

∆I19 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

∆X19 0000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

∆Y19 0000 0000 0000 0000 0000 0000 0000 0000 ∗∗∗∗ 0000 0000 0000 0000 0000 0000 0000

∆Z19 0000 0000 ∗000 0000 0000 0000 ∗000 0000 0000 0000 ∗000 0000 0000 0000 ∗000 0000

∆W19 ∗000 ∗000 0000 ∗000 0000 0∗00 0000 ∗∗00 0∗00 0000 ∗∗00 0000 ∗000 ∗000 0000 ∗000

∆I20 ∗00∗ 00∗0 0000 0000 ∗00∗ 0∗00 0000 0000 00∗0 00∗0 0000 0000 ∗∗0∗ 0∗00 0000 0000

∆X20 ∗00∗ 00∗0 0000 0000 ∗00∗ 0∗00 0000 0000 00∗0 00∗0 0000 0000 ∗∗0∗ 0∗00 0000 0000

∆Y20 ∗∗∗∗ ∗∗∗∗ 0000 0000 ∗∗∗∗ ∗∗∗∗ 0000 0000 ∗∗∗∗ ∗∗∗∗ 0000 0000 ∗∗∗∗ ∗∗∗∗ 0000 0000

⊕∆k0 ∗∗∗∗ ∗∗∗∗ 0000 0000 ∗∗∗∗ ∗∗∗∗ 0000 0000 ∗∗∗∗ ∗∗∗∗ 0000 0000 ∗∗∗∗ ∗∗∗∗ 0000 0000

∆C ∗∗00 ∗∗00 ∗∗00 ∗∗00 ∗∗00 ∗∗00 ∗∗00 ∗∗00 ∗∗00 ∗∗00 ∗∗00 ∗∗00 ∗∗00 ∗∗00 ∗∗00 ∗∗00

Observation 3. If the input difference of L−1
0 is ∆W = (∗000 ∗ 000 ∗ 000 ∗ 000), then its output

difference is ∆Z = (∗000 ∗ 000 0000 0000) with probability 2−2. If the input difference of L−1
3 is

∆W = (∗000 ∗ 000 ∗ 000 ∗ 000), then its output difference is ∆Z = (∗000 ∗ 000 0000 0000) with

probability 2−2.

Since L−1
0 (∗000 ∗ 000 ∗ 000 ∗ 000) = (∗000 ∗ 000 ∗ 000 ∗ 000), (∗000 ∗ 000 ∗ 000 ∗ 000) =

(∗000 ∗ 000 0000 0000) holds with probability 2−2. This is because there are two equations: ∆W [1] ⊕

∆W [5] ⊕∆W [13] = 0 and ∆W [1] ⊕ ∆W [5] ⊕∆W [9] = 0, holding with probability 2−2. The situation

for L−1
3 is similar to that for L−1

0 .

Observation 4. If the input difference of L−1
1 is ∆W = (∗00 ∗ ∗00 ∗ ∗000 ∗ 000), then its output

difference is ∆Z = (∗000 ∗ 000 0000 0000) with probability 2−4. If the input difference of L−1
2 is

∆W = (∗00 ∗ ∗00 ∗ ∗000 ∗ 000), then its output difference is ∆Z = (∗000 ∗ 000 0000 0000) with

probability 2−4.

Since ∆Z = L−1
1 (∆W ) = (∗ ∗ ∗0 ∗ ∗ ∗ 0 ∗ ∗00 ∗ ∗00), where ∆W = (∗00 ∗ ∗00 ∗ ∗000 ∗ 000), it is

possible to construct a linear equation set that has the following simple form:























∆W [1]⊕∆W [8] = 0,

∆W [1]⊕∆W [9] = 0,

∆W [4]⊕∆W [5] = 0,

∆W [5]⊕∆W [13] = 0.

(2)

If these four equations are satisfied, then ∆Zr = (∗000 ∗ 000 0000 0000) holds with probability 2−4. The

proof for L−1
2 is similar to that for L−1

1 .

5.2 Key-recovery attack using an 18-round path

5.2.1 Key recovery with one characteristic

Based on the 2-round iterative characteristic 8000800080000000
2r
−→ 8000800080000000, we can obtain an

18-round related-key differential characteristic with probability 2−36 with ∆k1 = 880000000000000:

8880000000000000
P−1,⊕∆k1

−−−−−−−→ 8000800080000000
18r
−−→ 8000800080000000.

We add two rounds after the characteristic (see Table 7) and analyze the full PRIDE.

The attack procedure is as follows:

(1) Data collection. Encrypt 238 pairs of plaintexts with a difference 0x8880000000000000. For

the 238 pairs of ciphertexts, the adversary chooses the pairs that satisfy the output difference in Table 6.

There remain 26(= 238 × 2−32) pairs.

(2) Key recovery.

(a) Guess k0[1, 2, 5, 6, 9, 10, 13, 14] one by one, decrypt the corresponding nibbles of ciphertexts partially,

and check whether the difference of the decrypted nibbles is ∆X20 = ∗00∗, 00 ∗ 0, ∗00∗, 0 ∗ 00, ∗00∗, 00 ∗
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0, ∗ ∗ 0∗, or 0 ∗ 00. The probabilities are 2−2, 2−3, 2−2, 2−3, 2−3, 2−3, 2−1, and 2−3, respectively. There

remain 26 × 2−20 = 2−14 pairs.

(b) Decrypt the remaining pairs through the L-layer. According to Observations 1 and 2, the prob-

ability of satisfying the conditions ∆Z19 is 2−8(= 2−2 × 2−2 × 2−2 × 2−2). Therefore, there remain

2−14 × 2−8 = 2−22 pairs.

(c) Guessing 32-bit k0[3, 4, 7, 8, 11, 12, 15, 16], one can obtain the output value of round 19. Then

guessing (M ◦ P )−1(f20(k1))[9], one can compute the input difference of the 9th S-box. Check if the

output difference of ∆X19[9] is 0x8. On average, 2−22 × 2−4 = 2−26 pairs of data remain. If the number

of remaining pairs is greater than 2, the corresponding key is correct.

(d) Exhaustively search the remaining information of k1 that has not been guessed or distinguished in

the earlier steps.

Complexity analysis. The data collection step requires 239 chosen plaintexts and 239 encryptions.

In the key-guessing procedure, Step (a) requires 2 × 26 × 232 × 1/20 = 235 encryptions. Step (b) only

executes linear layers, and we omit it here. Step (c) requires 2×232×2−22×236×1/20 = 239 encryptions.

After Step (c), there are about 232 68-bit keys (64-bit k0 and 4-bit k1) for a pair, so Step (d) requires

260 × 232 = 292 encryptions.

Therefore, the attack requires 239 chosen plaintexts and 292 encryptions.

5.2.2 Key recovery with multiple characteristics

In this subsection, we obtain a cryptanalytic result on full PRIDE with multiple related-key differentials.

According to Table 4, there exist eight iterative related-key differential characteristics. First, we examine

the following two cases to analyze full PRIDE:

Case 1. 8000800080000000
2r,∆k1=880000000000000
−−−−−−−−−−−−−−−−→ 8000800080000000,

Case 2. 0080008000800000
2r,∆k1=220000000000000
−−−−−−−−−−−−−−−−→ 0080008000800000.

These lead to two related-key differentials:

8880000000000000
P−1,⊕∆k1

−−−−−−−→ 8000800080000000
18r
−−→ 8000800080000000,

2220000000000000
P−1,⊕∆k1

−−−−−−−→ 0080008000800000
18r
−−→ 0080008000800000.

For each case, we apply the attack procedure presented in Subsection 5.2.1. Before Step (d), for Case 1,

the procedure has guessed k0[1, 2, 5, 6, 9, 10, 13, 14] and (M ◦ P )−1(f20(k1))[9], and for Case 2, it has

guessed k0[3, 4, 7, 8, 11, 12, 15, 16] and (M ◦ P )−1(f20(k1))[11]. Therefore, if we use the two cases, the

64-bit key k0 and the 8-bit key (M ◦ P )−1(f20(k1))[9, 11] have been guessed before Step (d), and then

there is the 56-bit key information of k1 that has not been guessed. Therefore, by using the two cases,

the attack requires 2× 239 chosen plaintexts and 256 encryptions.

Furthermore, if we use more related keys and related-key differentials, the time complexity of the attack

can be reduced. For a time–data tradeoff, six cases are required. For example, we could add four more

cases as follows:

Case 3. 8000800000008000
2r,∆k1=880000000000000
−−−−−−−−−−−−−−−−→ 8000800000008000,

Case 4. 0080008000000080
2r,∆k1=220000000000000
−−−−−−−−−−−−−−−−→ 0080008000000080,

Case 5. 0800080000000800
2r,∆k1=440000000000000
−−−−−−−−−−−−−−−−→ 0800080000000800,

Case 6. 0800080008000000
2r,∆k1=440000000000000
−−−−−−−−−−−−−−−−→ 0800080008000000.

At the same time, four nibble keys (M ◦ P )−1(f20(k1))[10, 13, 14, 15] need to be guessed (k0 has been

guessed in the two cases above), and then there is 40-bit information of k1 that has not been guessed.
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Table 8 Cryptanalysis of full PRIDE

Notation The difference of the intermediate state

∆I1 ∗∗∗∗ 0000 0000 0000 ∗∗∗∗ 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆X1 ∗∗∗∗ 0000 0000 0000 ∗∗∗∗ 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆Y1 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆Z1 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆W1 1000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆I2 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆I19 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆X19 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆Y19 ∗∗∗∗ 0000 0000 0000 ∗∗∗∗ 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

∆Z19 ∗000 ∗000 0000 0000 ∗000 ∗000 0000 0000 ∗000 ∗000 0000 0000 ∗000 ∗000 0000 0000

∆W19 ∗000 ∗000 ∗000 ∗000 ∗00∗ ∗00∗ ∗000 ∗000 ∗00∗ ∗00∗ ∗000 ∗000 ∗000 ∗000 ∗000 ∗000

∆I20 ∗∗∗∗ 0000 0000 0∗∗0 ∗∗∗∗ 0000 0000 0∗∗0 ∗∗∗∗ 0000 0000 0000 ∗∗∗∗ 0000 0000 0000

∆X20 ∗∗∗∗ 0000 0000 0∗∗0 ∗∗∗∗ 0000 0000 0∗∗0 ∗∗∗∗ 0000 0000 0000 ∗∗∗∗ 0000 0000 0000

∆Y20 ∗∗∗∗ 0000 0000 ∗∗∗∗ ∗∗∗∗ 0000 0000 ∗∗∗∗ ∗∗∗∗ 0000 0000 0000 ∗∗∗∗ 0000 0000 0000

⊕∆k0 ∗∗∗∗ 0000 0000 ∗∗∗∗ ∗∗∗∗ 0000 0000 ∗∗∗∗ ∗∗∗∗ 0000 0000 0000 ∗∗∗∗ 0000 0000 0000

∆C ∗00∗ ∗00∗ ∗000 ∗000 ∗00∗ ∗00∗ ∗000 ∗000 ∗00∗ ∗00∗ ∗000 ∗000 ∗00∗ ∗00∗ ∗000 ∗000

Therefore, when the four additional cases are used, the attack requires 6× 239 = 241.6 chosen plaintexts,

and its time complexity is

241.6 + 6× 235 + 6× 239 + 240 ≈ 242.7encryptions,

which is the best time–data trade-off.

5.3 Key-recovery attack using a 17-round path

In this subsection, we recover the key by using another 2-round iterative related-key differential charac-

teristic

8000800000000000
1r
−→ 0000000000000000

1r
−→ 8000800000000000,

which leads to a 17-round (rounds 2–18) related-key differential with probability 2−32.

8000800000000000
16r
−−→ 8000800000000000

1r
−→ 0000000000000000.

We add one round before the differential and two rounds after the differential (see Table 8), and then

analyze full PRIDE. Here, we omit the initial permutation P−1-layer.

The attack procedure is as follows:

(1) Data collection. Encrypt 2n structures, in each of which plaintexts traverse in nibbles 1 and 5

and have fixed values in the remaining nibbles. There are 28 plaintexts in the structure, which leads to

215 pairs. For the ciphertexts, the adversary chooses the pairs that satisfy the output difference in Table

6. There remain 2−25(= 215 × 2−40) pairs.

(2) Key recovery.

(a) Guess the 8-bit key k0⊕P−1(f1(k1))[1, 5], partially encrypt the 1st and 5th nibbles of plaintext, and

sieve 28 pairs whose S-box output difference ∆Y1[1] = ∆Y1[5] = 0x8, which leaves 2−33 pairs remaining.

(b) Guess k0[1, 4, 5, 8, 9, 13] one by one (here, we can obtain P−1(f1(k1))[1, 5]), partially decrypt

the corresponding nibbles of ciphertext, and check whether the difference of the decrypted nibbles is

∆X20[1, 4, 5, 8, 9, 13] = ∗ ∗ ∗∗, 0 ∗ ∗0, ∗ ∗ ∗∗, 0 ∗ ∗0, ∗ ∗ ∗∗, or ∗ ∗ ∗∗. The probabilities are 1, 2−2, 1, 2−2, 1,

and 1, respectively. There remain 2−33 × 2−4 = 2−37 pairs.

(c) Decrypt the remaining pairs through the L-layer. According to Observations 3 and 4, the probability

of satisfying the condition ∆Z19 is 2−12(= 2−2×2−2×2−4×2−4). Therefore, there remain 2−37×2−12 =

2−49 pairs.



Dai Y B, et al. Sci China Inf Sci May 2017 Vol. 60 052108:10

(d) Guess the 40-bit k0[2, 3, 6, 7, 10, 11, 12, 14, 15, 16] and the 8-bit (M ◦P )−1(f20(k1))[1, 5]. Decrypt the

remaining pairs, and check whether the output difference of ∆X19[1, 5] is 0x8. On average, 2−49 × 2−8 =

2−57 pairs of data remain. Here, we guess 64-bit information of k0 and 16-bit information of k1 in all.

(e) Exhaustively search the remaining 48-bit information of k1 that is not guessed in the earlier steps.

In the attack procedure, since the probability of our related-key differential is 2−32, we require n to

be 26 and expect two remaining pairs to distinguish the right key from the wrong keys. At this point,

about 2−31 pairs are expected to remain for the wrong keys.

Complexity analysis. The data collection step requires 226 × 28 = 234 chosen plaintexts and 234

encryptions. Step (a) requires 2× 2× 28× 1/20 = 25.7 encryptions. Step (b) requires 28× 2× 2−7× 224×

1/20 = 221.7 encryptions. Step (c) only executes linear layers, and we omit it here. Step (d) requires

232 × 2 × 2−23 × 248 × 1/20 = 253.7 encryptions. After Step (d), there are about 240 80-bit keys (64-bit

k0 and 16-bit k1) for a pair, so Step (e) requires 240 × 248 = 288 encryptions.

Therefore, the attack requires 234 chosen plaintexts and 288 encryptions.

We can also apply the time–data tradeoff method to analyze full PRIDE. We add another case:

0080008000000000
1r
−→ 0000000000000000

1r
−→ 0080008000000000,

which leads to a 17-round related-key differential:

0080008000000000
16r
−−→ 0080008000000000

1r
−→ 0000000000000000.

At this point, the procedure needs to guess 24-bit k0[2, 3, 6, 7, 11, 15], 8-bit k0 ⊕ P−1(f1(k1))[3, 7], and

8-bit (M ◦ P )−1(f20(k1))[3, 7]. Then, there remain 16-bit k0 and 32-bit k1 information to be guessed,

which requires 248 encryptions. Therefore, the attack requires 2 × 234 = 235 chosen plaintexts and its

time complexity is 2× 253.7 = 254.7 encryptions.

6 Conclusion

We first investigated and found some weaknesses of the key schedule. By utilizing these weaknesses,

we found eight 2-round iterative related-key differential characteristics that could be used to construct

18-round related-key differentials for the block cipher PRIDE. Then, after considering the function g
(1)
r ,

we also found four 2-round iterative related-key differential characteristics with ∆g
(1)
r (k1,2) = 0x80 and

four 2-round iterative related-key differential characteristics in three weak-key classes with 2126.4 or 2122

keys. Based on one of the related-key differentials, we attacked full PRIDE using 239 chosen plaintexts

and 292 encryptions. Using multiple related-key differentials, the analysis required 241.6 plaintexts and

242.7 encryptions. Using the 17-round related-key differentials, the complexity of the cryptanalysis was

235 plaintexts and 254.7 encryptions. These are the first results on full PRIDE, and show that the PRIDE

block cipher is not secure against a related-key differential attack.
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Table A1 Permutation P (x) of the block cipher PRIDE

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P (x) 1 17 33 49 2 18 34 50 3 19 35 51 4 20 36 52

x 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

P (x) 5 21 37 53 6 22 38 54 7 23 39 55 8 24 40 56

x 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

P (x) 9 25 41 57 10 26 41 58 11 27 43 59 12 28 44 60

x 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

P (x) 13 29 45 61 14 30 46 62 15 31 47 63 16 32 38 64

Table A2 Permutation P−1(x) of the block cipher PRIDE

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P (x) 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

x 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

P (x) 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

x 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

P (x) 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

x 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

P (x) 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
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