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Abstract As a special factorization category of finite groups, logarithmic signature (LS) is used as the main

component of cryptographic keys that operate within secret key cryptosystems such as PGM and public key

cryptosystems like MST1, MST2 and MST3. An LS with the shortest length is called a minimal logarithmic

signature (MLS) that constitutes of the smallest sized blocks and offers the lowest complexity, and is therefore

desirable for cryptographic constructions. However, the existence of MLSs for finite groups should be firstly

taken into an account. The MLS conjecture states that every finite simple group has an MLS. If it holds, then by

the consequence of Jordan-Hölder Theorem, every finite group would have an MLS. In fact, many cryptographers

and mathematicians are keen for solving this problem. Some effective work has already been done in search of

MLSs for finite groups. Recently, we have made some progress towards searching a minimal length key for MST

cryptosystems and presented a theoretical proof of MLS conjecture.
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1 Introduction

Currently, most asymmetric cryptographic primitives are based on the perceived intractable problems in

number theory. Prominent hard problems consist of large integers factoring problem (IFP); the discrete

logarithm problem (DLP) over a finite field Fq or an elliptic curve, etc. While, because of Shor’s and

other quantum algorithms [1, 2] for integer factoring and solving the DLP, the known public key sys-

tems will be insecure, when quantum computers would become practical. Therefore, it is an imminent

work to search for more complex mathematical platforms and to design effective cryptographic schemes,

which can resist against quantum attacks. In this context, cryptographers began to pay more atten-

tion towards non-commutative cryptography. Being different from commutative cryptography based on

number theory, non-commutative cryptography is based on non-commutative algebraic structures. Al-

so, non-commutative cryptography takes the advantage of intractable problems in quantum computing,
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combinatorial group theory and computational complexity theory to construct cryptographic platforms.

This extension has a profound background and rich connotation. First, from the viewpoint of the plat-

forms, non-commutative cryptography extends the research territory of cryptography. A large number

of non-commutative algebraic structures are waiting to be explored for building new public key cryp-

tosystems. Non-commutative cryptography concerns with combinatorial group theory, algebraic repre-

sentation theory, topology, category theory, etc. Second, due to the ability of resisting quantum attacks,

non-commutative cryptography is expected to achieve a higher strength. Because of the hard restrictions

on bounds within non-commutative algebraic structures, the difficulty of several kinds of mathematical

problems has increased significantly [3]. Especially, from the viewpoint of typical framework of quantum

algorithm—Hidden Subgroup Problem (HSP), we have already know that how to design efficient quantum

algorithms for solving HSP problem in any abelian group; but up to now we are still unable to construct

even a single efficient algorithm for dealing HSP problems in non-abelian groups [4].

In the developmental era of public key cryptography, research on the underlying intractable hypoth-

esis of mathematical problems while being used within non-commutative cryptography, has always got

priority among priorities. Therefore, from 1980’s, some experts began to apply difficult problems from

group theory into cryptography. In 1984, Wagner et al. [5] designed a public key cryptosystem based

on undecidable word problem in groups and semigroups. In 2000, Ko et al. [6] developed braid group

cryptography based on the intractable assumption of conjugate search problem in braid group. In 2004,

Eick and Kahrobaei [7] devised a new cryptosystem based on the polycyclic group. In 2005, Shpilrain and

Ushakov [8] put forward a new public key cryptosystem by using Thomsen group. Recently, Kahrobaei

et al. [9] designed a key exchange protocol based on the intractable assumption of discrete logarithm

problem in the group ring matrix.. At the same time, a type of cryptosystems based on the intractable

assumption in non-abelian group—group factorization problem (GFP) has gradually become a typical

representative of non-commutative cryptography and achieved rapid development in recent thirty years.

In 1986, Magliveras [10] constructed a symmetric cryptosystem—PGM by using a special factorization

basis in finite permutation groups—logarithmic signature (LS). Then, in the literatures [11–14], algebraic

properties of PGM were discussed in detail. In 2002, Magliveras et al. [15] designed a trapdoor permu-

tation function and two public key cryptosystems MST1 and MST2 by using LS in finite non-abelian

groups. In 2009, Magliveras et al. [16] devised a new public key cryptographic system—MST3 based on

random covers and LS in finite non-abelian groups. Meanwhile, Magliveras et al proposed a practical

platform—Suzuki 2-group for the first time [17] and devised MST cryptosystems into practice. However,

a lot of research has already been done to attack on MST cryptosystems effectively. In 2008, Magliveras

et al. [18] provided a comprehensive analysis of MST3 cryptosystem and stated that transitive LS is not

suitable for MST3 cryptosystem. In 2009, Blackburn et al. [19] pointed out that amalgamated LS is also

not a reasonable choice for MST cryptosystems. In 2010, Vasco et al. [20] gave a more profound analysis

of MST3 and showed that the intractability assumption GFP doesn’t always hold for random cover of

group G. Also they discussed that MST3 cryptosystem can’t achieve (OW-CPA) in chosen plaintext

attack model as well as not (IND-CCA2) secure against adaptive chosen ciphertext attacks. Therefore, in

2010, Svaba et al. [21] constructed a more secure cryptosystem eMST3 by adding a secret homomorphic

map. Moreover, they analyzed all of the published references about attacking MST cryptosystems and

developed a set of weak key test tool for eMST3 cryptosystem. They also claimed that they can exclude

bad LSs by replacing this tool. In 2014, to the best of our knowledge, we presented the first digital

signature scheme based on logarithmic signatures and random covers [22].

At present, while comparing with mainstream cryptosystems, MST cryptosystem suffers the overheads

including larger public key (secret key) size, inefficient encryption (decryption) algorithm and up till

now only enjoys a single known platform—Suzuki 2-group. Therefore, in order to improve the efficiency

of MST cryptosystem, the need of the hour is to optimize the mathematical structures of LS and to

obtain a minimal length key—called minimal logarithmic signature (MLS). However, the existence of

MLSs must have to be solved first. This problem essentially involves the factorization of finite groups.

From the viewpoint of cryptography and mathematics, it’s meaningful to study this problem. With the

great efforts of the cryptographers and mathematicians, a lot of finite groups have already been proved
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to have MLSs. Therefore, in 2010, Nikhil Singhi et al. proposed the MLS conjecture stating that every

finite simple group has an MLS. If it holds, then by the Jordan−Hölder Theorem, every finite group

would have an MLS. In recent years, many positive results related to MLSs for finite groups are being

reported. In 2003, Vasco et al. [23] proved that all finite groups with order 6 175560 have MLSs. In

2004, Holmes [24] constructed MLSs for some sporadic groups. In 2005, Lempken et al. [25] proved that

with some exceptions, all finite groups with order no higher than 1010 have MLSs. In 2010 and 2011,

Singhi et al [26,27] constructed MLSs for some classical groups. Recently, according to the classification

theorem of finite simple groups, we utilize the matrix groups, Lie groups, associative algebra and other

mathematical methods to present the structures of MLSs for remaining four categories of finite simple

groups [28–31], and prove the MLS conjecture.

2 Development and progress of research on minimum length key

2.1 Logarithmic signature and minimal logarithmic signature

The definition of logarithmic signature (LS) was first put foward by Magliveras in 1986 [10]. Here, the

definition is different from traditional logarithmic signature in cryptography, it refers to a special group

factorization basis. The GFP based on LS can be stated as follows: for a given LS, each element of

the group must be given a unique presentation. So far, this problem is considered to be intractable

[15,16], and cryptographers took advantage of aforementioned intractable assumption for designing MST

cryptosystems. At the same time, in order to reduce the block length and the size of public (secret)

key, cryptographers are keen on optimizing the general logarithmic signature structure for obtaining the

shortest length of the logarithmic signature-called minimal logarithmic signature (MLS). Hence, in 2003,

Vasco [23] utilized the prime factorization of the orders of finite groups to present an accurate definition

of MLS and also constructed MLSs for some finite groups. From then on, the existence of MLSs for finite

groups gradually aroused the attention of cryptographers and mathematicians.

Definition 1 (LS [25]). Let G be a finite group. Let α = [α1, . . . , αs] be a sequence of ordered subsets

αi of G such that αi = [αi1, . . . , αiri ] with αij ∈ G, (1 6 j 6 ri). Then α is called a logarithmic signature

(LS) for G if each g ∈ G is uniquely represented as a product

g = α1j1 · · ·αsjs

with αiji ∈ αi (1 6 i 6 s).

The sequences αi are called the blocks of α, the length of α is defined to be l(α) =
∑s

i=1 ri. let

|G| =
∏k

j=1 p
aj

j be the prime power decomposition of |G| and α = [α1, α2, . . . , αs] be an LS for G.

From [32], we observe that l(α) >
∑k

j=1 ajpj.

Definition 2 (MLS [25]). An LS α for a finite group G with l(α) =
∑k

j=1 ajpj is called an minimal

logarithmic signature (MLS).

2.2 Development of proving MLS conjecture

The work on proving the existence of MLSs for finite groups was first started in 2003 [23]. Until now, this

work has been going on more than ten years, cryptographers and mathematicians have introduced many

different mathematical methods to prove the existence of MLSs for some simple groups. These methods

can be roughly divided into five categories.

1. Vasco [23] utilized Sylow subgroups factorization of finite groups, Zappa-Szép product, projective

geometry and some mathematical softwares to prove that every finite group with order 6 175560 has

an MLS.

In that article, Vasco et al. first put forward a general idea of constructing MLSs: for a given group

permutation presentation G|Ω for G, p ∈ Ω and corresponding stabilizer Gp. Suppose A = {gGp | g ∈ G}

is a left coset representation of Gp. If Gp and A both have MLSs, then G also has an MLS. More
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generally, when G is factorized into several disjoint parts, if each part has an MLS, implies that G

also has an MLS . In the concrete operating process, the authors firstly combined the Sylow subgroups

factorization of finite groups with mathematical softwares such as GAP and Magma for factorizing simple

groups into some disjoint Sylow subgroups. Thus, they obtained MLSs for some simple groups including

five types of sporadic groups (M11, M12, M22, M23 andM24). Then, they utilized projective geometry and

group theory for factorizing simple groups into several disjoint subgroups and constructed corresponding

MLSs for these simple groups. Comparing to Sylow subgroup factorization, this method is more general,

but some simple groups can’t be handled properly by using aforementioned methods. Therefore, the

authors used Zappa-Szép product for factorizing such groups into a product of several subgroups and

corresponding stabilizers, then obtained corresponding MLSs. Consequently, Vasco et al. attained MLSs

for all finite groups with order 6 175560.

2. Holmes [24] took advantage of group permutation presentation theory, chart of finite simple groups

[33] and mathematical softwares to construct MLSs for some sporadic group.

In his article, based on the conclusion that every finite simple group is a normal subgroup of some

finite group, Holmes reduced the construction of MLSs of finite groups into the structure of MLSs for

finite simple groups. The author selected two subgroups A and B, divided group G into three parts by

using group action and coset decomposition, where two parts are groups and third one is a set with prime

cardinality that satisfies certain conditions. More generally, the authors further increased the number of

the blocks and divided G into four parts, where only two parts are groups, the other two parts are sets

with prime cardinality that satisfy certain conditions. Combining aforementioned two methods with the

help of GAP, Holmes constructed corresponding MLSs for eight types of sporadic groups J1, J2, HS,

M cL, He, Co3, Ru and Suz (the proof of Ru and Suz still need some hypotheses).

3. Lempken et al. [25] used double coset decomposition and chart of finite simple groups [33] to

construct MLSs for finite groups with order 6 1010.

In their article, Lempken et al. introduced a new technology – double coset decomposition. They

dividedG intoH , A andK, whereH,K 6 G, A is the right (left) coset decomposition ofH(K). Using this

structure, the authors presented MLSs for finite groups with order 6 1010 (except for eight special cases).

In fact, the requirements for double coset decomposition are rather stringent, therefore, the method has

certain limitations. For example, although McL can’t have MLS by using double coset decomposition,

Holmes [24] explicitly gave MLS for McL and corresponding construction process. Finally, the authors

used the product of two subgroups factorization to present MLSs for some finite groups including A6

and J2.

4. Singhi et al. [26] employed Singer subgroups [34,35] and Levi decomposition of parabolic subgroups

to construct MLSs for some finite groups.

In their article, the authors introduced some relevant concepts of algebraic group theory and took

advantage of Levi decomposition of parabolic subgroups to construct corresponding MLSs for GLn(q),

SLn(q) and Spn(q). Then, utilized linear transformations of linear spaces to for obtaining corresponding

MLSs. Meanwhile, the authors put forward the MLS conjecture stating that every finite simple group

has an MLS.

5. Singhi et al. [27] made further efforts to propose MLSs for some finite groups by using spread and

semi-direct product decomposition.

In their article, the authors introduced spread theory [36,37] and employed semi-direct product decom-

position for factorizing parabolic subgroups (stabilizers) of finite groups. They utilized the relationship

between singular points of projective spaces and spreads for constructing corresponding cyclic subgroups

(cyclic set) and proved that the existence of LSs for each small part, and then proved the existence of

MLSs for G. The authors mainly constructed MLSs for Spn(q) and O±
2m(q) (q = 2e), and then used

canonical homomorphisms and the relationship between O±
2m(q) and Ω±

2m(q) to construct corresponding

MLSs for PSpn(q) and Ω±
2m(q) (q = 2e). Actually, there exist some mature theories on permutation

presentation of stabilizers that correspond to the classical groups and exceptional groups of Lie type.

Therefore, we take advantage of stabilizers and linear transformations of finite simple groups to study

MLSs for corresponding finite simple groups.
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Table 1 Comparison of the related work

Reference Technology Result Characteristic Deficiency

Vasco [23]

Sylow subgroups decom-

position of finite groups,

projective geometry and

mathematical softwares

Every group with order

6 175560 has an MLS

Block number is not

restricted, structure is

clear

Each block must be a

group, the requirements

are stringent

Holmes [24]

Group permutation pre-

sentation theory, chart of

finite simple groups and

mathematical softwares

The existence of MLSs

for some sporadic groups

Two blocks are groups,

two blocks are sets with

prime cardinality

Sets selection is complex,

blocks are less in numbers

Lempken [25]

Double coset decomposi-

tion, subgroup product

decomposition and chart

of finite simple groups

Except for eight spe-

cial cases, MLSs for fi-

nite groups with order 6

1010

Two blocks are groups,

one block is a set with

prime cardinality

Sets selection is complex,

blocks are less in numbers

Singhi [26, 27]

Levi decomposition of

parabolic subgroups and

spreads

MLSs for some finite

simple groups

Method is universal,

suitable for classical

groups and exceptional

groups of Lie type

The structures of stabi-

lizers and sharply transi-

tive sets are complicated,

blocks are less in numbers

Here, we summarize the aforementioned methods in Table 1.

According to the classification [33,38], finite simple groups can be divided into five categories as follows:

cyclic groups of prime order, alternating groups An (n > 5), classical groups, 10 types of exceptional

groups of Lie type and 26 types of sporadic groups. Until 2012, there were 4 unsolved problems on

MLS conjecture: (1) the existence of MLSs for the commutator subgroup of projective orthogonal group

PΩn(q) (q = pe, p is an odd prime); (2) the existence of MLSs for the projective special unitary groups

PSUn(q); (3) the existence of MLSs for 10 types of exceptional groups of Lie type; (4) the existence of

MLSs for the remaining 13 sporadic groups.

3 Our work

From 2012, we have employed many mathematical methods such as the matrix groups, Lie groups and

associative algebra to provide MLSs for the remaing simple groups. Consequently, we have contributed

to prove MLS conjecture completely.

1. The existence of MLSs for a type of classical simple group PΩn(q) [30].

In 2011, Singhi et al. [27] presented MLSs for Sp2m(q) (isomorphic to O2m+1(q)), O
±
2m(q) and Ω±

2m(q)

(q = 2e, e is an integer). But, in case when q = pe (p is an odd prime, e is an integer), the problem

becomes more complicated. In this case, it’s difficult to construct bilinear form and quadratic space

of the orthogonal group On(q). At the same time, according to the parity of n, the orthogonal group

On(q) (special orthogonal group SOn(q)) can be divided into: O+
2m(q) (SO+

2m(q)), O−
2m(q) (SO−

2m(q))

and O2m+1(q) (SO2m+1(q)).

We know that that there are corresponding permutations presentation related to subset of projective

space that belongs to classical groups. At present, mathematicians have done effective work on permu-

tation presentation of stabilizers. Therefore, our idea is to use the relationship between stabilizers of

one-dimensional isotropic subspace of the orthogonal group On(q) (SOn(q)) and its parabolic subgroups

and to combine the basic theory of spread, we divided the orthogonal group On(q) (SOn(q)) into some

parts, then proved that each part has an MLS and therefore, On(q) (SOn(q)) also has an MLS. Final-

ly, using the relationship between special orthogonal group SOn(q), the projective special orthogonal

group PSOn(q) and projective commutator subgroup PΩn(q), we utilized a canonical homomorphism to

prove the existence of MLSs for projective commutator subgroup PΩn(q). Our basic theory is presented

as follows:

Lemma 1 ([26, 27]). Let H � G, A ⊆ G and η be the canonical homomorphism η : G → G/H such

that a, b ∈ A, a 6= b imply that aH 6= bH . Let A′ = η(A), and suppose that [A1, A2, . . . , Ak] is an LS for
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Table 2 MLSs for On(q) and SOn(q)

A = 〈a〉 B′ = {hC | h ∈ B} with

C 6 B = 〈b〉, |C| = q − 1
Gw = P : Q with Q = GL1(q)× Y

a b |P | Y

xqm−1
1 for x1 ∈ GL2m(q)

(

D1 0 0 0
0 1 0 0
0 0 (Dt

1)
−1 0

0 0 0 1

)

for D1 ∈ GL2m−2(q) q2m−2 O−
2m−2(q)

On(q) xqm−1−1
2 for x2 ∈ GL2m(q)

(

D2 0

0 (Dt
2)

−1

)

for D2 ∈ GL2m(q) q2m−2 O+
2m−2(q)

xqm−1
3 for x3 ∈ GL2m+1(q)

(

D3 0 0

0 (Dt
3)

−1 0
0 0 1

)

for D3 ∈ GL2m(q) q2m−1 O2m−1(q)

x∗qm−1
1 for x∗

1 ∈ O−
2m(q)

(

D∗

1 0 0 0
0 1 0 0
0 0 D∗t

1 0
0 0 0 1

)

for D∗
1 ∈ Om−1(q) q2m−2 SO−

2m−2(q)

SOn(q) x∗qm−1−1
2 for x∗

2 ∈ O+
2m(q)

(

D∗

2 0

0 D∗t
2

)

for D∗
2 ∈ Om(q) q2m−2 SO+

2m−2(q)

x∗qm−1
3 for x∗

3 ∈ O2m+1(q)

(

D∗

3 0 0

0 D∗t
3 0

0 0 1

)

for D∗
3 ∈ Om(q) q2m−1 SO2m−1(q)

A. Let Bi = η(Ai) ⊆ G/H for 1 6 i 6 k. Then [B1, B2, . . . , Bk] is an LS for A′.

Lemma 2 ( [26, 27]). Suppose that G|L is a transitive permutation group action such that G is a

subgroup of GL(V ) and L ⊆ P (V ) is a Singhi subset. Let S be an r-partial spread in V , which can be

viewed as the projective partitions of L. Let W ∈ S, w ∈ P (W ) and Gw be the stabilizer of w in G.

Suppose there are sets A, B ⊆ G such that

(i) A acts sharply transitive on S with respect toW under the action of G on the set of all r-dimensional

subspaces of V ;

(ii) B acts sharply transitive on L ∩ P (W ) with respect to w under the action of G on P (W ).

Then, [A,B,Gw] is an LS for G.

Finally, we presented new constructions of MLSs for the orthogonal group On(q), the special orthogonal

group SOn(q), the projective special orthogonal group PSOn(q), the commutator subgroup Ωn(q) and one

type of classical groups [30]—projective commutator subgroup PΩn(q) with q as a power of odd primes.

For On(q) and SOn(q), the proposed MLSs have the similar structure [A,B′, Gw], where A = 〈a〉, and

B′ = {hC | h ∈ B}, C 6 B, B = 〈b〉, while Gw = P : Q is a semi-direct product of a p-group

P and a direct product Q = GL1(q) × Y (Table 2). We employed two canonical homomorphisms

η : SOn(q) → PSOn(q) and θ : Ωn(q) → PΩn(q) for proving the existence of MLSs for PSOn(q) and

PΩn(q), respectively.

2. The existence of MLSs for the projective special unitary group PSUn(q) [29].

Being different from the orthogonal group On(q), the structure of unitary group Un(q) depends on

conjugate-symmetric sesquilinear form and Hermitian space. Being similar to other classical groups,

permutation presentations related to stabilizers and parabolic subgroups of permutation presentation

that belong to unitary group are very clear. Therefore, being similar to the case in On(q), our main idea

is described as follows: using the relationship between stabilizers of one-dimensional isotropic subspace of

the unitary group Un(q) (SUn(q)) and its parabolic subgroups and combining the basic theory of spread,

we divided the unitary group Un(q) (SUn(q)) into some parts, then proved that each part has an MLS

and Un(q) (SUn(q)) has an MLS. Finally, using the relationship between Un(q) (SUn(q)) and PUn(q)

(PSUn(q)), we utilized canonical homomorphism to prove the existence of MLSs for PUn(q) (PSUn(q)).

Finally, we constructed MLSs for unitary group Un(q), special unitary group SUn(q) and projective

unitary group PUn(q), as well as also for a type of simple groups—projective special unitary group

PSUn(q) [29]. For Un(q) and SUn(q), the proposed MLSs have the similar structure [A′, B′, Gw], where

A′ = {gH | g ∈ A}, H 6 A, A = 〈a〉, and B′ = {hD | h ∈ B}, D 6 B, B = 〈b〉, while Gw = P : Q

is a semi-direct product of a p-group P and a direct product Q = GL1(q
2) × Y (Table 3). Then,

we employed two canonical homomorphisms η1 : Un(q) → PUn(q) and η2 : SUn(q) → PSUn(q) to

construct the MLSs for PUn(q) and PSUn(q). The corresponding MLSs are [η1(A
′), η1(B

′), η1(Gw)] and
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Table 3 MLSs for Un(q) and SUn(q)

A′ = {gH | g ∈ A} B′ = {hD | h ∈ B} with Gw = P : Q
H 6 A = 〈a〉, |H| = q + 1 D 6 B = 〈b〉,|D| = q − 1 Q = GL1(q2)× Y

a b |P | Y

Un(q)

xq2m+1−1, x ∈ GL2m+1(q2)

(

C 0 0 0
0 1 0 0
0 0 (C

t
)−1 0

0 0 0 1

)

, C ∈ GLm(q2) q4m−1 U2m−1(q)

xq2m−1−1, x ∈ GL2m−1(q2)

(

C
′

0

0 (C
′
t
)−1

)

, C
′ ∈ GLm(q2) q4m−3 U2m−2(q)

SUn(q)

xq2m+1−1, x ∈ SU2m+1(q)





C
′′

0 0 0
0 1 0 0

0 0 C
′′

t
0

0 0 0 1



, C
′′ ∈ Um(q) q4m−1 SU2m−1(q)

xq2m−1−1, x ∈ SU2m−1(q)

(

C
′′′

0

0 C
′′′

t

)

, C
′′′ ∈ Um(q) q4m−3 SU2m−2(q)

[η2(A
′), η2(B

′), η2(Gw)], respectively.

3. The existence of MLSs for 10 types of exceptional groups of Lie type [28].

From the viewpoint of Lie algebra, exceptional groups of Lie type can be divided into three different

types [38]. The first type consists of five families of Chevalley (untwisted) groups G2(q), F4(q), E6(q),

E7(q) and E8(q) with q as a power of a prime. Next are the Steinberg-Tits-Hertzig twisted groups
3D4(q) and 2E6(q) for any finite field Fq with q a power of a prime. Finally, there are three families

of Suzuki and Ree groups 2B2(2
2n+1), 2G2(3

2n+1) and 2F4(2
2n+1). Comparing with classical groups,

the structures of exceptional groups of Lie type are more complex. However, being similar to classical

groups, there are corresponding permutation presentations in subset (one-dimensional isotropic subspace)

of projective spaces related to exceptional groups that belongs to Lie type and the structures of stabilizers

of the permutation representations are very clear. Therefore, we combined stabilizers of one-dimensional

isotropic subspaces of exceptional groups of Lie type with the linear transformations of corresponding

algebraic systems (Octonion algebras, Albert algebras, Lie algebras) to construct MLSs for [28] all 10

families of exceptional groups of Lie type.

For each of exceptional group of Lie type, the corresponding MLS has the similar structure: [A, T1, T2,

Gw] or [A, T,Gw], where Gw is the stabilizer of the corresponding exceptional groups of Lie type G;

T1, T2 are the cyclic maximal torus of G; T is the sharp cyclic torus of G; A is a product of some cyclic

subgroups of G (Table 4). Meanwhile, we proved the existence hypothesis of MLSs for Ru and Suz,

indirectly presented the proof for the existence of MLSs for the two types of sporadic groups.

4. The existence of MLSs for 13 types of sporadic groups [31].

From the viewpoint of group theory, we observe that the sporadic groups are divided into four classes,

three consecutive levels plus the Pariahs. The levels are Mathieu’s (M11, M12, M22, M23 and M24),

Leech’s (Co1, Co2, Co3, HS, McL, J2, Suz) and Monster’s (M , B, Fi22, Fi23, Fi′24, HN , Th, He),

plus 6 Pariah groups (Ru, O′N , Ly, J1, J3, J4). So, there are 26 sporadic groups. Until now, the

existence of MLSs for 13 families of sporadic groups have been proved. These sporadic groups are listed

as follows: M12, M22, M23, M24, Co3, HS, McL, J1, J2, Suz, Ru (we proved the existence hypothesis

of MLSs for Ru and Suz) and He. Hence, we only need to consider the remaining 13 types of sporadic

groups. Comparing with the aforementioned finite simple groups, the orders of sporadic groups are much

larger and the structures are much more complicated. Thus, we should take the advantage of some new

technologies in order to deal with this problem. Here, our idea is to take the collective advantage while

combining with stabilizers of corresponding sporadic groups, group action theory and Sylow theorem,

we divided every sporadic group into several disjoint parts and proved that each part has an MLS, then

proved that whole group has an MLS by splicing technology. Our basic theory is presented as follows:

Lemma 3 ([26, 27]). If G(G|X) contains cyclic subgroups (sets) A1, . . . , An and Gw such that

(i) |G| = |A1| · · · |An| · |Gw|,

(ii) Ai has an MLS for all i,

(iii) Gw has an MLS,
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Table 4 MLSs for exceptional groups of Lie type

G A T or T1, T2 Gw

G2(q)
A = 〈a〉 |T1| = q2 + q + 1

Gw = q2+1+2 : GL2(q)a = xq−1, x ∈ G2(q) |T2| = q2 − q + 1

2G2(q)
A = 〈a〉 |T1| = q +

√
3q + 1

Gw = q1+1+1 : Cq−1a = xq−1, x ∈ 2G2(q) |T1| = q −√
3q + 1

3D4(q)

A = A1A2, Ai = 〈ai〉, 1 6 i 6 2
|T | = q4 − q2 + 1 Gw = q2+3+6 : SL2(q) · Cq2−1a1 = xq2−1, a2 = xq3−1 for x ∈

3D4(q)

2B2(q) |A| = 1
|T1| = q +

√
2q + 1

Gw = q1+1 · Cq−1|T2| = q −√
2q + 1

F4(q)

A = A1A2A3A4, Ai = 〈ai〉, 1 6 i 6 4

|T | = q4 − q2 + 1

Gw = q7+8 : 2 ·Ω7(q)·Cq−1 for

q odd,

a1 = xq−1
1 , a2 = xq2−1

2 , a3 = xq3−1
3 ,

a4 = xq4−1
4

Gw = (q6 × q1+8)Sp6(q)·Cq−1

for q even

2F4(q)
A = A1A2A3, Ai = 〈ai〉, 1 6 i 6 3 |T1| = q2+

√

2q3+ q+
√
2q+1 Gw = q1 · q4 · q1 · q4 : (2B2(q)

a1 = xq−1
1 , a2 = xq2−1

2 , a3 = xq3−1
3 |T2| = q2−

√

2q3+ q−√
2q+1 ×Cq−1)

E6(q)
A = A1A2, Ai = 〈ai〉, 1 6 i 6 2

|T | = q6 + q3 + 1 Gw = q16 : (Ω+
10(q) × Cq−1)

a1 = xq−1
1 , a2 = xq4−1

2

2E6(q)

A = A1A2A3, Ai = 〈ai〉, 1 6 i 6 3 |T1| = q6 − q3 + 1,

Gw = q21 : (SU6(q) × Cq−1)a1 = xq−1
1 , a2 = x

(q3−1)(q+1)
2 , a3 =

xq6−1
3

|T2| = (q4 + 1)(q2 − 1)

E7(q)

A = A1A2A3, Ai = 〈ai〉, 1 6 i 6 3 |T | = q7 + 1 for q even Gw = q27 : (E6(q) × Cq−1) for

q even

a1 = xq−1
1 , a2 = xq5−1

2 , a3 = xq9−1
3 |T | = (q7 + 1)/2 for q odd Gw = q27 : 2 · (E6(q) ×

C(q−1)/2) · 2 for q odd

E8(q)

A = A1A2A3A4, Ai = 〈ai〉, 1 6 i 6 4 |T | = q8−q7+q5−q4+q3−q+1

for q even

Gw = q1 · q56 : (E7(q)×Cq−1)

for q even

a1 = xq6−1
1 , a2 = xq10−1

2 , a3 =

xq12−1
3 , a4 = x

|T |(q−1)
4

|T | = (q8 − q7 + q5 − q4 + q3 −
q + 1)/2 for q odd

Gw = q1 · q56 : 2 · (E7(q) ×
C(q−1)/2) · 2 for q odd

(iv) G = A1 · · ·An ·Gw (H = A1 · · ·An, G is a sharply transitive set on X with respect to w ∈ X),

then [A1, A2, . . . , An, Gw] is an LS for G and G has an MLS.

Then, we presented the constructions of MLSs for remaining 13 types of sporadic groups [31], For each

kind of sporadic groups, the proposed MLS has the similar structures [H,Gw ], where Gw is the stabilizer

of corresponding sporadic groups G; H is a product of some appropriate subgroups of G (Table 5).

Finally, utilizing some of the mathematical methods such as the matrix groups, Lie groups and asso-

ciative algebras, we proposed the constructions of MLSs for the remaining four categories of finite simple

groups. Until now, we get the conclusion that all finite simple group has an MLS.

Further discussion of related problems. Recently, Ashrafi et al. [39] also presented the structures

of MLSs for some Suzuki simple groups and the projective special unitary groups. Following the lines of

Lempken [25], Ashrafi et al. took the advantage of double coset decomposition technique to discuss MLSs

for several kinds of Suzuki simple groups and the projective special unitary groups, and also presented

that there are many simple groups, which can’t be handled by this method. At the same time, the authors

also pointed out some possible bugs in our paper [28]. By inspection and analysis, we found that there

are some obscure contents in our paper. Therefore, it is necessary to further explain our basic theory and

concrete process of constructing MLSs.

First of all, the most ideal conclusion of LSs for groupG is thatG can be factorized into [A1, A2, . . . , An],

where Ai 6 G (1 6 i 6 n). The corresponding results are presented as follows:

Lemma 4 ([24]). If G(G|X) contains subgroups (sets) A1, . . . , An such that

(i) |G| = |A1| · · · |An|,
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Table 5 MLSs for 13 types of sporadic groups

G H Gw

Co1
H = ABCD

Gw = 211 : M24
|A| = 36, |B| = 53, |C| = 7, |D| = 13

Co2
H = ABC

Gw = 210 : M22 : 2
|A| = 34, |B| = 52, |C| = 23

F i22
H = ABCD

Gw = PSU6(2)
|A| = 2, |B| = 35, |C| = 5, |D| = 13

F i23
H = ABC

Gw = 2.F i22
|A| = 34, |B| = 17, |C| = 23

F i′24
H = ABCD

Gw = F i23
|A| = 23, |B| = 33, |C| = 72, |D| = 29

Th
H = ABCDEF

Gw =3 D4(2) : 3
|A| = 23, |B| = 35, |C| = 53, |D| = 7, |E| = 19, |F | = 31

HN
H = ABCD

Gw = A12
|A| = 26, |B| = 3, |C| = 55, |D| = 19

B
H = ABCDEF

Gw = 2.2E6(2) : 2
|A| = 23, |B| = 34, |C| = 54, |D| = 23, |E| = 31, |F | = 47

M
H = ABCDEFGH

Gw = 2.B
|A| = 25, |B| = 37, |C| = 53, |D| = 11, |E| = 132, |F | = 41, |G| = 59, |H| = 71

O′N
H = ABCD

Gw = PSL3(7) : 2
|A| = 22, |B| = 32, |C| = 11, |D| = 31

Ly
H = ABCDE

Gw = G2(5)
|A| = 22, |B| = 34, |C| = 11, |D| = 37, |E| = 67

J3
H = ABCD

Gw = 3× (3× A6) : 2
|A| = 22, |B| = 32, |C| = 17, |D| = 19

J4
H = ABCDE

Gw = 211 : M24
|A| = 112, |B| = 29, |C| = 31, |D| = 37, |E| = 43

(ii) Ai has an MLS for all i,

(iii) G = A1 · · ·An,

then [A1, A2, . . . , An] is an LS for G and G has an MLS.

In particular, if G = P1 · · ·Pk, Pi is a subgroup of pi-Sylow, then [P1, P2, . . . , Pk] is an LS for G, where

p1, . . . , pk is different factor of |G| (Subsection 4.1 in [23]). When n = 2, the corresponding conclusions

are given as follows [25]: if A,B 6 G, G = AB, A ∩B = 1, then [A,B] is an LS for G.

Secondly, when n > 3, it’s difficult to construct LS for G: on the one hand, the conditions of group

factorization is more strict [25]; on the other hand, from the definition of LS (definition 1 in [28]) we

observe that Ai needn’t be the subgroup of G. Therefore, some experts presented more general results

about LS by using algebraic group theory [26, 27].

Lemma 5 ([27]). Let A ⊆ G. Suppose [A1, A2, . . . , Ar] is an LS for A and for each Ai, 1 6 i 6 r,

[Bi1, . . . , Biki
] is an LS for Ai. Then α = [B11, . . . , B1k1

, . . . , Br1, . . . , Brkr
] is an LS for A.

Lemma 6 ([27]). Let G|X be a transitive permutation group. Suppose A ⊆ G is a sharply transitive

set on X with respect to x ∈ X and Gx is the stabilizer of x in G. Then, [A,Gx] is an LS for G.

Therefore, combining the aforementioned facts with Lemmas 2 and 3, we obtain MLSs for all 10

types of exceptional group of Lie type. In fact, we utilize stabilizers of isotopic 1-subspaces and linear

transformations in corresponding algebraic systems to construct MLSs for all ten families of exceptional

groups of Lie type. Our method has universal meanings.

Finally, we employ Figure 1 for summarizing the proof history of MLS conjecture, in which node (1) is
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(1) MLS for some finite (simple) groups

(2) MLS for PWn(q)

(3) MLS for PSUn(q)                                                        (8) Conclusion: all finite simple groups have MLSs

(4) MLS for 13 classes of Sporadic groups

(5) MLS for 10 classes of special Lie-type groups

                       (6)                                                                                     (7) Filling gaps in (5)

Figure 1 Research on MLS conjecture.

mainly composed of Vasco [23], Holmes [24], Lempken [25] and Singhi [26,27], node (6) is the contribution

of Ashrafi et al [39], nodes (2)–(5) are completed by [28–31], nodes (7) and (8) are presented in this paper.

4 Conclusion

We have completed the proof of MLS conjecture in theory. It can bring many implementation platforms

to MST cryptosystems, effectively reducing the key size of public(private) key and improving the speed

of encryption (decryption). Therefore, in the future, MST cryptosystems will have a wide application

prospect. In addition, the problem of MLS conjecture relies on group factorization problems in finite

groups and it is deeply related with algebraic and geometric structures in finite groups. It is meaningful

for people to understand the structures of finite groups in a better way, for the development of algebraic,

and computational group theory.
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