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Dear editor,

Owing to the significant benefits generated by
caching in Content Delivery Networks (CDN) and
Information-Centric Networking (ICN), the per-
formance analysis of multi-cache systems has re-
ceived renewed interest by the networking re-
search community [1–5]. To analyze the per-
formance (i.e., cache hit probability), Melazzi et
al. [3] proposed an approximate approach that uses
a miss stream modeling technique for Least Re-
cently Used (LRU) caches with cascade configu-
rations under renewal traffic. Following the sug-
gestions by Che et al. [2], Melazzi et al.’s ap-
proximation considers a cache as a low-pass fil-
ter with the cutoff frequency 1/Tc, where Tc indi-
cates the cache eviction time and can be approxi-
mated with a constant that is independent of the
specific item considered. As such, the cache hit
probability Pm

hit for the item m is trivially given
by Pm

hit = P{t 6 Tc}. Then, Tc can be solved

by using
∑M

m=1 λm

∫

Tc

0
(1 − Fm(t))dt = C, where

C represents the storage capacity of a cache, M
denotes the total population of items requested by
users, λm is the average arrival rate of requests at
a cache, and Fm(t) indicates the cumulative dis-
tribution function of the inter-arrival request time
for m.

We remark that the seminal paper of Melazzi

et al.’s approximation [3] is missing Leave a Copy
Probabilistically (LCP) and Leave a Copy Down
(LCD) models for cache cascades. In addition, re-
quests of an item with an inter-arrival request time
distribution are essentially gradually filtered out
by each cache on the path that the requests tra-
verse, which allows each cache to have a different
cache eviction time. As such, the Leave a Copy
Everywhere (LCE) strategy, which was previously
based on the same cache eviction time for every
cache in [3], is also necessary for further investiga-
tions.

Contributions. In this letter, we propose gen-
eral, practical, and accurate models that extend
Melazzi et al.’s approximation to analyze the per-
formance of cache cascades. In particular, we an-
alyze a much larger set of practical replication
strategies than that considered in Melazzi et al.’s
approximation by implementing LCE, LCP, and
LCD. We capture the existing state correlations
between neighboring caches by considering the ef-
fects of the cache eviction time. Each cache can
have an individual cache eviction time, which suf-
ficiently reflects current reality.

Models. Let f i
m
(t) be the probability density

function (PDF) of the inter-arrival request time,
where the request for the item m arrives at the
cache i. Similarly, let f i

m
(t) be the PDF of the
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miss stream from the cache i for the item m. In
a cascade of caches, each cache is loaded with the
miss stream from the previous one, i.e., no other
exogenous requests arrive at the cache i except for
those from the cache i − 1. For i > 2, we then
obtain f i−1

m
(t)=f i

m
(t). Let Pm

hit(i) be the hit prob-
ability for the item m at the cache i. Let T i

c be the
cache eviction time for the item m at the cache i.

With regard to LCE, the arrival process of re-
quests for the item m at the first cache is an
exogenous renewal process with f1

m(t). The hit
probability for m at the first cache can be solved
by using Melazzi et al.’s approximation to give

Pm

hit(1)=
∫ T

1

c

0 f1
m(t)dt. The corresponding f2

m(t) is
then given by f2

m
(t)=f1

m
(t) =

∑∞
k=0{[u(t) −u(t−

T 1
c )]f

1
m(t)}∗k ∗ [u(t − T 1

c )f
1
m(t)], where u(t) de-

notes the unit-step function, the operator ∗ in-
dicates convolution, and {g(t)}∗k describes the
k-fold convolution of the (generic) function g(t)
with itself. Consider T 2

c > T 1
c . A cache hit

for the item m only occurs at the second cache
at the time t if at least one request arrives at
this cache within the interval [t − T 2

c , t − T 1
c ].

Then, we obtain Pm

hit(2) =
∫ T

2

c

T 1
c

f2
m
(t)dt. If instead

T 2
c 6 T 1

c , the item m can be stored in the first
cache at τ1 ∈ [t − T 1

c , t). This implies that no re-
quest for m can arrive at the second cache. Hence,
we clearly obtain Pm

hit(2) = 0. Based on the above,
for further generalization to an arbitrary cache i,
i > 2, we obtain f i

m(t)=f i−1
m

(t) =
∑∞

k=0{[u(t)
−u(t−T i−1

c )]f i−1
m

(t)}∗k ∗ [u(t−T i−1
c )f i−1

m
(t)] and

Pm

hit(i)=

{

∫ T
i

c

T
i−1
c

f i
m(t)dt, T i

c > T i−1
c ,

0, T i
c 6 T i−1

c .
(1)

Consider LCP. To compute Pm

hit(1), the last re-
quest for m needs to arrive at τ1 and either pro-
duces a cache hit or triggers the probabilistic in-
sertion (with the probability q). Thus, we can

write Pm

hit(1)=[Pm

hit(1)+(1−Pm

hit(1))q]·
∫ T

1

c

0 f1
m(t)dt.

Given T 2
c > T 1

c , requests for the item m arrive at
the second cache provided that (i) requests arrive
at τ1, in which case the requests that do not trigger
the insertion of the item m at the first cache are
forwarded to the second cache; and (ii) requests

arrive in the interval [t− T 2
c , t− T 1

c ). Then, all of
these requests result in cache misses and thus are
immediately forwarded to the second cache. In-
stead, for T 2

c 6 T 1
c , any forwarded requests can

arrive at the second cache if and only if the first
cache cannot trigger the insertion of the item m
at τ2 ∈ [t − T 2

c , t). Thus, for generalization to an
arbitrary cache i, i > 2, we have f i

m(t)=f i−1
m

(t) =
∑∞

k=0 {[u(t)− u(t− T i−1
c )]f i−1

m
(t)Pm

hit(i− 1)}
∗k

∗
{u(t−T i−1

c )f i−1
m (t)+[u(t)−u(t−T i−1

c )]f i−1
m (t)[1−

Pm

hit(i − 1)]} and

Pm
hit(i)=







































q
[ ∫ T

i
c

T
i−1
c

fi

m
(t)dt+(1−q)

∫ T
i−1
c

0
fi−1

m
(t)dt

]

1−(1−q)
[ ∫ Ti

c

T
i−1
c

fi
m

(t)dt+(1−q)
∫ T

i−1
c

0
f
i−1
m (t)dt

]

,

T i
c > T

i−1
c ,

q(1−q)
∫ T

i
c

0
fi−1

m
(t)dt

1−(1−q)2
∫ Ti

c
0

f
i−1
m (t)dt

, T i
c 6 T

i−1
c .

(2)

Now, we move to LCD. We first consider the
simple case of three caches. When T 2

c > T 1
c ,

the request for the item m arriving at the second
cache at the time t can produce a cache hit, which
means that the item m is present in this cache
at τ2. Thus, it is necessary to analyze the previ-
ous request for m arriving at this cache. There
exist two sufficient and necessary conditions for
the previous request: (i) upon arrival of this re-
quest, either the item m is already in the second
cache, or it is stored in the third cache (and not
in the second cache) and thus triggers an insertion
of m at the second cache after τ2; and (ii) either
this request with the probability 1 − Pm

hit(1) ar-
rives at the second cache at τ1, or it arrives in the
time interval [t−T 2

c , t−T 1
c ) without producing the

cache hit at the first cache. Thus, we easily gen-
eralize our approximation to an arbitrary cache i,
2 6 i < l, where the cache l indicates the last cache
in the cache cascades, to obtain f i

m(t)=f i−1
m

(t) =
∑∞

k=0 {[u(t)− u(t− T i−1
c )]f i−1

m
(t)Pm

hit(i− 1)}
∗k

∗
{u(t−T i−1

c )f i−1
m (t)+[u(t)−u(t−T i−1

c )]f i−1
m (t)[1−

Pm

hit(i−1)]} and (3). Finally, by resorting to back-
propagation analysis, we can use Pm

hit(l) as an ini-
tial value to iteratively compute Pm

hit(i). The ini-

tial value is then given by Pm

hit(l)=
∫ T

l

c

0 f1
m(t)dt.

Pm
hit(i)=























Pm

hit
(i+1)·

[∫ T
i
c

T
i−1
c

fi

m
(t)dt+(1−Pm

hit
(i−1))·

∫ T
i−1
c

0
fi−1

m
(t)dt

]

1−
[

1−Pm

hit
(i+1)

]

·

[ ∫ Ti
c

T
i−1
c

fi
m

(t)dt+(1−Pm

hit
(i−1))·

∫ T
i−1
c

0
f
i−1
m (t)dt

] , T i
c > T i−1

c ,

Pm

hit
(i+1)·

[

(1−Pm

hit
(i−1))·

∫ T
i
c

0
fi−1
m

(t)dt
]

1−
[

1−Pm

hit
(i+1)]·

[

(1−Pm

hit
(i−1))·

∫ Ti
c

0
f
i−1
m (t)dt

] , T i
c > T i−1

c .

(3)
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Figure 1 (Color online) Lognormal distribution (CV=4) on cache 1: (a) LCE; (b) LCP with q = 0.6; (c) LCD; (d) average
cache hit probability vs. cache size.

Numerical results. We considered a chain of six
identical caches, a total population of 103 content
items, a cache of size C = 100, a total of 107 re-
quests arriving at cache 1, and a Zipf’s law slope
coefficient of α = 0.8. Figure 1(a)–(c) present
the per-item cache hit probabilities achieved by
LCE, LCP with q = 0.6, and LCD on cache 2
for a lognormal distribution (CV = 4) on cache
1, respectively. As expected, our models perfectly
succeeded in approximating the per-item cache hit
probability for the three replication strategies con-
sidered. Figure 1(d) compares the performance
of the three replication strategies. The analytical
predictions and simulation results showed excel-
lent agreement. Triggering the probabilistic inser-
tion (with the probability q = 0.6) provided the
huge gain of LCP with respect to LCE. This is be-
cause it prevents some unpopular items from in-
serting a cache even if the cache does not produce
cache hits for these unpopular items. In addition,
LCD significantly outperformed LCP. This is be-
cause popular items with multiple requests can be
aggregated in the frontend caches to result in a
higher average cache hit probability.

Conclusion and future work. In this letter,
we show that the performance of cache cascades
with practical replication strategies under renewal
traffic can be accurately analyzed by extending

Melazzi et al.’s original approximation. Still, many
extensions of our models are possible, especially
for caches with general mesh (arbitrary) config-
urations. We will leave further investigations to
future work.
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