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Dear editor,

Wireless transmissions are vulnerable to potential
security threats such as eavesdropping and wire-
tapping since unauthorized reception is facilitated
through wireless channels [1]. Traditional system
security is mainly implemented in the higher lay-
ers of the communication protocol stack, relying
on authentication and cryptography [2]. The re-
cent researches explore security in the physical
layer [3], which can help to protect the information
in wireless transmission and prevent the unautho-
rized nodes from illegally receiving and extract-
ing confidential messages. In particular, channel
coding can play an important role in the tech-
niques for physical-layer security. For example,
Chen in [4] proposed secure wireless network cod-
ing to achieve physical-layer security at routers by
taking advantages of interference and noise. Ap-
plication of Reed Solomon (RS) code and vector
coding is presented in [5], the use of scrambled
code and automatic repeat request (ARQ) is pro-
posed by [6].

In a wireless network system, the packet losses
at the intended receiver and the eavesdropper are
generally independent due to the independence of

the thermal noise and channel fading. Based on
this fact, a random linear code based secure ap-
proach is proposed in this letter where the data
symbols of the transmitter (Alice) are encoded
with the generators determined by the receiver
(Bob). The code is constructed in a way that it
would be difficult for an eavesdropper (Eve) to de-
code the data symbol unless it has ability to inter-
cept all the two way transmissions between Alice
and Bob. Hence, very low crack probability can
be achieved.

Proposed secure transmission scheme. Con-
sider a wireless transmission between Alice and
Bob in the presence of a passive eavesdropper Eve
which attempt to overhear the conversation from
wireless signal.

Alice has K data symbols x1,x2, . . . ,xK to be
transmitted to Bob. Each data symbol, xk, is a
binary row vector containing N bits and the whole
data symbols can be expressed as a K×N matrix:

X = (xT

1 ,x
T

2 , . . . ,x
T

k , . . . ,x
T

K)T. (1)

Instead of sending data symbols x1,x2, . . . ,xK

directly over the unreliable and unsecured
wireless channel, Alice sends code symbols
s1, s2, . . . , sn, . . . , sK , which are linear combina-
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tions of data symbols:

sn = gnX, (2)

where n is the index of the code symbol; gn, a bi-
nary row vector of length K, is the generator for
code symbol sn.

Define a set B = {(gn, sn)} such that (gn, sn) ∈
B implies Bob has correctly received a code symbol
sn which is encoded with gn. We assume that the
packets exchanged between Alice and Bob contain
necessary control fields and numberings such that
Bob can correctly associate each received sn with
corresponding index n and generator gn.

For each code symbol sn, the generator gn is
chosen by Bob and is sent to Alice via the wireless
channel. Bob chose gn with following rules:

R1. All generators are chosen by random
(pseudo-random).

R2. The weight of gn is even for n =
1, 2, . . . ,K − 1 and is odd for n = K.

R3. gn is linearly independent with all
g1, g2, . . . , gn−1 in B.

Among these rules, R1 is to prevent Eve from
knowing gn by a priori or deducing it from
packet numbering. R2 prevents Eve from de-
coding any single source symbol with a subset
of s1, s2, . . . , sn−1. R3 is a necessary condition
for Bob to decode all source symbols. For n =
1, 2, . . . ,K− 1, Bob chooses the generator gn with
these rules, and then sends gn to Alice together
with index n. Upon receiving gn, Alice generates
the code symbol sn = gnX and sends it to Bob.
If Bob receives sn, the pair (gn, sn) is recorded
into B. Otherwise, Bob will generate a new gn
and repeat the process until Bob receives sn. This
procedure continues until n = K. At this moment,
all pairs (gn, sn) for n = 1, 2, . . . ,K− 1 are known
to both Alice and Bob. Bob will chose a generator
gK with odd weight. But instead of sending gK ,
it sends

g̃K = gK +

K−1
∑

n=1

gn. (3)

Since Alice knows g1, g2, . . . , gK−1, it can recover
gK from g̃K . Then Alice generates the last code
symbol sK = gKX. Instead of sending sK to Bob,
Alice sends

s̃K = sK +

K−1
∑

n=1

sn. (4)

If Bob can not receive s̃K , Bob will generate a
new gK and send the new g̃K to Alice and, corre-
spondingly, Alice will generate a new sK and send
the new s̃K to Bob. Bob will finally receive s̃K
and then recover sK since it has already received

s1, s2, . . . , sK−1. Now, Bob has K pairs in set B
which leads to a set of linear equations:

S = GX, (5)

where G = (gT

1 , . . . , g
T

K)T, S = (sT

1 , . . . , s
T

K)T. G

has full rank due to rule R3. Hence Bob can solve
X, using Gaussian elimination for example.

Secure performance analysis. Define a set
E = {(ĝn, ŝn)} such that if Eve has overheard a
generator ĝn from Bob and the corresponding code
symbol ŝn = ĝnX from Alice, then (ĝn, ŝn) ∈ E .
It should be noted that E may contain pairs that
are not contained in B. For example, Bob sends
ĝn which is received by both Alice and Eve, Al-
ice sends ŝn = ĝnX, which is received by Eve but
lost at Bob. In this case the pair (ĝnŝn) ∈ E , but
(ĝnŝn) /∈ B. Similarly, E may also contain multiple
pairs having the same index n.

Based on E , Eve can also establish a set of linear
equations similar to (5):

SE = GEX, (6)

where GE and SE consist of, respectively, gener-
ators and code symbols in E . If E contains no
pair with index n = K, then Eve cannot solve any
one data symbol of X since now that all rows of
GE have even weight. From (3) and (4), Eve can-
not have a pair with index n = K (which has odd
weight generator) unless it has intercepted all pairs
(gn, sn) ∈ B for all n = 1, 2, . . . ,K − 1. Thus the
necessary conditions for Eve to crack X are

C1. ∀n = 1, 2, . . . ,K − 1, if (gn, sn) ∈ B, then
(gn, sn) ∈ E .

C2. ∃(ĝk, ŝk) ∈ E such that k = K.
Let pXY,X,Y ∈ {A,B,E} denotes the packet

loss rate at links X→Y. Assume that 0 6 pXY < 1
and the packet losses are independent random
events for different links and different transmis-
sions. Then the probability of condition C1 is
given by

p
C1

= (1− q)K−1, (7)

where q , 1− (1−pAE)(1−pBE). The probability
of C2 is

pC2 =

∞
∑

k=1

(1 − qk)(1− p)pk−1 =
1− q

1− pq
, (8)

where p , 1− (1−pAB)(1−pBA). Thus, the prob-
ability that X can be cracked by Eve is

pcrack = p
C1
p

C2
=

(1− q)K

1− pq
. (9)

The crack probability decreases monotonically
with K, pAE, pBE. Hence arbitrary small crack
probability is achievable either by increasing the
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code length of the random linear code, or by de-
grading the quality of links to Eve. The latter can
be realized by reducing transmit power or by us-
ing techniques such as beamforming or artificial
noise [3].

Numerical results. In this section we present
the numerical results for the crack probability
pcrack by considering a Rayleigh fading channel.
The average packet loss rate between the link
X→Y can be expressed as [7]

p
XY

= 1− exp

(

− γth
γ

XY

)

, (10)

where γ
XY

is the average signal to noise ratio
(SNR) which is given by

γ
XY

=
P

σ2

(

d
XY

d0

)−λ

, (11)

where P and σ2 are, respectively, the transmit
power and the noise power which are assumed to
be the same for all nodes. d

XY
/d0 is the normal-

ized distance between node X and Y. λ = 3.5 is
the path loss exponent. γth is the SNR waterfall
threshold of the physical layer error control code.
For Turbo or LDPC codes, the threshold can be
estimated via the radius of the decision region [8].
We set γth = 1/0.81 or 0.92 dB which is a typical
value for BPSK modulated rate 1/2 LDPC codes.

With (10) and (11), we have q = 1 −
exp(− a

d
−λ

AE

− a

d
−λ

BE

) where a = γthσ
2

Pdλ

0

. Since har-

monic mean 6 geometric mean 6 arithmetic
mean, so we have 1

d
−λ

AE

+ 1

d
−λ

BE

> 2√
d−λ

AE
d−λ

BE

>

2
(

dAE+dBE

2

)λ
> 2

(

dAB

2

)λ
with equality iff dAE =

dBE = dAB/2. This has shown that pcrack is max-
imized when Eve is located at the midpoint be-
tween Alice and Bob. The crack probability for
this worst case is shown in Figure 1. It can be ob-
served that, even under this worst condition and
there is no beamforming or artificial noise to de-
grade the link quality of Eve, the proposed scheme
can still guarantee small crack probability.

Conclusion. This letter proposes a secure
transmission scheme with random linear coding
for wireless communications over fading channels.
Since all nodes (including the passive eavesdropper
Eve) will undergo independent fading and thermal
noise, the packet losses at different nodes are sta-
tistically independent. When Alice and Bob ex-
change a lot of packets, such independence will
lead to different knowledge at Eve and at the in-
tended receiver, hence Alice can transmit informa-
tion to Bob, that is high likely unknown to Eve.
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Figure 1 (Color online) pcrack as the function of
SNR=P/σ2. K =100, 400, 1600.

The numerical results show that, with proper set-
ting of code length and transmit power, the pro-
posed scheme can have very low crack probability.
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