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Abstract Anonymous password authenticated key exchange (APAKE) is an important cryptographic prim-

itive, through which a client holding a password can establish a session key with a server both authentically

and anonymously. Although the server is guaranteed that the client in communication is from a pre-determined

group, but the client’s actual identity is protected. Because of their convenience, APAKE protocols have been

widely studied and applied to the privacy protection research. However, all existing APAKE protocols are

handled in stand-alone models and do not adequately settle the problem of protocol composition, which is a

practical issue for protocol implementation. In this paper, we overcome this issue by formulating and realizing

an ideal functionality for APAKE within the well-known universal composability (UC) framework, which thus

guarantees security under the protocol composition operations. Our formulation captures the essential secu-

rity requirements of APAKE such as off-line dictionary attack resistance, client anonymity and explicit mutual

authentication. Moreover, it addresses the arbitrary probabilistic distribution of passwords. The construc-

tion of our protocol, which utilizes SPHF-friendly commitments and CCA2-secure encryption schemes, can be

instantiated and proven secure in the standard model, i.e., without random oracle heuristics.
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1 Introduction

Password authenticated key exchange. Key exchange (KE) is a process in which session keys are

established between two or more parties, based on certain special cryptographic credentials held by each

party, for subsequent secure communication. It is important tool for establishing secure communication,

and plays a pivotal role in guaranteeing the security of high-level cryptographic algorithms (e.g., sym-

metric encryption schemes) [1, 2]. Password authenticated key exchange (PAKE) is an important type

of key exchange, that allows parties to authenticate each other and establish a high-entropy key based
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on a shared low-entropy credential called a password. Because passwords can be easily recalled by hu-

man users, PAKE protocols are much more convenient and practical, compared with those KE protocols

that rely on comprehensive public key infrastructure (PKI) systems for distributing digital certificates,

or dedicated hardware for storing high-entropy symmetric keys. Although repeated evidence has shown

the vulnerability to off-line dictionary attacks, PAKE protocols, are in fact reasonably secure against

on-line guessing attacks, because adversaries can be throttled or slowed down through various means,

such as presenting CAPTCHAs or introducing delays after several failed attempts [3]. After the pioneer-

ing work by Bellovin and Merrit [4], PAKE protocols have been extensively explored [5–10] and widely

standardized [11, 12]. Moreover, it is most likely that these protocols will remain in widespread use in

the foreseeable future.

Anonymous password authenticated key exchange. Traditionally, a participant of a PAKE

protocol manages to protect its password secretly while paying no attention to protecting its identity,

because such information is usually transmitted explicitly to help its partner identify the participant

and determine which password should be used. However, along with the growing concern regarding

network privacy risks, users tend to avoid as much as possible those applications that they believe

may not protect their privacy. Consequently, reinforcing conventional PAKE protocols with additional

privacy protection property, while maintaining a high level of convenience, is a quite significant issue.

Among many practical settings, one important scenario is a client from a legitimate group wanting to

communicate with a server securely, while still wanting to hide its actual identity from the server [13].

To meet these needs, (password-only) anonymous password authenticated key exchange (APAKE) was

proposed in which a client establishes a session key with the server both authentically and anonymously.

In 2005, Viet et al. [14] proposed the first APAKE protocol, as well as an extended threshold version,

by subtly integrating an oblivious transfer (OT) protocol within a two-party PAKE protocol. However, it

was later pointed out by Shin et al. [15] that Viet et al.’s threshold APAKE protocol is vulnerable to an

off-line dictionary attack. Shin et al. [15] also put forward an enhanced threshold APAKE protocol aiming

to overcome this type of attack. However, Yang and Zhang [16] found that Shin et al.’s improvement is

still under the threats of impersonation attacks and off-line dictionary attacks. To resist such attacks and

improve the efficiency, Yang and Zhang [16] presented a novel APAKE protocol based on the SPEKE

protocol [17]. Shin et al. recently [18] put forward another APAKE protocol, whose computation cost is

reduced if a public bulletin board is made available for all protocol participants.

Apart from the above APAKE protocols, another kind of anonymous authenticated key exchange is

considered in [19–21], which employs, on top of a password, additional storage. More specifically, each

client registers its identity to the server and takes back the authentication credential. The client then uses

its password to wrap this credential and stores it in extra (possibly public) storage, such as a memory

card, a smart phone, or a cloud. To log into the server, the client has to submit both its password and the

password-wrapped credential. Although this technique can greatly reduce the storage and computation

complexity on the server side, an auxiliary storage device needs to be available in time for any client,

which is not suitable for all real world scenarios. Henceforth, we do not consider any extra-storage-aided

anonymous protocols, and restrict ourselves to the more convenient password-only APAKE setting.

Security models. Many existing PAKE protocols [6–8,22] and, to the best of our knowledge, almost

all APAKE protocols [14–16, 18] with provable security are analyzed in variants of the BPR model [5].

These game-based models restrict attention to a “stand-alone” setting, in which only the instances of a

single protocol are considered in isolation, whereas no other protocols are allowed to be executed in the

same network at the same time. As pointed out by Canetti [23], when placing the protocols in a more

complex context, security can no longer be guaranteed by these stand-alone models. Nevertheless, in the

real world, (A)PAKE protocols are most likely to be executed concurrently, or even through a composable

approach, along with other protocols, for instance, message transport or secure e-commerce protocols.

Some progress has been made with respect to UC-secure PAKE protocols during the last decade [24–28].

However, little if any effort has been made in arming APAKE with UC security. As a consequence,

existing APAKE protocols provide a security level that is significantly lower than that of UC-secure

PAKE protocols. Furthermore, previously-proposed APAKE security models suppose that passwords are
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chosen independently from a certain pre-determined (usually uniform) distribution; in practice, however,

a party of an APAKE protocol might choose its password at will and use it (or a related password)

simultaneously for various cryptographic protocols. Therefore, it is necessary to formalize and realize a

formal definition for APAKE that can adequately address the above problems.

Contributions. To design APAKE protocols suitable for ubiquitous applications, and that can provide

stronger security guarantees, we formalize and realize a new definition for APAKE within the well-known

universal composability (UC) framework. Specifically, we present a security definition for password-only

APAKE in terms of an ideal functionality in the UC framework, which captures the expected security

requirements of exchanging a session key both authentically and anonymously by utilizing only a pass-

word. Similar to the formulation in [24], our definition makes no assumption regarding the distribution

of passwords used by the protocol parties, which guarantees security for all efficient, and even related,

distributions.

Additionally, we propose a new password-only APAKE protocol and prove that it securely realizes the

APAKE functionality in the UC framework, thus ensuring its UC security. The APAKE protocol de-

scribed herein relies on standard number-theoretical assumptions, i.e., without the application of random

oracle heuristics. Furthermore, since our protocol uses generic building blocks, it actually implies a series

of APAKE protocols in the standard model, by instantiating these generic building blocks using different

hard assumptions, e.g., DDH, Quadratic Residuosity, or N-Residuosity assumptions [29].

2 Definition of security

2.1 The UC framework

The universal composability (UC) framework [23] is a well-known approach to the formalization of pro-

tocol security, through which protocols can be analyzed only once and utilized universally. Roughly

speaking, the security of a given cryptographic task in the UC framework is captured through an ideal

functionality F , which is essentially a trusted party that interacts with a set of participating players in

a secure manner. We state that a protocol π securely realizes the ideal functionality F if for every A

there exists an ideal adversary (called a simulator) S, such that no environment can distinguish these

two scenarios with a non-negligible probability. The universal composition theorem then asserts that any

larger protocol that uses multi-instances of F behaves essentially the same when these ideal instances are

replaced by instances of protocol π.

When the common reference string (CRS) model is used, where different sessions of the protocol share

some of the same CRS, one might have to resort to the UC framework with joint state (JUC) proposed by

Canetti and Rabin [30]. They put forth a new composition theorem that allows us to deduce the security

of a multi-instance system from the security of a single instance, even when different instances share a

certain amount of state and randomness. This is achieved by additionally defining sub-SIDs (SSIDs) for

identifying different sub-sessions.

2.2 Formulation of anonymity

Anonymity is an important and desirable attribute for certain systems. Electronic voting schemes and

electronic cash schemes, for instance, require anonymity by their nature. In addition, Internet users may

also seek anonymity in sending a politically sensitive email, or engaging in an unfamiliar chat room. For

these types of applications, it is necessary that an individual be indistinguishable from the other entities

within a predetermined set, i.e., an anonymity set. To achieve this aim in a particular cryptographic

system, a reasonably important but usually unwritten assumption is that an outside adversary, or an

honest-but-curious server, cannot identify an individual through approaches other than those that have

been considered in the applied schemes. This implies that, aside from those properties explicitly consid-

ered by anonymity schemes, all individuals in an anonymity set are assumed to have the same (or at least

indistinguishable) characteristics in all other aspects. For example, if pseudonymity or a proxy server is
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used to attain the anonymity of certain users within a specific group, we implicitly require that all such

users have the same IP address, or that they possess different IP addresses that would be difficult to

obtain by an adversary or the server. Therefore, an individual user cannot be identified by tracing its IP

address. This assumption is reasonable in practice because various techniques can be employed to realize

it, such as a Mix network or the onion router (Tor).

However, when resorting to the UC framework, we cannot formulate anonymity simply by making the

above assumption implicitly. Since that, according to the basic computation model of the UC framework

(Section 3 of [23]), an external-write instruction of an interactive Turing machine (ITM) should specify

the identity of the target instance of the ITM explicitly. This requirement is useful in making clear

which instance each message is intended for. As an aside, however, the identity of every client user is

also revealed to an adversary if we simply set the party identity to be its unique identifier in the real

world. To overcome the defects of the conventional UC framework in formalizing security properties that

involve identity anonymity, we make some minor changes to the interpretation and utilization of the party

identity field.

More specifically, as usual we allow each identity to be composed of two fields, the session identity,

SID, and the party identity, PID. The former is used to identify a protocol instance, and the latter is

used to differentiate between instances of an ITM within a specific protocol instance. We add an extra

structure to the party identity PID by interpreting it as two separate sub-fields: a (public) address field,

PIDA, and an (optionally secret) identity party, PIDI. Both of these sub-fields need to be unique during

the entire execution, and either of them can be used to identify an instance of ITM. Once an instance of

ITM is activated, it is required that its SID,PIDA be determined, but not the field of PIDI, which can be

specified during the execution. When a message is asked to send through an external-write instruction,

we are only required to specify the PIDA of the intended instance. Note that our modified formalization

is compatible with the traditional UC frameworkin the sense that, when such a complicated PID is not

needed, we can simply set PIDI = Null,PIDA = PID and use it as usual. Nevertheless, we show that the

revised UC framework is sufficiently powerful to model an anonymous authentication by presenting and

realizing an APAKE functionality within this framework.

Remark 1. Informally speaking, to achieve anonymity, the address field PIDA of the party identity will

serve as a pseudonymity for a legitimate client. Once a message is sent to a client within a pre-determined

group, this pseudonymity is used to identify the destination, whereas the actual identification of the client

(i.e., PIDI) is kept secret. In practice, we can construct such a PIDA by simply concatenating the group

name and a random string chosen by the client itself.

2.3 APAKE functionality

In this section, we present the ideal functionality for anonymous password authenticated key exchange in

the UC framework, which is denoted by FAPAKE. Our starting points are the password authenticated key

exchange functionalities defined in [24–26], and the security models for APAKE presented in [14,16]. The

aim here is to formulate a functionality that captures the essential security requirements for anonymous

password authenticated key exchange, including session key security, off-line dictionary attacks resistance,

client anonymity and explicitly mutual authentication.

2.3.1 The functionality FAPAKE

The functionality FAPAKE is parameterized by a security parameter k. It interacts with an adversary S

and a set of parties P = {Pl}l∈I through the following queries:

Initialization:

• Upon receiving (NewSession, sid,Pid, Pi, pwi, client) from party Pi:

- Send (NewSession, sid,Pid, client) to S. If this is the first NewSession query, or the second

NewSession query while a record (sid,Pid, ∗, ∗, server) exists, Pid is an ordered set in the form of

Pid = Γ ∪ {Ps} ⊂ P and Pi ∈ Γ , record (sid,Pid, Pi, pwi, client) and mark it as fresh.

• Upon receiving (NewSession, sid,Pid, Ps,pws, server) from party Ps:
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- Send (NewSession, sid,Pid, server) to S. If this is the first NewSession query, or the second

NewSession query while a record (sid,Pid, ∗, ∗, client) exists, Pid is an ordered set in the form of Pid =

Γ ∪ {Ps} ⊂ P and pws is an ordered set of the same size as Γ , record (sid,Pid, Ps,pws, server) and

mark it as fresh.

Test password:

• Upon receiving (TestPwd, sid, role, P ′i , pw
′
i) from the adversary S:

- If role = client and a fresh record in the form of (sid,Pid, Pi, pwi, client) exists, do the following. If

Pi = P ′i and pwi = pw′i, mark the record as compromised and reply to S with “correct guess”; otherwise,

mark the record as interrupted and reply with “wrong guess”.

- If role = server and a fresh record in the form of (sid,Pid, Ps,pws, server) exists, do the following.

If pws[P
′
i ] = pw′i, mark the record as compromised and reply to S with “correct guess”; otherwise, mark

the record as interrupted and reply with “wrong guess”.

Key generation:

• Upon receiving (ServerReady, sid,Pid) from the adversary S, if a fresh record in the form of

(sid,Pid, Ps,pws, server) exists, then re-label it as ready.

• Upon receiving (NewKey, sid,Pid, client, sk) from the adversary S, if there exists a record in the

form of (sid,Pid, Pi, pwi, client) that is not marked as completed, then conduct:

- If the record is compromised, or Pi is corrupted, set skc ← sk.

- Else, if the record is interrupted, set skc ← error.

- Else, if a record (sid,Pid, Ps,pws, server) such that pws[Pi] = pwi exists, then do:

⋆ If Ps is corrupted, set skc ← sk.

⋆ Else, if the record (sid,Pid, Ps,pws, server) is labeled ready, choose sk′ uniformly at random

from {0, 1}k, set skc ← sk′, and store the tuple (sid,Pid, sk′).

- Otherwise, if none of the above rules apply, set skc ← error.

Then, send to Pi the tuple (sid,Pid, skc), mark the record (sid,Pid, Pi, pwi, client) as completed, and

report the final result (which is completed if skc ∈ {0, 1}
k, or error if skc = error) to S.

• Upon receiving (NewKey, sid,Pid, server, sk) from the adversary S, if there exists a record in the

form of (sid,Pid, Ps,pws, server) that is not marked as completed, then conduct:

- If the record is compromised, or Ps is corrupted, set sks ← sk.

- Else, if the record is interrupted, set sks ← error.

- Else, if a record (sid,Pid, Pi, pwi, client) such that pws[Pi] = pwi exists, then do:

⋆ If Pi is corrupted, set sks ← sk.

⋆ Else, if these exists a record (sid,Pid, skc), set sks ← skc.

- Otherwise, if none of the above rules apply, set sks ← error.

Then, send to Ps the tuple (sid,Pid, sks), mark the record (sid,Pid, Ps,pws, server) as completed, and

report the final result (which is completed if sks ∈ {0, 1}
k, or error if sks = error) to S.

Remark 2. In the above formulation, the party identity PID of a client is set to PIDA = Pid||client

and PIDI = Pi. Strictly speaking, some random strings should also be attached after PIDA to guarantee

the uniqueness. Herein we omit these strings for simplicity and clarity of the description.

Remark 3. Mutual authentication is guaranteed through the following techniques: (1) Strict order is

required in the generation of the session keys. The client will generate a random session key when server

is fresh and the passwords match; in addition, the server will obtain the same session key only when the

client has generated a session key and the passwords match. (2) Both parties report error explicitly when

a failed password guess is detected or when their passwords do not match.

2.3.2 Design explanations

In the definition of FAPAKE, similar to the approach adopted by [24] and [31], we let the environment Z

choose the passwords for all participants. As indicated in [24], this approach allows a scenario in which

the same password is used for many different protocols. Furthermore, since the definition quantifies over
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all PPT environment, FAPAKE also captures the case where passwords are chosen according to some

arbitrary, and even related, distributions.

The APAKE functionality FAPAKE starts with an initialization phase, in which an anonymous client or

a server provides an input to inform the functionality its interest in taking part in the protocol. The input

is in the form of (NewSession, sid,Pid, Pi, pwi, client) or (NewSession, sid,Pid, Ps,pws, server), where

Pid is an ordered set Pid = Γ ∪ {Ps} representing the identifiers of the clients Γ = {P1, P2, . . . , Pn}

and the server Ps. In the following, we also use pws[Pi] to denote the password in the ordered set pws

whose index is the same as the index of Pi in the ordered set Γ .

Upon initialization, a session is declared fresh. A TestPwd query from the adversary, which models

the active on-line password guessing attacks, will alter the status of this session. As usual, when the

adversary makes a correct guess, we change the status of the session from fresh to compromised; otherwise,

we relabel the session as interrupted. However, because APAKE is an asymmetric protocol specifying

different behaviors for the client and server, we treat a guess as being correct differently according to the

role of the corresponding session. Specifically, when a query is aimed at a client session, we require the

adversary to provide the correct identity and password, i.e., Pi = P ′i and pwi = pw′i; when a query is

aimed at a server session, we require the password provided by the adversary to be a legal part of the

password vector held by the server, i.e., pws[P
′
i ] = pw′i. Next, the functionality informs the adversary of

whether its guess is correct or incorrect through a “correct guess” or “wrong guess”, respectively.

During the key generation phase, the power to determine the session key at will is given to the adversary

when the session is compromised, and when the corresponding party or its partner is corrupted. For a

normal session key generation, several techniques are adopted to achieve explicit mutual authentication.

First, similar to that in [26], we introduce a ready state for the server session. Subsequently, a client

session will generate a random session key if and only if there is a partnered server session in a ready

state. Second, we stipulate the order of key generation for our purposes. In particular, we require the

client session to choose its session key before the server instance. Next, the server session will generate

its session key if and only if a client session that has already outputted a session key exists.

3 Cryptographic tools

In this section, we review definitions for cryptographic tools used in our construction, such as smooth

projective hash functions and SPHF-friendly equivocable and extractable commitments.

3.1 Smooth projective hash functions

The smooth projective hash function family was first introduced by Cramer and Shoup [32] for construct-

ing a CCA2 secure public key encryption scheme, and was later developed [8, 28, 29, 31, 33] as one of the

main tools used in the construction of PAKE protocols. In particular, it is a family of hash functions

that admits two keys. One key can be used to efficiently compute the hash values for all messages in the

hash domain, and the other key can be used to properly compute the hash values on a specified subset,

while giving almost no information regarding the hash values for messages that are not in the subset.

Let X be a finite, non-empty set (i.e., the domain), and L ⊂ X be a certain subset of this domain,

which is usually a formal NP language such that it is difficult to distinguish a random element selected

from L from a random element chosen from X \ L. Note that, for any word C ∈ L, there must be a

witness w for this fact. A family of smooth projective hash functions H, from domain X to a set (or

group) G, |G| = O(2k), consists of the following algorithms H = (HashKG,ProjKG,Hash,ProjH).

• HashKG(L): The key generation algorithm HashKG takes as input language L and produces a hash

key hk for language L.

• ProjKG(hk, L,C): The key projection algorithm takes the hash key hk, language L and word C ∈ L

as input, and generates a projected hash key as hp.

• Hash(hk, L,C): The hash algorithm takes a hash key hk and a word C ∈ L as input, and outputs a

hash value Hash(hk, L,C).
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• ProjH(hp, L,C,w): The projected hash algorithm takes the projected hash key hp, word C ∈ L and

witness w of the fact as input, and returns a hash value as ProjH(hp, L,C,w).

The smooth projective hash functions should satisfy both the correctness and smoothness properties.

The correctness property guarantees that if C ∈ L and w is the corresponding witness, then it holds

that Hash(hk, L,C) = ProjH(hp, L,C,w). The smoothness property, which captures the security of the

family, assures that for any C ∈ X\L, Hash(hk, L,C) is statistically close to a uniform random element

from the range of the hash function, and even the projected key hp is given. In other words, the following

two probabilistic distribution ensembles are statistically indistinguishable:

{C, hp,Hash(hk, L,C)}
hk

$
←HashKG(L)

s
≡ {C, hp, g}

hk
$
←HashKG(L),g

$
←G

.

3.2 Equivocable and extractable commitments

A commitment scheme is a fundamental cryptography primitive, allowing a committer to commit to a

specific value while keeping it hidden from the receiver. It usually consists of two phases. In the commit

phase, the committer generates and sends to the receiver a commitment C associated with a message

m. Next, in the opening phase, the committer reveals m by releasing the opening data δ to the receiver,

who will be able to verify whether C is a commitment of m. Basically, a commitment should fulfill two

security requirements, hiding and binding properties. The hiding property guarantees that an adversary

cannot obtain any information from the commitment value C, whereas the binding property ensures that

a commitment generated by the committer can not be opened in two different ways.

Definition 1 (Non-interactive labeled commitment). A non-interactive labeled commitment scheme is

defined by three algorithms (SetupCom,Com,VerCom):

• SetupCom(1k) takes as input the security parameter k, and outputs a common reference string ρ.

• Coml(m) takes as input an arbitrary label string l and a message m, and outputs a commitment C

and the corresponding opening information δ.

• VerComl(C, δ,m) takes as input a commitment C, a opening data δ and a message m, and outputs

1 if C is indeed a valid commitment of message m with opening data δ, and outputs 0, otherwise.

However, for some applications of commitments, such as the construction of (A)PAKE protocols with

provable security in the standard model, it is necessary for the commitments to additionally satisfy the

equivocability and extractability properties. The equivocability guarantees that a simulator who knows

a certain equivocable trapdoor can generate a commitment that can be opened in two or more ways.

The extractability property allows one to extract a corresponding message m from a commitment C. For

our purpose, herein we review the definition of non-interactive equivocable and extractable (i.e., E2-)

commitments with the associated smooth projective hash functions [28].

Definition 2 (E2-commitment). A non-interactive labeled E2-commitment scheme is a commitment

specified in Definition 1, but extended with the following algorithms:

• SetupComT(1k) takes as input the security parameter k, and outputs a common reference string ρ

as well as a trapdoor τ .

• SimComl(τ) takes as input an arbitrary label string l and the trapdoor τ , and outputs a pair (C, eqk)

consisting of a commitment C and an equivocable key eqk.

• OpenComl(C, eqk,m) takes as input a pair (C, eqk) outputted by the SimCom algorithm together

with a message m, and then outputs an opening data δ for C and m.

• ExtComl(τ, C) takes as input an arbitrary label string l, the trapdoor τ and a commitment C, and

then outputs the corresponding commit message m, or ⊥ if the extraction fails.

Denote by (C, δ)← SComl(τ,m) the probabilistic algorithm computed as (C, eqk)← SimComl(τ) and

δ ← OpenComl(C, eqk,m). To achieve E2-commitment security, great care should be taken because an

adversary might exploit the weakness of additional equivocation and extraction queries. Consequently,

the following properties are then associated with the commiment:

• Correctness. For all common reference strings ρ generated correctly, all commitments and opening

data generated honestly will be valid with respect to the verification test, i.e., for all m and l, it holds
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Exps-sim-ind-b
A

(1k):

(ρ, τ)
$
← SetupComT(1k)

(l, x, state)
$
← ASCom(τ,·),ExtCom(τ,·)(1k)

if b = 0, set (C, δ)
$
← Coml(x);

otherwise, set (C, δ)
$
← SComl(τ, x)

return ASCom(τ,·),ExtCom(τ,·)(state, C, δ)

Expr-bin-ext-b
A

(1k):

(ρ, τ)
$
← SetupComT(1k)

(C, l)
$
← ASCom(τ,·),ExtCom(τ,·)(1k)

x′ ← ExtComl(τ, C)

if (l, x′, C) is not outputted by SCom,

∃x 6= x′,∃δ, s.t. VerComl(C, δ, x) = 1

then return 1; otherwise, return 0

Figure 1 Security experiments with respect to E2-commitments.

that VerComl(Coml(m),m) = 1.

• Trapdoor correctness. All simulated commitments generated by the SimCom algorithm can be

opened to any message, and all commitments generated by the Com algorithm can be extracted correctly:

for all l and m, VerComl(SimComl(τ,m),m) = 1, and if (C, δ)← Coml(m), then ExtComl(τ, C) = m.

• Setup indistinguishability. The common reference string ρ generated by SetupComT is computa-

tionally indistinguishable from that generated by SetupCom.

• Strong simulation indistinguishability. No PPT adversary can distinguish the real commitments

generated by the Com algorithm from fake commitments generated by the SCom algorithm, even with

oracle access to the ExtCom and SCom algorithms. We restrict queries on ExtCom with commitment

generated by SCom to be replied with the associated SCom inputs. The corresponding formal secu-

rity is defined by two experiments Exps-sim-ind-b
A (1k), b ∈ {0, 1} (see Figure 1). A commitment scheme

C is said to be (t, ǫ)-strongly-simulation-indistinguishable if the advantage function Advs-sim-ind
C (t) =

maxA|Pr[Exp
s-sim-ind-0
A (1k) = 1] − Pr[Exps-sim-ind-1

A (1k) = 1]| < ǫ, where the maximum is taken over all

A running in time at most t;

• Robust binding extractability. No PPT adversary can make a fool of the extractor by generating

a commitment C that extracts to m′ whereas C can be opened to another value m, even with oracle

access to the ExtCom and SCom algorithms. Formal security is defined through Expr-bin-ext-bA , b ∈ {0, 1}

experiments (see Figure 1). A commitment scheme C is said to be (t, ǫ)-robustly-binding-extractable if

Advr-bin-extC (t) = maxA|Pr[Exp
r-bin-ext-0
A = 1]− Pr[Expr-bin-ext-1A = 1]| < ǫ.

Note that strong simulation indistinguishability, together with setup indistinguishability, implies the

basic hiding property; whereas the robust binding extractability and setup indistinguishability imply the

basic binding property. It is important to note that the robust binding extractability also guarantees that

the underlying NP language Lx = {(l, C)|∃δ,VerComl(C, x, δ) = 1} associated with SPHF is well defined.

Thus, a commitment is said to be SPHF-friendly if it satisfies both strong simulation indistinguishability

and robust binding extractability, and admits an SPHF associated with the language Lx.

In [28], Abdalla et al. also provided an instantiation of an SPHF-friendly E2-commitment, by combining

Haralambiev’s commitment [34] and a variant of the Cramer-Shoup encryption scheme [35]. Haralam-

biev’s commitment, which takes a group element as the opening data, provides the scheme with a perfect

hiding property, whereas the variation of Cramer-Shoup encryption guarantees that the proposed scheme

is extractable.

4 UC-secure APAKE protocol

In this section, we describe our APAKE protocol in the UC framework (called UC-APAKE), which

is constructed from an SPHF-friendly E2-commitment scheme, a CCA2-secure public key encryption

scheme, and a one-time signature scheme.

4.1 Description of our protocol

Denote by k the security parameter. Assume that C = (SetupCom,Com,VerCom, SetupComT, SimCom,

OpenCom,ExtCom) is an SPHF-friendly E2-commitment, and thatH = (HashKG, ProjKG,Hash,ProjH)
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CRS: ρ, pk′

Pi(pwi) S

(

Γ = {P1, . . . , Pn}

pws = {pwj}16j6n

)

lc:=sid||Pid

(Ci, δi)← Comlc(pwi||i) Ci
−−−−−−−−→

hk = (hk1, hk2, . . . , hkn)

for every j = 1, . . . , n, compute

hpj = ProjKG(hkj ; lc, Ci, pwj ||j)

tkj ||tpj = Hash(hkj ; lc, Ci, pwj ||j)

δj = tp1 ⊕ tpj

hp = (hp1, . . . , hpn, δ2, . . . , δn)

τs||sks = tp1

(V K,SK)← SignKG(1k)

ls = sid||Pid||Ci||hp||VK

C′
j = Enc′

pk′(pwj ; ls; tkj)

C′ = (C′
1, C

′
2, . . . , C

′
n)

hp, V K,C′, σ
←−−−−−−−−−−−

σ ← SignSK(C′)

if VerifyV K(C′;σ) = 1

tki||tpi = ProjH(hpi; lc, Ci, pwi||i; δi)

if i = 1, then tp = tpi

if i > 2, then tp = tpi ⊕ δi

τc||skc = tp

ls = sid||Pid||Ci||hp||VK

verify C′
i = Enc′

pk′ (pwi; ls; tki) τc
−−−−−−−−−→

verify τc = τs

output (sid,Pid, skc) output (sid,Pid, sks)

Figure 2 The UC-secure APAKE protocol UC-APAKE.

is its associated smooth projective hash function family. Denote by Lm = {(l, C,m) : ∃δ,VerComl(C, δ,m)

= 1} and L = ∪m∈D×[n]Lm the underlying languages, where D is the dictionary and n is the maximum

number of users. For the sake of simplicity, we generally omit the languages in the SPHF functions in the

following description. Assume that E ′ = (Gen′,Enc′,Dec′) is a CCA2-secure labeled public key encryp-

tion scheme, and that Σ = (SignKG, Sign,Verfy) is a secure one-time signature scheme. For simplicity,

we assume that the output of the hash functions in the SPHF family is of an appropriate length, i.e.,

lh = 3k, such that it can be divided into three k-bit substrings. The common reference string of our

protocol consists of a common reference string ρ used for the commitment C, and a public key pk′ for the

CCA-secure public key encryption scheme E ′. Note that no protocol participant knows the corresponding

secret key with respect to pk′.

Suppose that, in an execution of the protocol, a client Pi is activated by an input (NewSession, sid,

Pid, Pi, pwi, client) from the environment, where Pid is an ordered set Pid = Γ ∪ {Ps} and Pi ∈ Γ .

Alternatively, a server Ps is activated by an input (NewSession, sid,Pid, Ps,pws, server), where Pid =

Γ ∪{Ps} and the cardinality |pws| equals |Γ |. After the activation, the client first begins to compute and

send a commitment, and the server initially enters a waiting stage for a message coming from a client.

More precisely, they proceed with the following concrete steps (see also in Figure 2):

(1) The client Pi sets lc:=sid||Pid and computes a commitment through (Ci, δi) ← Comlc(pwi||i).

Then, it sends the commitment Ci to the trusted server Ps, and stores the opening data δi.

(2) Upon receiving message Ci, the sever first chooses independently n hash keys hk = (hk1, . . . , hkn)

according to the key generation algorithm HashKG. Next, for every j = 1, 2, . . . , n, it computes hpj =
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Table 1 Comparison of password-only APAKE protocols

Protocol Assumption Model Mutual authentication Round

APAKE Random Oracle Game-based Yes 3

NAPAKE Random Oracle Game-based No 2

VEAP Random Oracle Game-based Yes 3

Our protocol Standard The UC framework Yes 3

ProjKG(hkj ; lc, Ci, pwj ||j), tkj ||tpj = Hash(hkj ; lc, Ci, pwj ||j), δj = tp1 ⊕ tpj , where tkj ∈ {0, 1}
k and

tpj ∈ {0, 1}
2k. The server sets hp = (hp1, . . . , hpn, δ2, . . . , δn) and τs||sks = tp1. Then, it generates

a key pair (V K, SK) ← SignKG(1k) for a one-time signature scheme, sets ls = sid||Pid||Ci||hp||V K,

computes a tuple of ciphertext C ′ = (C′1, C
′
2, . . . , C

′
n) such that C′j = Enc′pk′(pwj ; ls; tkj), and computes

σ = SignSK(C ′). Finally, the server sends the message (hp, V K,C ′, σ) to the client.

(3) When the message (hp, V K,C ′, σ) is received by the client Ci, it first verifies that VerfyV K(σ,C ′) =

1. Then, it selects from hp the projected key hpi corresponding to the index of Pi in Γ . By utilizing

the password pwi and opening data δi associated with ciphertext Ci, the client computes the hash value

through the projected hash algorithm tki||tpi = ProjH(hpi; lc, Ci, pwi||i; δi). If client Pi is the first element

in the ordered set Γ , it sets tp = tp1; if Pi is not the first client in set Γ , then it sets tp = tpi ⊕ δi.

After that, the client Pi sets τc||skc = tp and ls = sid||Pid||Ci||hp||V K, and verifies that for the i-th

ciphetext in C ′, it holds C′i = Enc′pk′(pwi; ls; tki). If the verification fails, the client aborts this session

by outputting (sid,Pid, error); otherwise, it sends the message τc to the server, and sets the state as

accepted and outputs (sid,Pid, skc).

(4) Upon receiving message τc from the client, the server verifies whether τc = τs. If the verification

fails, the server simply aborts the session and outputs (sid,Pid, error); otherwise, it sets the state as

accepted and outputs (sid,Pid, sks).

Correctness. If the protocol is honestly executed, the client Pi holding a legitimate password pwi =

pws[Pi] will definitely compute the same hash value as the server, ProjH(hpi; lc, Ci, pwi||i; δi) = Hash(hki;

lc, Ci, pwi||i), according to the correctness of the smooth projective hash function family. Hence, all

verifications will succeed, and the client and server will compute equivalent session key skc = sks.

Remark 4. Note that index i is taken into account explicitly in the computation of each commitment,

and hence in the computation of every smooth projective hash function. This technique is employed

to restrict the power of the adversary to impersonate a particular client once each time, rather than to

imitate all clients through only a single on-line query. To explain this more clearly, let us consider an

adversary against a protocol in which pwi is used instead of pwi||i. A commitment is then computed as

Coml(pw∗) using pw∗ and sent to the server. After receiving the response from the server, the adversary

can compute the projective hash value through impersonating the i-th client, for all i = 1, 2, . . . , n.

If pw∗ = pwi for some i ∈ {1, 2, . . . , n}, the adversary will successfully recompute the corresponding

ciphertext C′i. Under this scenario, the adversary has an advantage n times larger than that of an

adversary against our protocol.

4.2 Protocol comparison

In this section, we compare the UC-APAKE protocol with previously proposed APAKE protocols [14,

16, 18], in terms of security and efficiency, as summarized in Table 1.

Security comparison. The most arresting feature of our UC-APAKE protocol is that it provides

security guarantees stronger than all previous APAKE protocols [14,16,18] in the password-only setting.

On the one hand, while previous APAKE protocols were analyzed in game-based models formulating

only stand-alone security, our UC-APAKE protocol is provably secure in the UC framework. Recall that

stand-alone game-based models cannot guarantee security when the protocol is concurrently executed

or composed with other protocols. The security definition and proof in the UC framework guarantee

that the UC-APAKE protocol will be universally composable and can thus be used in more realistic

environments. Furthermore, our security definition supports arbitrary password distributions. On the
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other hand, while the security proofs of previous APAKE protocols rely on the random oralce (RO) model,

the UC-APAKE protocol has been proven to be secure in the standard model, i.e., without random oracle

heuristics. Recall that the RO model is a kind of ideal assumption and might not be instantiable in the

real world [36].

Efficiency comparisons. Similar to those PAKE protocols [6–8, 22] proven secure in the standard

model, the UC-APAKE protocol is not as efficient as its analogues in the RO model. However, we claim

that our protocol is still very practical in terms of efficiency. First, based on the most efficient PAKE

protocol [7, 26] in the standard model, the UC-APAKE protocol needs only three rounds (i.e., message

flows) while providing mutual authentication. Second, although the computational overhead on the server

side is linear in the number of clients, the computation on the client side is very similar to that in [7,26]

and is thus relatively efficient.

5 Proof of security

Denote by F̂APAKE the multi-session extension of the functionality FAPAKE. Let FCRS be an ideal

functionality that provides a CRS to all parties. The following theorem asserts that our APAKE protocol

presented in Subsection 4.1 securely realizes F̂APAKE in the UC framework with joint state.

Theorem 1. Assume that C is an SPHF-friendly E2- commitment scheme,H = (HashKG,ProjKG,Hash,

ProjH) is an associated smooth projective hash function family, E ′ = (Gen′, Enc′,Dec′) is a CCA2-secure

labeled public key encryption scheme, and Σ = (SignKG, Sign,Verfy) is a secure one-time signature

scheme. Then, the APAKE protocol UC-PAKE described in Subsection 4.1 realizes F̂APAKE in the FCRS

hybrid model, in the presence of static adversaries.

Proof. To prove that the protocol securely realizes the functionality F̂APAKE, we have to show that for

any real-world PPT adversary A, there exists an ideal-world adversary (i.e., the simulator) S such that

no PPT environment can distinguish an execution with the protocol UC-PAKE and the adversaryA from

an execution with the ideal protocol of F̂APAKE and the simulator S. Note that we prove the theorem

in the context of the UC framework with joint state [30], and henceforth use (sid, ssid) in place of sid

when the latter is needed. We also use ssid occasionly for simplicity. In the following, we first describe

the construction of the simulator, and then prove the indistinguishability of two executions.

5.1 Description of the simulator

The simulator S is essentially an ideal-world adversary, that interacts with the functionality F̂APAKE and

the environment. To guarantee that the view of the environment in the ideal-world is indistinguishable

from its view in the real-world, S has to invoke the real-world adversaryA, by simulating all other entities

for A. Then, for the most part, the simulator A simply follows the action of adversary A appropriately.

When the simulator S is initialized using security parameter k, it first runs the trapdoor commitment

setup algorithm (ρ, τ) ← SetupComT(1k) and (pk′, sk′) ← Gen′(1k). Next, S initializes the real-world

adversary A and gives it (ρ, pk′) as the common reference string. In the simulated world, we say that

a message is oracle-generated if it was computed and sent by an honest session and is delivered to its

destination without any modifications; otherwise, we deem it as non-oracle-generated.

C1. When receiving a message (NewSession, sid, ssid,Pid, client) from the functionality F̂APAKE,

the simulator S activates a new session of the APAKE protocol UC-PAKE for party identity PID〈c〉 =

(PID
〈c〉
A = Pid||client,PID

〈c〉
I = Null), with session identifier ssid. We denote the session by (PID

〈c〉
A , ssid).

Next, S computes (C, eqk)← SimComlc(τ), where lc = (sid||Pid). After that, it gives C to A as if it is

a message from the client session (PID
〈c〉
A , ssid) to a server session.

S1. When receiving a message (NewSession, sid, ssid,Pid, server), the simulator S activates a new

session for party identity PID〈s〉 = (PID
〈s〉
A = Pid||server,PID

〈s〉
I = Ps), with session identifier ssid.

Denote the session by (PID
〈s〉
A , ssid).

S2. When a server session (PID
〈s〉
A , ssid) receives C from a client session (PID

〈c〉
A , ssid), do:
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• If C is non-oracle-generated, let the simulator S extract the string pw′i||i and obtain P ′i = Γ [i]. Then,

S asks (TestPwd, sid, ssid, server, P ′i , pw
′
i) to the functionality F̂APAKE. If S receives a “correct guess”

message, it sets pws[P
′
i ] = pw′i, and pws[P ] = pw0 for all P ∈ Γ \ P ′i , where pw0 is a predetermined

password (called a dummy password). Next, S simulates an honest server session (PID
〈s〉
A , ssid) by

selecting random hash keys hk, generating (V K, SK) and computing hp, τs||sks, σ from pws. It then

sends the message (hp, V K,C ′, σ) to the adversary A. Note that the corresponding server session in the

ideal world is compromised in this case. If S receives a “wrong guess” message, it chooses tkj ||tpj , j =

1, . . . , n as uniformly random strings, rather than computing them as hash values. The server S then

computes C′j = Enc′pk′ (pw0; ls; tkj), j = 1, . . . , n. The other computations are conducted as specified.

Note that the corresponding server session in the ideal world is interrupted in this case.

• If C is oracle-generated, the server session processes similar to that when S receives a “wrong guess”

message. That is, tkj ||tpj , j = 1, . . . , n are selected randomly and C′j = Enc′pk′(pw0; ls; tkj), j = 1, . . . , n.

The remaining messages are computed as specified. Next, the simulator S sends a query (ServerReady, sid,

ssid,Pid) to the functionality. Note that the server session is fresh initially and its status will be changed

from fresh to ready in this situation.

C2. When a client session (PID
〈c〉
A , ssid) receives a message (hp, V K,C ′, σ) from a server session

(PID
〈s〉
A , ssid), do:

• If this message is oracle-generated, the sever session (PID
〈s〉
A , ssid) must have received a message C

that is claimed to be from the client session (PID
〈c〉
A , ssid) sometimes before. If C is not oracle-generated

by the client session (PID
〈c〉
A , ssid), the simulator S simply lets the client session reject by outputting

(sid, ssid,Pid, error). Next, it sends a query (NewKey, sid, ssid, Pid, client, sk) to the functionality.

Note that the client session in the ideal world is fresh, but with no partnered server session that is ready.

Therefore, an error message will be outputted to the corresponding client session. If C is exactly the same

message oracle-generated by the client session (PID
〈c〉
A , ssid) previously, the simulator sets τc||skc = tp1,

which is equivalent to the value in the server session (PID
〈s〉
A , ssid). Next, S sends the query (NewKey, sid,

ssid,Pid, client, skc) to the functionality. Note that the corresponding client session in the ideal world

is fresh while there is a partnered server session that is ready. Therefore, if both sessions have matching

passwords, a random session key sk′c will be selected for the client session. The simulator S then sends

the message τc as if it is from (PID
〈c〉
A , ssid) to (PID

〈s〉
A , ssid). However, if they have distinct passwords,

an error message will be responded for the NewKey query. Then, S sends a randomly selected string τc.

• If this message is non-oracle-generated, the simulator first checks whether the signature is valid.

Otherwise, it simply terminates this session by outputting (sid, ssid, Pid, error). Next, S decrypts

the ciphertexts C ′ = (C′1, C
′
2, . . . , C

′
n) via the secret key sk′ generated by Gen′ at the beginning of

the simulation, with label ls = sid||Pid||C||hp||V k, where C is the message previously sent by the

client session. If one of the decryption algorithm outputs ⊥, the simulator terminates this session by

outputting an error message. If all decryptions are successful, the simulator will obtain a vector of

passwords pws = (pw1, . . . , pwn). Next, it decommits C to the message pwj ||j for each j ∈ {1, . . . , n}

as δj = OpenComlc(C, eqk, pwj ||j). Then, it simulates the remaining computation in the client session

as if the client is Pj = Γ [j]. If there exists one j such that the verification of ciphertext C′j is valid,

the simulator sets Pj = Γ [j] and queries (TestPwd, sid, ssid, client, Pj , pwj) to the functionality. If the

response is “correct guess”, the simulator S asks a query (NewKey, sid, ssid,Pid, client, skc) and sends

the third flow of message τc using the values τc||skc computed above. Note that the corresponding

client session in the ideal world is compromised and the session key skc will be transmitted from the

simulated-world session to the ideal-world session. If the response is “wrong guess”, the simulator S still

asks the query (NewKey, sid, ssid,Pid, client, skc), but lets the simulated client session terminate and

output (sid, ssid,Pid, error), with no message delivered to the server session any more. Note that the

corresponding client session in the ideal world is interrupted and a new random key sk′c will be selected,

regardless of the value skc included in the NewKey query.

S3. When a server session (PID
〈s〉
A , ssid) receives a message τc from a client session (PID

〈c〉
A , ssid),

it compares whether τs = τc and outputs sks or error depending on whether the verification successes
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and fails respectively. Next, S sends the query (NewKey, sid, ssid,Pid, server, sks) to the functionality.

Recall that this server session might be in one of three states, i.e., compromised, interrupted, or ready,

after the simulation of step S2. The session key generated for the corresponding server session in the

ideal world will then differ according to these different states.

5.2 Proof of indistinguishability

In this section, we prove the indistinguishability between the real world execution and the ideal world

execution. To achieve this aim, we incrementally define a sequence of hybrid games. It starts from the

real world game, in which an adversary interacts with real parties and the environment, and ends with

the simulated games, in which we construct a simulator (as an adversary in the ideal world) that interacts

with the functionality and the environment, by invoking the real world adversary as a subroutine. In each

game, we modify certain aspects of the simulation and prove that these modifications incur a negligible

change in the view of the environment.

Note that, the simulator in the ideal world cannot obtain the passwords of honest parties from the

functionality, unless it correctly guesses the password for an honest session. Therefore, the key point

in the construction of the simulator S is to simulate the protocol participants without achieving their

passwords. In the following, we first assume a simulator that is given access to all passwords for honest

parties. Then, we gradually weaken this assumption in the game sequence. Finally, we restrict the ability

of the simulator in obtaining the knowledge of these passwords only by querying TestPwd and NewKey,

meeting the specifications of an ideal world adversary.

Game G0. This is the real world game. In this game, the simulator S is assumed to have access

to all passwords sent by the environment to all parties. Then, it computes ρ ← SetupCom(1k) and

(pk′, sk′) ← Gen′(1k), sets (ρ, pk′) as the common reference string, and simulates all honest parties

according to the specifications of the protocol UC-PAKE for a real world adversary A.

Game G1. In this game, we change the way in which the common reference string is generated.

Specifically, the simulator uses the trapdoor setup algorithm SetupComT(1k) to replace the original setup

algorithm SetupCom(1k), obtaining (ρ, τ) ← SetupComT(1k) and recording the trapdoor τ . Moreover,

when a key pair is generated as (pk′, sk′) ← Gen′(1k), the simulator records the secret key sk′ as well.

Then, S provides the real world adversary A with (ρ, pk′) as the common reference string.

Recall that the commitment scheme satisfies the setup indistinguishability property, which guarantees

that the common reference string generated by SetupComT be computationally indistinguishable from

that by SetupCom. It is easy to conclude that the modification in this game changes the view of the

environment Z at most negligibly.

Game G2. In this game we modify the way in which client sessions are simulated. Consider a case

in which a client session (PID
〈c〉
A , ssid) receives a message (hp, V K,C ′, σ) that is oracle-generated by

certain server session (PID
〈s〉
A , ssid). We classify this message into two different subcases. Recall that

the corresponding server session must be honest, hold the same ssid and Pid with the client session

and, moreover, receive a message C that is claimed to have been sent from (PID
〈c〉
A , ssid). If message C

received by (PID
〈s〉
A , ssid) is exactly the message oracle-generated by (PID

〈c〉
A , ssid), we say that the message

(hp, V K,C ′, σ) is matching-server-generated; otherwise, we say it is not matching-server-generated.

If (hp, V K,C ′, σ) is matching-server-generated by (PID
〈s〉
A , ssid), and if the client session possesses a

password consistent with that of the server session, S simulates the client session as follows. It omits

the verification procedure and simply sets τc||skc = tp1, where tp1 is the internal value computed by the

server session. In other cases, either the incoming message is not matching-server-generated or they have

inconsistent passwords, and the simulation is treated the same as in the previous game.

Note that when a matching-server-generated message is received, and both sessions have consistent

passwords, the verification procedure on the client side will certainly be successful. As a result, this game

is indistinguishable from the prior game owing to the correctness of the smooth projective hash functions.

Game G3. In this game, we continue to deal with the client sessions that receive matching-server-

generated messages (hp, V K,C ′, σ). Recall that in game G2 the simulator is assumed to have access to
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the passwords held by all parties. Here, we make no such assumptions, and let the simulator request a

NewKey query instead. If the response indicates that the client session in the ideal world is completed,

we treat the simulated client session as it has an password equal to the corresponding server session.

If the response indicates that the client session in the ideal world reaches an error state, we treat the

simulated client session as having an inconsistent password with the corresponding server session.

Game G4. In this game, we again change the simulation of the client sessions. More concretely,

when an honest client session is activated, the simulator now computes (Ci, δi) ← SComlc(pwi||i)

via the trapdoor τ instead of (Ci, δi) ← Comlc(pwi||i). Recall that the simulated commitment al-

gorithm (Ci, δi) ← SComlc(pwi||i) is composed of two steps, (Ci, eqki) ← SimComlc(τ) and δi ←

OpenComlc(Ci, eqki, pwi||i).

One can verify that the difference between this game and the former one is negligible through a standard

hybrid argument technique, which reduces the difference to the strong simulation indistinguishability of

the underlying commitment scheme. In each hybrid game, we can apply the Exps-sim-ind-b
A security

experiment to one honest client session. Recall that there are at most polynomial many (denoted by

poly(k)) honest client sessions. Then, the difference is bounded by poly(k) · Advs-sim-ind
C (t), which is

negligible when Advs-sim-ind
C (t) is negligible for security parameter k.

Game G5. In this game, we deal with honest server sessions receiving oracle-generated messages in

the first flow. In detail, if an honest server session (PID
〈s〉
A , ssid) receives a message C oracle-generated

by a client session (PID
〈c〉
A , ssid), we choose uniformly random values tkj ||tpj instead of computing them

as hash values, as specified in the protocol. Recall that the session keys in honest client sessions that

receive matching-server-generated messages have been replaced in game G2, and thus no inconsistencies

will be incurred in this game.

To prove the indistinguishability between this game and the previous one, two subcases should be

considered, according to whether these two sessions possess consistent passwords. If their passwords

are inconsistent, we can easily reduce the difference to the smooth property of the underlying smooth

projective hash functions with invalid inputs. On the other hand, if they have consistent passwords, the

indistinguishability then reduces to the case in which the output of a smooth projective hash function is

pseudorandom when the witness δ and the hash key hk are kept secret.

Game G6. In this game we continue to deal with honest server sessions receiving oracle-generated

messages in the first flow, via modifying the approach that ciphertexts {C′j} are generated. Now, we do

not compute C′j as a ciphertext of pwj but as a ciphertext of the dummy password pw0. Recall that all

{tkj} were replaced by random values in the previous game. Through a hybrid proof, the CPA security

of the encryption scheme Enc′ then guarantees that the difference between this game and the prior one

will be negligible.

Game G7. In this game we modify the simulation of honest server sessions receiving non-oracle-

generated messages in the first flow as follows. If an honest server session (PID
〈s〉
A , ssid) receives a

message C that is non-oracle-generated, we extract the underlying message through the trapdoor τ to

obtain pwi||i = ExtComlc(τ, C). We then let the simulator ask the functionality F̂APAKE a NewKey

query with Pi = Γ [i] and pwi. If the response is “correct guess”, nothing changes. Otherwise, if the

response is “wrong guess”, we change all {tkj||tpj} values in the corresponding server session to uniformly

random.

First, a non-oracle-generated message is always extractable due to robust binding extractability of the

commitment scheme. Hence, because of the smooth property of the underlying smooth projective hash

functions, the above modification does not lead to non-negligible difference.

Game G8. In this game, we again handle client sessions receiving oracle-generated messages in the

form of (hp, V K,C ′, σ). Recall that matching-server-generated messages have been treated in game

G2, G3. Thus, if a message (hp, V K,C ′, σ) received by a client session (PID
〈c〉
A , ssid) is not matching-

server-generated, we simply let the client session output an error message and abort this session.

When the oracle-generated message (hp, V K,C ′, σ) received by (PID
〈c〉
A , ssid) from (PID

〈s〉
A , ssid) is

not matching-server-generated, we claim that the label ls used in C ′ includes a message C that is not

equal to the one held by the corresponding client session. Subsequently, the CCA2 non-malleable security
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(which is equivalent to CCA2 indistinguishable security) of the labled encryption scheme E ′ implies that

the modification made in this game alters the view of the environment with at most negligible probability.

Game G9. In this game, we handle client sessions each of which receives a non-oracle-generated

message (hp, V K, C ′, σ), by letting the simulator S behave in the same way as that of a non-oracle-

generated message is received in step C2 of Subsection 5.1. It can be easily verified that this step is

perfectly simulated without any access to the client’s password, by using the de-commitment trapdoor τ

and the decryption secret key sk′ of E ′.

Until now, we have constructed a simulator S that interfaces with a real-world adversary A and

the functionality F̂APAKE in the ideal world, without access to the passwords of the parties directly.

However, S can still check that whether a tested password is correct through TestPwd queries, and can

check whether two sessions possess consistent passwords through NewKey queries. We can conclude that,

the real-world protocol execution is indistinguishable from the execution in the simulated world, and is

hence indistinguishable from the ideal-world execution.

6 Conclusion

In this paper, we formulated an ideal functionality for APAKE within the UC framework, which captures

the expected security requirements such as off-line dictionary attack resistance, client anonymity and

explicit mutual authentication under protocol composition. An APAKE protocol was also proposed using

generic cryptographic primitives, i.e., equivocable and extractable commitments and smooth projective

hash functions. It was proven that the proposed protocol securely realizes the APAKE functionality in

the standard model. This is the first APAKE protocol secure within the UC framework.
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