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Abstract This paper proposes a novel electrical coupling suppressing and drive closed loop control method

for a MEMS gyroscope with feed-forward coupling compensation (FCC) and scalable fuzzy control. Theoretical

analysis of the novel method is described in detail, and it is very simple to realize. Experimental results

demonstrate that the electrical anti-resonant peaks located at the amplitude-frequency and phase-frequency

responses are both eliminated by FCC control, and the height of the amplitude resonant peak increases more

than 24 dB over 1800 Hz span. In addition, the overshoot of the transient response with scalable fuzzy control

is smaller than 5%, and the settling time is less than 15 ms. The stabilities of the resonant amplitude and phase

of the drive-mode velocity with scalable fuzzy control are about 15 ppm and 11 ppm, respectively. The scale

factor of the gyroscope is measured to be 33.98 mV/deg/s with nonlinearity about 0.08%. Furthermore, the

bias instability of the gyroscope with wavelet analysis is improved to be about 6.3 deg/h from 25.2 deg/h of the

gyroscope without wavelet analysis.
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1 Introduction

Electrical coupling is one of the major error sources for a MEMS gyroscope, which will deteriorate the

angular rate resolution and induce the non-ideal anti-resonance to the drive and sense modes [1–3]. It

is mainly attributed to the direct coupling from the excitation signal of the drive mode to the sense

output through parasitic capacitances formed by the adjacent drive and sense combs [4, 5]. Thus, in

order to advance the performance, it is very significant to suppress the electrical coupling signals. There

*Corresponding author (email: zqc@pku.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-015-0931-8&domain=pdf
https://doi.org/10.1007/s11432-015-0931-8
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-015-0931-8


He C H, et al. Sci China Inf Sci April 2017 Vol. 60 042402:2

 

Drive-sensing combs                       Force  feedback combs

Drive combs Sense combs

Figure 1 The simplified schematic of a Z-axis doubly decoupled MEMS tuning fork gyroscope.

are several methods to fulfill it. Symmetry design in structure and circuit benefits the cancel of electrical

coupling signals when differential detection scheme is adopted simultaneously. However, the imperfection

resulted from process fabrication is inevitable, so it cannot solve the issue absolutely. An isolated silicon

island connected to the ground can be applied to eliminate the coupling from drive combs to the sense

combs [6], but it is at the cost of extra areas.

Electromechanical amplitude modulation (EAM) [7,8] method can modulate the actual vibration signal

by exerting a high-frequency carrier (usually several MHz) to the moveable mass. Thus, it can separate

the effective sense signal from coupling signals. However, it needs a demodulation process to restore

the useful information, which adds the complexity of the readout circuit. Moreover, it requests that

the circuit could handle the demodulation in several MHz, which will increase the hardware cost, power

consumption and high frequency noise. Ascending frequency drive (AFD) method [9,10] can be also used

to suppress the electrical coupling by introducing a drive modulation process. Compared with EAM, it

can simplify the readout circuit since it needs no extra demodulation process, but it adds complexity of

the driving circuit. Similarly, it requests that the circuit could handle the modulation in high frequency

domain, which will increase the cost, power consumption and noise. Hence, a simple electrical coupling

suppressing method is very necessary.

On the other hand, in order to obtain stable resonant amplitude and phase of the drive-mode velocity,

PID controller is widely utilized for the closed loop control [10–13]. Whereas, the control system of the

drive mode is a nonlinear system, which means classical control theory is no longer suitable for the tuning

of PID parameters. Although period averaging method and Routh-Hurwitz criterion [10] can be applied

to judge and obtain the stability conditions, it cannot guarantee a superior control performance. Despite

the transient response can be improved by adopting a 2-DOF PID controller [10], it is still not the best.

Nevertheless, fuzzy algorithm is one of the most important intelligent control approaches, which can be

competent for any nonlinear system control. Owing to the control rapidity and strong robustness resulted

from expert experience, it can be widely used in some gyroscope control systems, such as displacement

control [14], angular rate estimation [15], and automatic mode-matching control [16]. Due to a series of

merits, it can be also adopted to accomplish the closed loop control for the drive mode. Therefore, this

paper will present a novel and simple electrical coupling suppressing and drive closed loop control method

for a MEMS gyroscope with feed forward coupling compensation (FCC) and scalable fuzzy control.

2 Theory analysis

2.1 Electrical coupling analysis

The simplified schematic of a Z-axis doubly decoupled MEMS vibratory tuning fork gyroscope is shown

in Figure 1. The slide-film drive combs and slide-film drive-sensing combs are used for closed loop control

of the drive mode while the squeeze-film sense combs and slide-film force feedback combs are designed for
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Table 1 Key parameters of the tested gyroscope at room temperature

Parameter Value

Sense mode capacitance 8.5 pF

Sense mode capacitance gradient 2.1 µF/m

Drive mode resonant frequency 8035.11 Hz

Drive mode quality factor 1285

Sense mode resonant frequency 7533.81 Hz

Sense mode quality factor 620
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Figure 2 Electrical coupling analysis between the drive combs and sense combs of a MEMS tuning fork gyroscope.

the closed loop control of the sense mode. The gyroscope is fabricated based on SOG process and DRIE

technique, which are depicted in detail in our previous work [17, 18].

The key parameters of the tested gyroscope at room temperature are listed in Table 1. Figure 2 shows

that there are some parasitic capacitances between the drive combs and sense combs since they are close

to each other in the structure layout, which is the major coupling source.

In Figure 2, in order to fulfill the differential detection, a DC carrier signal Vc is exerted to the proof

mass. Cd1 and Cd2 are the differential drive capacitances, while Cs1 and Cs2 are the differential sense

capacitances. Cp1 and Cp2 stand for the differential parasitic capacitances between the drive combs and

sense combs. VL and VR represent the two differential drive signals. Owing to the existence of parasitic

capacitances, drive signals can be coupled to the sense combs, which will disturb the original detection

signals and deteriorate the closed loop system’s stability and performance.

2.2 Novel control system

Figure 3 illustrates a block diagram of the closed loop control system for the drive mode of a MEMS

gyroscope with feed-forward coupling compensation and scalable fuzzy control. It mainly comprises an

analog circuit and a digital circuit. The FCC module and the coupling module are connected with solid

line and dashed line, respectively. Cp is the total parasitic capacitance from the drive combs to the sense

combs, while Cpc is a compensation capacitance applied to suppress the electrical coupling. kpc is a

tunable gain for FCC. Coordinated rotation digital computer (Cordic) algorithm is employed to generate

the sine signals for drive and demodulation, and least mean square (LMS) algorithm is used for the sense

signal demodulation, and they have been detailedly described in our previous work [19, 20]. In order to

make a robust and precise control, scalable fuzzy controller, rather than PID controller, is adopted for

amplitude and phase control for drive-mode velocity. From Figure 3, the original transfer function Gd(s)

of the controlled plant from D/A converter to A/D converter can be deducted as

Gd(s) =
kcvkvfkdc/md

s2 + sωd/Qd + ω2
d

, (1)
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Figure 3 Block diagram of the closed loop control system for the drive mode of a MEMS gyroscope with feed-forward

coupling compensation (FCC) and scalable fuzzy control.

where ωd and Qd are the resonant frequency and quality factor of the drive mode, respectively. kvf , kdc
and kcv are the gains of voltage to force module, displacement to capacitance module, and capacitance

to voltage module, respectively. md stands for the drive mass. Re(Gd) and Im(Gd) are the real and

imaginary parts of Gd(s), as shown in (2) and (3),

Re(Gd) =
(ω2

d − ω2)kcvkvfkdc/md

(ω2
d − ω2)2 + ω2ω2

d/Q
2
d

, (2)

Im(Gd) =
−ωωdkcvkvfkdc/(mdQd)

(ω2
d − ω2)2 + ω2ω2

d/Q
2
d

. (3)

However, take into account the electrical coupling, the controlled plant Gdc(s) can be derived as

Gdc(s) =
kcvCp[s

2 + sωd/Qd + (ω2
d + kvfkdc/mdCp)]

s2 + sωd/Qd + ω2
d

. (4)

Due to the existence of electrical coupling, the controlled plant is changed to be a notch filter, and

the characteristics of frequency response will be deteriorated. Re(Gdc) and Im(Gdc) are the real and

imaginary parts of Gdc(s), as shown in (5) and (6),

Re(Gdc) =
(ω2

d − ω2)kcvkvfkdc/md

(ω2
d − ω2)2 + ω2ω2

d/Q
2
d

+ kcvCp, (5)

Im(Gdc) =
−ωωdkcvkvfkdc/(mdQd)

(ω2
d − ω2)2 + ω2ω2

d/Q
2
d

. (6)

Compared with (2) and (3), we can see that the imaginary parts of Gd(s) and Gdc(s) are the same, but

the real parts of them are different. The difference of the two real parts is kcvCp, and the larger are kcv
and Cp, the bigger is the difference.

From (4), there is an anti-resonant peak located at the amplitude-frequency response, whose resonant

frequency ωdc and quality factor Qdc are yielded as

ωdc =
√

ω2
d + kvfkdc/mdCp, (7)

Qdc =
Qd

ωd

√

ω2
d + kvfkdc/mdCp. (8)
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Figure 4 The schematic of the differential drive and readout circuits with feed-forward coupling compensation control.

The difference between ωdc and ωd is determined by kvfkdc/mdCp, as well as the difference between

Qdc and Qd. When FCC is added to the control loop and Eq. (9) is satisfied, the controlled plant shown

in (4) can be converted back to (1), which means the anti-resonance effect is eliminated absolutely.

The schematic of the differential drive and readout circuits with FCC control is depicted in Figure 4.

FCC circuit and the coupling circuit are connected with solid line and dashed line, respectively. Charge

amplifier or trans-impedance amplifier is applied to detect the displacement or velocity signal. Vdc and

Vac are the DC and AC signals exerted to the drive combs, respectively. Carrier Vc is a DC signal, and

there is no drive modulation and carrier demodulation in the control loop, which vastly decreases the

hardware cost, power consumption and high frequency noise compared with those methods mentioned

above. Furthermore, FCC circuit only comprises an inverter and a compensation capacitance, which is

very simple and easy to realize. kpc and Cpc are set according to Cp, and Cp can be measured by coupling

swept frequency test in advance when Vc is connected to the ground. Thus, based on the parameters set

in the readout circuit and the amplitude-frequency response, Cp can be finally evaluated,

Cp = −kpcCpc. (9)

2.3 Scalable fuzzy controller

Since fuzzy controller is competent for any nonlinear system control, it is employed for the closed loop

control of the drive mode in this work, as shown in Figure 3. The formula of the traditional incremental

two-dimensional fuzzy controller can be described as [16]

Vn = Vn−1 +∆Vn = Vn−1 + fuzzy(kpE, kdEC), (10)
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Figure 5 The output increment of the fuzzy controller ∆Vn varies with the control error E and the differential of the

control error EC.

where Vn and Vn−1 are the current and the last output, and ∆Vn is the output increment determined by

the fuzzy controller. kp and kd are the weights of the control error E and the differential of the control

error EC, respectively. E, EC and ∆Vn consist of seven language values {nb, nm, ns, ze, ps, pm, pb} on

the discourse of [−3, 3]. nb, nm, ns, ze, ps, pm, pb represent negative big, negative medium, negative

small, zero, positive small, positive medium and positive big, respectively. The rule table is the core of a

fuzzy controller, which is set based on expert experience. The 49 fuzzy rules are established according to

the following principles: (a) If E and EC are large, ∆Vn should be adjusted to reduce the error rapidly.

(b) If E and EC are small, ∆Vn should be tuned to suppress overshoot and eliminate static error.

According to the fuzzy rules and Mamdani algorithm, a look-up table (LUT) for fuzzy control can be

calculated with the following formula:

∆V ′
n =

49
⋃

i=1

(E′ and EC′) ◦ [(Ei and ECi) → ∆Vni], (11)

whereE′ and EC′ are the typical inputs of E and EC; Ei, ECi and ∆Vni are the fuzzy rules for determining

the mapping relationship of fuzzy sets. Afterwards, centroid method is used for defuzzification of ∆V ′
n

to obtain ∆Vn. Finally, the control LUT can be stored in the memory of FPGA chip to save computing

time and resources. The relationship between E, EC and ∆Vn is depicted in Figure 5. It shows that ∆Vn

varies with E and EC sensitively.

The traditional fuzzy controller is similar to a nonlinear PD controller, as shown in (10), which results

in a non-ideal control precision due to the finite 49 fuzzy rules, 7 quantized steps and lack of an integration

component. Therefore, traditional fuzzy algorithm should be improved to enhance the control precision.

Here, a scale factor α is introduced to tune the quantized step size and control increment, as depicted in

Vn = Vn−1 +∆Vn = Vn−1 + α·fuzzy(αkpE,αkdEC). (12)

In order to further minimize E and EC, α is often set to be 2k (k is an integer), which can enhance the

control speed and precision. The core concepts of the scalable fuzzy algorithm are based on the following

rules: (a) If E and EC are judged as ze, the quantized step size and control increment should be shrunk to

advance control precision, and α is minified by half. (b) If E and EC is judged as pb or nb, the quantized

step size and control increment should be amplified to enhance control speed, and α is magnified twice.

(c) Otherwise, α is not changed. The initial value of α is set to be 1 (k=0).

Thus, the scalable fuzzy controller can achieve a rapid and accurate control for any nonlinear or

uncertain system with finite fuzzy rules and quantized steps, and it is simpler to realize than a 2-DOF

PID controller.
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3 Experimental results

3.1 Electrical coupling suppressing

The mixed signal circuit for a vacuum packaging gyroscope is illustrated in Figure 6. It mainly includes

an analog circuit and a digital circuit. FCC is realized in the analog circuit and scalable fuzzy control is

accomplished in the digital circuit with FPGA device.

As described above, Cp can be measured by coupling swept frequency test in advance when Vc is

connected to the ground. Then, based on the parameters set in the readout circuit and the amplitude-

frequency response, Cp can be finally evaluated, as shown in Figure 7. In order to obtain the long-term

stability of Cp, an accelerated test is conducted with a high temperature chamber, whose temperature

is set to be 125◦C according to the standard GJB548B-2005 1015.1. Cp is measured at the ageing time

of [0 240 408 600 744 984 1152 1368] h. Figure 7 figures out that the average is 39.86 fF and standard

deviation is 0.25 fF, which means Cp is stable enough and changes less with time.

Experimental results indicate that the electrical anti-resonant peaks are located at the amplitude-

frequency and phase-frequency responses when there is no FCC control, which seriously deteriorates the

original response characteristics, as shown in Figure 8. However, they are both eliminated when a simple

FCC circuit is adopted. The height of the amplitude resonant peak increases more than 24 dB over 1800

Hz span, and the phase characteristic is also improved by 180 deg, which verifies the novel method is

effective. Closed loop control for the drive mode aims to make the gyroscope resonant and obtain the

stable amplitude of the drive velocity. From (4), the electrical coupling signal cannot change the resonant

frequency of the peak, however, it will affect the amplitude and phase of the peak. Hence, it should be

eliminated for enhancing the control performance. The improvement of phase characteristic proves the

electrical coupling signal is suppressed and benefits the stability of the closed loop control system.
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Figure 9 Transient response of the amplitude of the drive-mode velocity with scalable fuzzy control.

3.2 Closed loop control for the drive mode

The transient response of the amplitude of the drive-mode velocity with scalable fuzzy control is shown

in Figure 9. It figures out that the overshoot is smaller than 5% and the settling time is less than

15 ms, which validates the closed loop system with scalable fuzzy control is robust and the control speed

is so rapid. Compared with the control effects reported in [10], scalable fuzzy control is superior to 2-DOF

PID control as for a nonlinear system.

The average of the resonant amplitude of the dive-mode velocity of the MEMS gyroscope with scalable

fuzzy control is 1222.29 mV with standard deviation about 18.78 µV, while the average of the resonant

phase is −89.827 deg with standard deviation about 0.983 mdeg. Thereby, the stabilities of them are

evaluated to be about 15 ppm and 11 ppm, respectively, as depicted in Figures 10 and 11, which indicates

the novel control system is stable and effective.

3.3 Performance tests

Figure 12 demonstrates that the scale factor and nonlinearity of the gyroscope with FCC and scalable

fuzzy control are measured to be 33.98 mV/deg/s and 0.08%, respectively. Wavelet analysis algorithm has

been proved effective to suppress the high-frequency noise in some work [21,22], thus it is also employed

here. The bias instability of the gyroscope with wavelet analysis is improved to be about 6.3 deg/h from

25.2 deg/h of the gyroscope without wavelet analysis, as shown in Figure 13.
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Figure 12 Scale factor test of the MEMS gyroscope with feed-forward coupling compensation and scalable fuzzy control.

4 Conclusion

This paper has presented a novel electrical coupling suppressing and drive closed loop control method for

a MEMS gyroscope with (FCC) feed-forward coupling compensation and scalable fuzzy control. Theo-

retical analysis of the novel method is described in detail, and it is very simple to realize. Experimental

results demonstrate that the electrical anti-resonant peaks located at the amplitude-frequency and phase-

frequency responses are both eliminated by FCC control, and the height of the amplitude resonant peak

increases more than 24 dB over 1800 Hz span. In addition, the overshoot of the transient response

with scalable fuzzy control is smaller than 5%, and the settling time is less than 15 ms. The stabilities

of the resonant amplitude and phase of the drive-mode velocity with scalable fuzzy control are about

15 ppm and 11 ppm, respectively. The scale factor of the gyroscope is measured to be 33.98 mV/deg/s

with nonlinearity about 0.08%. Moreover, the bias instability of the gyroscope with wavelet analysis is

improved to be about 6.3 deg/h from 25.2 deg/h of the gyroscope without wavelet analysis. Therefore,
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Figure 13 Bias drift tests of the MEMS gyroscope with and without wavelet analysis processing.

the proposed FCC and scalable fuzzy control method is feasible and effective, and it can be also applied

to other fields.
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