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Abstract This paper is on the resource allocation problem for pilot-assisted multi-user massive multiple-

input-multiple-output (MIMO) uplink with linear minimum mean-squared error (MMSE) channel estimation

and detection. We utilize the angular domain channel representation for uniform linear antenna arrays, and

adopt its equivalent independent and nonidentical distributed channel model. For a given coherence interval

and total energy budget, we study the joint optimization of the training length and the training power to

maximize the achievable sum-rate. For tractable analysis and low-complexity solution, a tight approximation on

the achievable sum-rate is derived first. Then the training length optimization for fixed training power and the

training power optimization for fixed training length with respect to the approximate sum-rate maximization

are both shown to be concave. An alternative optimization that solves the training length and power iteratively

is proposed for the joint resource allocation. In addition, for the special case that the training and data

transmission powers are equal, we derive the optimal training lengths for both high and low signal-to-noise-

ratio (SNR) regions. Numerical results show the tightness of the derived sum-rate approximation and also the

significant performance advantage of the proposed resource allocation.
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1 Introduction

Massive multiple-input-multiple-output (MIMO) configuration is considered to be a key enabler for the

5th generation (5G) wireless systems [1]. By employing a large number (usually hundreds) of antennas

at the base station (BS) to simultaneously and jointly serve multiple (i.e., dozens) mobile user terminals

(UTs), massive MIMO can greatly improve the performance of cellular networks, including spectral ef-

ficiency and energy efficiency. For the evaluation of spectral efficiency, the independent and identically

distributed (i.i.d.) Rayleigh fading channels were adopted in the paper by Marzetta [2]. Due to unlim-

ited numbers of antennas at the BS and the asymptotically orthogonality between propagation beam
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vectors of different users, the matched filter (MF) receiver becomes optimal, and the effect of noise and

intra-cell interference diminishes. Furthermore, the transmit power can be made arbitrarily low without

performance loss. By exploiting the uplink-donwlink reciprocity in time-division duplex (TDD) systems,

the required channel state information (CSI) for downlink at the BS can be acquired via uplink train-

ing. Nevertheless, because of pilot sequence reuse among cells, pilot contamination persists for multicell

systems [3, 4].

In the practical case of BS equipped with a large, but finite number of antennas, pilot contamination

has a more severe impact on system performance relative to the effect of additive white noise [5]. The

performance of MF and more complex linear receivers has been analyzed in [3, 6]. For finite number

of antennas, minimum mean-squared error (MMSE) scheme can provide better performance than MF

scheme [6]. However, compared with the physical channel model adopt in [6], the statistical channel

models obtained from the physical angular domain analysis are more plausible for the design and per-

formance analysis of practical communication systems [7]. Moreover, the system performance largely

depends on the resource allocation between training and data transmission phases and the quality of the

estimated CSI.

In [8], the linear MMSE channel estimation with fixed training length and training power was de-

rived and shown to provide near-optimal performance for multicell systems. However, we bring out the

channel estimation research based on the background of single-cell system with frequency-division duplex

(FDD) operation. FDD system has spurred much recent research interest [1]. Joint Spatial Division

and Multiplexing (JSDM) proposed in [9], offers strong potential to achieve massive MIMO link gains.

Furthermore, Beam Domain Multiple Access (BDMA) proposed in [10], can even be qualified for medium

or high-mobility user applications in single-cell system.

There are very few work on the evaluation of achievable rate with linear MMSE receiver for the

statistical channel models obtained from the physical angular domain, as well as, the resource allocation

for pilot-assisted massive MIMO communications. Regarding the training length design, an early study

for the tradition point-to-point MIMO system showed that if the optimization over the training and

data powers is allowed, the optimal training length equals the number of transmit antennas [11]. This

conclusion is based on a lower bound on the information-theoretic capacity. For uplink massive MIMO

transmission with maximum-ratio combining detection, in a recent work [12], a similar result that the

optimal training length equals the number of UTs was obtained based on the nonasymptotic sum-rate

maximization under i.i.d. channels. Notice that, some recent work on resource allocation, such as [13],

adopts this setting in the training phase.

In this paper, we analyze the achievable sum-rate of pilot-assisted massive MIMO uplink with linear

MMSE detection and channel estimation, and derive training resource allocation policies to maximize

the achievable sum-rate. We further use the angular domain channel representation for uniform linear

antenna arrays, and adopt its equivalent independent and nonidentical distributed (i.n.d.) channel model.

The analysis are for asymptotically large number of BS antennas, while the number of UTs are assumed

to be fixed and small [3, 9]. We first derive an approximation on the achievable sum-rate of the pilot-

assisted massive MIMO uplink. Unlike the sum-rate results in [6] whose evaluation requires iterative

numerical procedure, ours is in closed-form. Based on this analytical sum-rate result, we study the joint

optimization of the training length and training power. By proving the concavity of the training power

optimization for fixed training length and the training length optimization for fixed training power, we

propose a low-complexity alternative optimization algorithm for the joint optimization. Simulations are

conducted to validate the analytical result and to show the advantage of the proposed resource allocation

solution.

2 System model and problem formulation

In this section, the model of the multi-user pilot-assisted massive MIMO system is elaborated, including

the channel model and the pilot-assisted uplink transmission scheme. Then the joint training length and
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power optimization problem is formulated.

2.1 Channel model

We consider a single-cell multi-user massive MIMO system that consists of one BS and K UTs. The BS

is equipped with a uniform linear array (ULA) of M antennas spaced with a half wavelength distance.

All UTs have single antenna. Denote the M × 1 channel vector from the kth UT to the BS as gk. Using

the channel model in [14], we have

gk =
√

βkV
1

2

k hk, (1)

where βk represents the large scale fading, hk is a complex vector of i.i.d. zero-mean unit variance

complex Gaussian elements and Vk is an M ×M diagonal matrix that represents the variance profile of

the channels between the kth UT and the BS. The mth diagonal element of Vk (which we denote as vkm
to help the presentation) is given by

vkm , [Vk]mm =M · Sk (arcsin (ψm−1)) [arcsin (ψm)− arcsin (ψm−1)] , for m = 1, . . . ,M, (2)

where ψn = n/M for n = 0, 1, . . . ,M and Sk(θ) represents the channel power angle spectrum (PAS) which

models the channel power distribution in the angular domain [15]. The channel PAS is normalization as
∫∞
−∞ Sk(θ)dθ = 1.

We employ E{·} to denote the expectation operation, and the superscript (·)† to denote the conjugate-

transpose operation, respectively. With the aforementioned channel model, from (1), the covariance

matrix of gk can be calculated as E{gkg†
k} = βkVk. We define that G

∆
= [g1 g2 · · · gK ], which is the

M × K channel matrix between all UTs and the BS. We employ the operator diag{a} to denote the

diagonal matrix whose diagonal entries are elements of a, and tr(A) to denote the trace of the matrix

A, respectively. Let R
∆
= E{G†G}. It can be shown straightforwardly that R is diagonal and its kth

diagonal element is [R]kk = βktr(Vk) = βkM . That is R =Mdiag{β1, . . . , βK}.

2.2 Pilot-assisted uplink transmission scheme

We consider a pilot-assisted uplink transmission scheme, where a coherence interval is composed of two

phases: the uplink training phase and the uplink data transmission phase.

2.2.1 Uplink training phase

In the uplink training phase, pilots are sent from the UTs to the BS for the BS to learn the channel

matrix G. Let Tt be the length of the training phase measured in the number of symbol transmissions,

pt be the training power per training symbol for all UTs, and
√
ptTtS be the K × Tt pilot matrix. Thus

the kth UT sends the kth row of
√
ptTtS and all UTs transmit simultaneously. S is assumed to satisfy

SS† = IK . (3)

This implies that the pilot vectors of different UTs are mutually orthogonal and Tt > K.

The M × Tt received matrix at the BS in the uplink training phase is given by

Yt =
√

ptTtGS+Nt, (4)

where Nt is the M × Tt noise matrix with i.i.d. zero-mean unit variance complex Gaussian elements.

Following the results in [16, 17], the linear MMSE estimate of G at the BS is written as

Ĝ =
1√
ptTt

Yt

(

S†RS+
M

ptTt
ITt

)−1

S†R

(a)
=

(

GS+
1√
ptTt

Nt

)

[

ptTt
M

ITt
− p2tT

2
t

M2
S†
(

R−1 +
ptTt
M

IK

)−1

S

]

S†R
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=

(

G+
1√
ptTt

NtS
†
)(

M

ptTt
IK +R

)−1

R

=

(

G+
1√
ptTt

NtS
†
)

diag

{

ptTtβ1
1 + ptTtβ1

, . . . ,
ptTtβK

1 + ptTtβK

}

. (5)

In the above derivations, (a) is obtained by using the matrix inversion identity (A+BCD)−1 = A−1 −
A−1B(DA−1B + C−1)−1DA−1 [18] and the transceiver equation in (4). For any pilot satisfying (3),

it can be shown that NtS
† is an M × K random matrix with i.i.d. zero-mean unit variance complex

Gaussian elements. Define ĝk as the kth column of Ĝ, and Kĝk
as the covariance matrix of ĝk. Thus,

ĝk satisfies

ĝk ∼ CN (0,Kĝk
), (6)

where CN (0,Kĝk
) represents the circularly symmetric complex Gaussian distribution whose mean vector

is 0 and whose covariance matrix is

Kĝk
=

p2tT
2
t β

3
k

(1 + ptTtβk)2
Vk +

ptTtβ
2
k

(1 + ptTtβk)2
IM .

Define that G̃ , G− Ĝ, which is the channel estimation error. The covariance matrix of G̃ can be

calculated to be

E

{

G̃G̃†
}

=

K
∑

k=1

[

(1 + 2ptTtβk)βk

(1 + ptTtβk)
2 Vk −

ptTtβ
2
k

(1 + ptTtβk)
2 IM

]

. (7)

2.2.2 Uplink data transmission phase

After the training phase in which the BS obtains the channel estimate Ĝ, the uplink data transmission

phase follows. Let T (in symbol transmissions) be the length of the coherence interval. Since the

length of the training phase is Tt, the length of the data transmission phase is T − Tt. Without loss

of generality, we consider an arbitrary time slot of the data transmission phase. Let x be the vector

containing the information symbols of all users. x is assumed to have zero mean and its covariance

matrix is E{xx†} = IK . Let the transmit power for all UTs be pu. The M × 1 received vector at the BS

can be written as

y =
√
puGx+ n =

√
puĜx+

√
puG̃x+ n, (8)

where n is the M × 1 noise vector following CN (0, 1).

We define that w , G̃x+ 1√
pu

n. As n and G̃ are independent circularly symmetric complex Gaussian

random vectors, w is also a circularly symmetric complex Gaussian random vector. It is straightforward

to show that its mean is zero and its covariance matrix is

Kw =

K
∑

k=1

[

(1 + 2ptTtβk)βk

(1 + ptTtβk)
2 Vk −

ptTtβ
2
k

(1 + ptTtβk)
2 IM

]

+
1

pu
IM

= diag

{

1

pu
+

K
∑

k=1

(1 + 2ptTtβk) βkvk1 − ptTtβ
2
k

(1 + ptTtβk)
2 , . . . ,

1

pu
+

K
∑

k=1

(1 + 2ptTtβk)βkvkK − ptTtβ
2
k

(1 + ptTtβk)
2

}

. (9)

As in [7], we define that

Kz,k
∆
=

K
∑

i=1,i6=k

ĝiĝ
†
i +Kw. (10)

Under linear MMSE detection, the received signal-to-interference-plus-noise-ratio (SINR) for the kth UT

is thus given by

ρk = ĝ
†
kK

−1
z,kĝk. (11)



Xue Y, et al. Sci China Inf Sci April 2017 Vol. 60 042302:5

The average achievable uplink rate for the kth UT is thus

Rk
∆
=

(

1− Tt
T

)

E {log2 (ρk + 1)} , (12)

where the coefficient 1− Tt/T takes into consideration the length of the training phase. The achievable

sum-rate of overall system is

Rsum
∆
=

K
∑

k=1

Rk. (13)

2.3 Problem formulation

Let P be the total transmit energy constraint for each UT within a coherence interval. Then, we have

Ttpt + (T − Tt) pu = P . (14)

Intuitively, with given coherence length and total transmit energy constraint for the coherence interval, the

designs of the training length Tt and the training power pt can significantly affect the system performance.

In this work, we consider the joint optimization of the training length and the training power to maximize

the total sum-rate. By noticing the equality in (14), the problem can be formulated as follows:

maximize
Tt,pt

Rsum, s.t. 0 6 pt 6
P
Tt
, K 6 Tt < T, Tt ∈ N, (15)

where N denotes the positive integer set. Notice that, we assume that the coherence interval satisfies the

condition: K < T .

3 Achievable sum-rate analysis and resource allocation

In this section, we solve the resource allocation problem formulated in Subsection 2.3. Due to the complex

nature of the sum-rate formula in (10)–(13), to find a solution, we first derive a tractable approximate

on the system sum-rate; then conduct the optimization over the approximate sum-rate.

3.1 Achievable sum-rate analysis

In this subsection, we derive an approximate probability density function (PDF) for the SINR following

the framework presented in [19]. Then an approximation of the achievable sum-rate for the pilot-aided

multi-user massive MIMO uplink is obtained.

By using the matrix inversion identity repetitively, we can rewrite the received SINR for the kth UT

given by (11) as

ρk =

{[

(

Ĝ†K−1
w Ĝ+ IK

)−1
]

kk

}−1

− 1. (16)

Define Ḡ ,M
1

2K
− 1

2

w Ĝ. Thus the SINR in (16) can be rewritten as

ρk =

{[

(

1

M
Ḡ†Ḡ+ IK

)−1
]

kk

}−1

− 1. (17)

The covariance matrix of kth column of Ḡ can be calculated to be

V̄k =MK−1
w

Kĝk

=M

[

K
∑

l=1

(

(1 + 2ptTtβl)βl

(1 + ptTtβl)
2 Vl −

ptTtβ
2
l

(1 + ptTtβl)
2 IM

)

+
1

pu
IM

]−1
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×
[

p2tT
2
t β

3
k

(1 + ptTtβk)
2Vk +

ptTtβ
2
k

(1 + ptTtβk)
2 IM

]

=Mdiag

{[

1

pu
+

K
∑

l=1

(1 + 2ptTtβl) βlvl1 − ptTtβ
2
l

(1 + ptTtβl)
2

]−1
p2tT

2
t β

3
kvk1 + ptTtβ

2
k

(1 + ptTtβk)
2 ,

. . . ,

[

1

pu
+

K
∑

l=1

(1 + 2ptTtβl)βlvlK − ptTtβ
2
l

(1 + ptTtβl)
2

]−1
p2tT

2
t β

3
kvkK + ptTtβ

2
k

(1 + ptTtβk)
2

}

. (18)

The kth column of Ḡ can be represented

ḡk = V̄
1

2

k fk, (19)

where f is an M × 1 random vector whose entries are i.i.d. CN (0, 1).

Following the work in [19], we can approximate ρk by a Gamma distribution with a shape parameter

αk and a scale parameter ζk. To have the first two moments of ρk match with the corresponding moments

of the Gamma distribution, the parametere values can be calculated via the following procedures.

Define T (z) recursively as

T (z) ,

[

M
∑

i=1

Ṽi(−k)

1 + tr(Ṽi(−k)T (z))
− zIK−1

]−1

, (20)

where Ṽi
∆
= 1

M
· diag{[V̄1]ii, . . . , [V̄K ]ii} and Ṽi(−k) is Ṽi with the kth column removed. Let µγ ,

tr (T (−1))/(K − 1) and σ2
γ , tr(T ′(−1))/(K − 1), where T ′(z) denotes the first derivative of T (z). It

can be solved numerically by

T ′ (z) =

[

M
∑

i=1

Ṽi(−k)

1 + tr(Ṽi(−k)T (z))
− zIK−1

]−2

. (21)

The shape parameter and the scale parameter of the Gamma distribution approximation are

αk =
[M −K + 1 + (K − 1)µγ,c]

2

M −K + 1 + (K − 1)σ2
γ,c

, (22)

and

ζk =
M −K + 1 + (K − 1)σ2

γ,c

M −K + 1 + (K − 1)µγ,c

1

(1 + ptTtβk)
2





1

M

M
∑

i=1

p2tT
2
t β

3
kvki + ptTtβ

2
k

1
pu

+
∑K

l=1
(1+2ptTtβl)βlvli−ptTtβ

2

l

(1+ptTtβl)
2



 . (23)

With this approximation on the distribution of ρk, the following approximate result on the system

achievable rate is obtained from (12):

Rk =

(

1− Tt
T

)

E {log2 (ρk + 1)}

(a)

6

(

1− Tt
T

)

log2 (E{ρk}+ 1)

≈
(

1− Tt
T

)

log2 (αkζk + 1) , (24)

where (a) is obtained by using Jensen’s inequality E{log2(ρk + 1)} 6 log2(E{ρk}+ 1) [20, 21]. In accor-

dance with [2, 3, 22], we assume that the number of terminals K remains fixed while the number of BS

antennas M grows without bound. In this case, following the deterministic equivalence analysis of the

SINR [6], the right-hand-side of (a) is also a tight approximation of Rk and represents its asymptotic

behavior for large M . From (24), we obtain an asymptotic approximation of achievable rate of the kth

UT as stated in the following proposition.
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Proposition 1. When the number of terminals K remains fixed and the number of BS antennas M

grows without bound, i.e., M → ∞, the achievable rate for the kth UT can be approximated by

R̄k,approx =

(

1− Tt
T

)

log2





1

(1 + ptTtβk)
2

M
∑

i=1

p2tT
2
t β

3
kvki + ptTtβ

2
k

1
pu

+
∑K

l=1
(1+2ptTtβl)βlvli−ptTtβ

2

l

(1+ptTtβl)
2

+ 1



 . (25)

An approximation on the achievable sum-rate R̄sum,approx is thus given by

R̄sum,approx =

K
∑

k=1

R̄k,approx

=

(

1− Tt
T

) K
∑

k=1

log2





1

(1 + ptTtβk)
2

M
∑

i=1

p2tT
2
t β

3
kvki + ptTtβ

2
k

1
pu

+
∑K

l=1
(1+2ptTtβl)βlvli−ptTtβ

2

l

(1+ptTtβl)
2

+ 1



 . (26)

Proof. Let γ = (K − 1) /M . From (22) and (23),

αkζk =(1− γ + γµγ,c)
1

(1 + ptTtβk)
2

M
∑

i=1

p2tT
2
t β

3
kvki + ptTtβ

2
k

1
pu

+
∑K

l=1
(1+2ptTtβl)βlvli−ptTtβ

2

l

(1+ptTtβl)
2

. (27)

In [19], it has been shown that 0 < µγ < 1. Thus when K is finite and M → ∞, we have γ → 0 and

αkζk → 1

(1 + ptTtβk)
2

M
∑

i=1

p2tT
2
t β

3
kvki + ptTtβ

2
k

1
pu

+
∑K

l=1
(1+2ptTtβl)βlvli−ptTtβ

2

l

(1+ptTtβl)
2

. (28)

This completes the proof.

Compared with the sum-rate expression in Subsection 2.3, Proposition 1 provides a tractable closed-

form asymptotic approximation for the achievable sum-rate. In addition, Proposition 1 indicates that

the derived asymptotic approximation of the achievable sum-rate avoids the computations of µγ and σ2
γ ,

which have to be solved numerically and need tens of iterations. This reduces the computation complexity

in the sum-rate calculations.

3.2 Training length and training power optimization

In this subsection, we solve the optimization of the training length Tt and the training power pt. For the

tractability of the problem and to find low-complexity designs, the asymptotic sum-rate approximation

derived in Proposition 1 replaces the exact average sum-rate as the objective function for the optimization

problem in (15). Moreover, the problem is a joint optimization with respect to pt and Tt, and is therefore

difficult to tackle. We decompose the problem into two subproblems: (1) for a given pt, find the optimal

Tt that maximizes the achievable sum-rate, and (2) for a given Tt, find pt that maximizes the achievable

sum-rate. The two subproblems are solved in Subsections 3.2.1 and 3.2.2, respectively. Then the overall

optimization algorithm is provided in Subsection 3.2.3 via alternative optimization.

3.2.1 Pilot length optimization

For an arbitrarily given data transmission power pu and pilot transmission power pt, the pilot length

optimization problem can be formulated as

maximize
Tt

R̄sum,approx, (29)

s.t. K 6 Tt < T,

Tt ∈ N.

Since Tt takes discrete integer value with finite possibilities, it is obvious that exhaustive search can be

used to find the optimal solution. But such method is computationally expensive. For a low computation

solution we prove the following proposition.
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Proposition 2. The asymptotic sum-rate approximation R̄sum,approx is a concave function of Tt for

Tt ∈ R, with R being the real number set.

Proof. Define that

aki , p2tT
2
t β

3
kvki + ptTtβ

2
k, (30)

bk , (1 + ptTtβk)
2
, (31)

cki ,
1

pu
+

K
∑

k=1

(1 + 2ptTtβk)βkvki − ptTtβ
2
k

(1 + ptTtβk)
2 . (32)

Thus,

R̄k,approx =

(

1− Tt
T

)

log2

(

M
∑

i=1

aki
bkcki

+ 1

)

. (33)

The second derivative of R̄k,approx over Tt is given by

R̄′′
k,approx =

[(1− Tt

T
)
∑M

i=1 (
aki

bkcki

)
′′ − 2

T

∑M

i=1(
aki

bkcki

)′](
∑M

i=1
aki

bkcki

+ 1)− (1− Tt

T
)[
∑M

i=1 (
aki

bkcki

)
′
]
2

(ln 2)(
∑M

i=1
aki

bkcki

+ 1)
2 .

After tedious but straightforward calculations, we can show that R̄′′
k,approx < 0. Therefore, R̄k,approx is

a concave function in K 6 Tt < T . Finally, using the fact that the summation of concave functions is

concave, we conclude the proof.

Since the objective function is concave, its optimization can be solved via one-dimensional linear search,

such as the golden section search [23]. The ceiling and floor functions of T ∗
t are written as ⌈T ∗

t ⌉ and ⌊T ∗
t ⌋,

respectively. As the optimal value for the training length must be an integer, we first find the real value

T ∗
t that maximizes R̄sum,approx, then compare the sum-rates obtained by using ⌊T ∗

t ⌋ and ⌈T ∗
t ⌉. The

optimal training length is thus the one results in the larger sum-rate.

3.2.2 Data transmission power optimization

For an arbitrarily given training length Tt, the data transmission power optimization problem can be

formulated as

maximize
pt

R̄sum,approx, s.t. 0 6 pt 6
P
Tt
. (34)

The following proposition is proved.

Proposition 3. The asymptotic sum-rate approximation R̄sum,approx is a concave function of pt.

Proof. With the definitions in (30)–(32), the asymptotic sum-rate approximation is given in (33). Since

the coefficient 1− Tt/T is independent of pt and the logarithm is also a concave function, it is sufficient

to show that
∑M

i=1
aki

bkcki

is concave in pt for 0 6 pt 6 P/Tt.

The second derivative of R̄k,approx over pt is given by

M
∑

i=1

(

aki
bkcki

)′′
= −Ttβ2

kb
−2
k bk

M
∑

i=1

dki
c2ki

+ Ttβ
2
kb

−1
k

M
∑

i=1

d′ki − 2dkic
′
ki/cki

c2ki
,

where

dki , [ptTtβk (2vki − 1) + 1] cki + pt (ptTtβkvki + 1) (1 + ptTtβk) c
′
ki.

After tedious but straightforward calculations, we can show that
∑M

i=1 (
aki

bkcki

)
′′
6 0. Therefore,

∑M

i=1
aki

bkcki

is a concave function of pt for 0 6 pt 6 P/Tt. This concludes the proof.

With the result in Proposition 3, the optimization in (34) can be solved via one-dimensional linear

search, such as the golden section search [23].
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3.2.3 Overall optimization algorithm

The overall joint training length and training power optimization problem with respect to maximizing

the asymptotic approximate average sum-rate can be expressed as follows:

maximize
Tt,pt

R̄sum,approx, s.t. 0 6 pt 6
P
Tt

, K 6 Tt < T, Tt ∈ N. (35)

We solve this problem by iteratively and alternatively optimizing Tt and pt, as explained in Subsections

3.2.1 and 3.2.2. The propose algorithm in provided in Algorithm 1.

Algorithm 1 Iterative optimization algorithm for (35).

1: Initialization: T
(0)
t = K, p

(0)
u = p

(0)
t = P/T . Calculate R̄

(0)
sum,approx based on (26). Let i = 1.

2: Given p
(i−1)
u and p

(i−1)
t , find the optimal real value Tt

∗(i) via one-dimensional linear search.

3: Update Tt
(i) ← ⌊Tt

∗(i)⌋ or Tt
(i) ← ⌈Tt

∗(i)⌉, depending on which results in the large approximate sum-rate.

4: Given Tt
(i), find the optimal p

(i)
t via one-dimensional linear search. Calculate p

(i)
u using (14).

5: Given p
(i)
u , p

(i)
t and T

(i)
t , calculate R̄

(i)
sum,approx based on (26).

6: If |R̄
(i)
sum,approx − R̄

(i−1)
sum,approx| is less than the tolerance ǫ, output T

(i)
t and p

(i)
t as the solution. Otherwise, i = i + 1

and go to Step 2.

3.3 Training length design with equal power allocation

Depending on the applications, some communication systems may not have the luxury of adjusting

the powers for the training and data transmission phases [11]. Thus in this section, we consider fixed

transmission power where the training power pt and the data transmission power pu are the same, and

study the optimization of the training length. Define that ρ , P/T . Since P is the total transmit energy

spent in a coherence interval T and the noise variance is 1, ρ has the interpretation of average transmit

signal-to-noise-ratio (SNR) and is therefore dimensionless. For this simpler case, closed-form solutions

on the training length for both high SNR and low SNR scenarios are obtained. The results are stated in

the following proposition.

Proposition 4. Assume that pt = pu = ρ. If ρ ≫ 1, the optimal length of the training interval is

Tt = K. If ρ≪ 1, the optimal length of the training interval is Tt = T/2.

Proof. To facilitate the proof, we denote the length of the data transmission phase as Tu. Thus Tu ,

T − Tt. Then rewriting R̄k,approx yields

R̄k,approx =
Tu
T

log2





1

[1 + ρ (T − Tu)βk]
2

M
∑

i=1

ρ2(T − Tu)
2
β3
kvki + ρ (T − Tu)β

2
k

1
ρ
+
∑K

l=1
[1+2ρ(T−Tu)βl]βlvli−ρ(T−Tu)β2

l

[1+ρ(T−Tu)βkl]
2

+ 1



 . (36)

Next we show that if ρ ≫ 1, R̄k,approx is an increasing function of Tu by proving that R̄′
k,approx ,

dR̄k,approx/dTu > 0. Under the aforementioned SNR condition, R̄k,approx can be approximated as

R̄k,approx ≈ Tu
T

log2

[

M
∑

i=1

ρ (T − Tu)βkvki

T − Tu −K + 2
∑K

k=1 vki
+ 1

]

. (37)

Differentiating R̄k,approx in (37) over Tu yields

R̄′
k,approx ≈ 1

T
log2

[

ρ
M
∑

i=1

(T − Tu)βkvki

T − Tu −K + 2
∑K

k=1 vki
+ 1

]

− lk
T
, (38)

where

lk ,
log2 (e)Tu
T − Tu

(

M
∑

i=1

vki

T − Tu −K + 2
∑K

k=1 vki

)−1
M
∑

i=1

(2
∑K

k=1 vki −K)vki

(T − Tu −K + 2
∑K

k=1 vki)
2 . (39)



Xue Y, et al. Sci China Inf Sci April 2017 Vol. 60 042302:10

We have R̄′
k,approx > 0 because

ρ >
2lk − 1

(T − Tu)βk

(

M
∑

i=1

vki

T − Tu −K + 2
∑K

k=1 vki

)−1

.

This shows that R̄k,approx is an increasing function of Tu. Thus R̄sum,approx =
∑K

k=1 R̄k,approx is also an

increasing function of Tu. To maximize R̄sum,approx, Tu takes its maximum value, and equivalently Tt
takes its smallest value which is K.

Next, we show that if ρ ≪ 1, Tu = T/2 is the optimal solution. Under this low SNR condition,

expanding the sum-rate (36) in a Taylor series for ρ, we have

R̄k,approx ≈ R̄k,approx

∣

∣

ρ=0
+

dR̄k,approx

dρ

∣

∣

∣

∣

ρ=0

ρ+
1

2

d2R̄k,approx

dρ2

∣

∣

∣

∣

ρ=0

ρ2 =
Tu(T − Tu)

T
2log2 (e)Mβ2

k. (40)

Notice that Tu only appears in the coefficient in front of the log-function. It is straightforward to see

that the optimal solution for Tu is T/2. This completes the proof.

Proposition 4 provides useful insights for the high SNR and low SNR scenarios. At high SNR, the

smallest training length, K, is enough to have good channel estimation. On the other hand, when the

SNR is low, longer training period is needed to improve the channel estimation quality for high spectral

efficiency in data transmission. In this case, half of the coherence interval should be devoted to training.

4 Numerical results

In this section, the achievable sum-rate analysis and the resource allocation solution presented in Section 3

are validated through Monte-Carlo simulations. We consider a hexagonal cell with a radius of 1000 m and

assume a distance-based path-loss model βk = zk (rk/rh)
ν , where zk is a log-normal random variable with

standard deviation 8 dB, rk is the distance between the kth UT and the BS, and ν = 4 is the path-loss

exponent. We distribute K = 5 UTs uniformly in the cell and assume that the BS-UT distance is no

smaller than rh = 100 m. The typical outdoor wireless propagation environment is considered, where the

channel PAS can be modeled as the truncated Laplacian distribution [15, 24]. The channel PAS is

Sk (θ) =
1√

2σk(1− exp(−
√
2π/σk))

· exp
(

−
√
2|θ − θk|
σk

)

, for θ ∈ [θk − π, θk + π] , (41)

where σk and θk represent the channel angular spread (AS) and the mean angle of arrival (AoA) of the

kth UT channel, respectively. We assume that channel ASs are the same for all UTs, so that σk = σ.

The channel covariance matrices of the UTs are generated according to the model given by (2). We set

σ = 0.175 and the mean AoAs of the UTs from UT 1 to UT 5 are [−0.7812,−0.4639, 0.0982, 0.6952, 0.9737]

in radian.

We first validate the tightness of the asymptotic approximate achievable rate and the use of Gamma

distribution to approximate the SINR. Figure 1 plots (1) the simulated achievable rate of each user

in (12), (2) the analytical approximate achievable rate of each user in (24) where Gamma distribution

approximation is used, and (3) the asymptotic closed-form achievable rate in (25). We can see that the

derived asymptotic closed-form approximation tightly matches the simulated achievable sum-rate, even

when M is as small as 40. The approximation gets tighter as M increases. The figure also validates the

use of Gamma distribution to approximate the received SINR in the achievable rate calculation.

To show the advantage of the proposed optimal power allocation, in Figure 2, the cumulative distri-

bution of the sum-rate obtained from 2000 snapshots of large-scale fading are shown for equal power

allocation and the proposed optimal power allocation, where the training length is set to be Tt = K. As

expected, the optimal power allocation improves the sum-rate by about 3 bits/s/Hz. The corresponding

ratio of the optimal training power to the optimal data power for M = 50 and M = 100 is shown in
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Figure 3. We can see that at low SNR, we spend more power during the training phase, and vice versa

at high SNR.

In Figure 4, the system sum-rates are shown for the following cases: (1) the optimal solution of

problem (35), (2) the optimal pilot length in (29) and equal power allocation, and (3) the pilot length

is K and equal power allocation. We can see that the joint optimization of training length and training

power can achieve considerably higher sum-rate than the uplink transmission with equal power and

Tt = K, and improves the sum-rate by about 4 bits/s/Hz.

Figure 5 displays the optimal training length that maximizes the asymptotic approximate sum-rate

for different lengths of coherence interval. The training power and the data transmission power are set

to be the same, i.e., pt = pu = ρ. The number of BS antennas is set as 128. We see that as the SNR ρ

decreases, the optimal training length increases. When the SNR is set to be 20 dB, Tt = K = 5 is the

optimal training length as the coherence interval changes from 5 to 178.

5 Conclusion

This paper addressed the optimal resource allocation problem for the pilot-aided single-cell multi-user

massive MIMO system uplink to jointly select the training length and the training power for given coher-

ence interval and total energy budget during the coherence interval. Under angular domain representation

of the channels, a tight asymptotic achievable sum-rate was derived in closed-form. Then the separate

training interval and training power optimization problems that maximize the derived sum-rate were

shown to be concave, based on which a low-complexity alternative optimization algorithm for the joint

design was proposed. For the special case that the training power and data transmission power are

the same, the optimal training lengths were show to be the same as the UT number for asymptotically

high SNR and equals half the coherence interval for asymptotically low SNR. Numerical results shown

appreciable benefits of the proposed optimal resource allocation.

Acknowledgements This work was supported by National High-tech R&D Program of China (863) (Grant

Nos. 2015AA011305, 2014AA01A704), National Natural Science Foundation of China (Grant Nos. 61320106003,

61521061), National Science and Technology Major Project of China (Grant No. 2015ZX03001035-002), Program

for Jiangsu Innovation Team, Natural Science Foundation through the Jiangsu Higher Education Institutions of

China (Grant No. 15KJB510025), and Natural Science Foundation Program through Jiangsu Province of China

(Grant No. BK20150852). We would like to sincerely thank Dr. JING Yindi at the Department of Electrical and

Computer Engineering of the University of Alberta for helpful discussion and suggestion.

Conflict of interest The authors declare that they have no conflict of interest.

References

1 You X H, Pan Z W, Gao X Q, et al. The 5G mobile communication: the development trends and its emerging key

techniques (in Chinese). Sci Sin Inform, 2014, 44: 551–563

2 Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel

Commun, 2010, 9: 3590–3600

3 Ngo H Q, Marzetta T L, Larsson E G. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE

Trans Commun, 2013, 61: 1436–1449

4 Ashikhmin A, Marzetta T L. Pilot contamination precoding in multi-cell large scale antenna systems. In: Proceedings

of IEEE International Symposium on Information Theory, Cambridge, 2012. 1137–1141

5 Gopalakrishnan B, Jindal N. An analysis of pilot contamination on multi-user MIMO cellular systems with many

antennas. In: Proceedings of IEEE 12th International Workshop on Signal Processing Advances in Wireless Commu-

nications, San Francisco, 2011. 381–385

6 Hoydis J, Brink S, Debbah M. Massive MIMO in the UL/DL of cellular networks: how many antennas do we need?

IEEE J Sel Areas Commun, 2013, 31: 160–171

7 Tse D, Viswanath P. Fundamentals of Wireless Communication. London: Cambridge University Press, 2009

8 Yin H F, Gesbert D, Filippou M, et al. A coordinated approach to channel estimation in large-scale multiple-antenna

systems. IEEE J Sel Areas Commun, 2013, 31: 264–273



Xue Y, et al. Sci China Inf Sci April 2017 Vol. 60 042302:13

9 Adhikary A, Nam J, Ahn J Y, et al. Joint spatial division and multiplexing-the large-scale array regime. IEEE Trans

Inf Theory, 2013, 59: 6441–6463

10 Sun C, Gao X Q, Jin S, et al. Beam division multiple access transmission for massive MIMO communications. IEEE

Trans Commun, 2015, 63: 2170–2184

11 Hassibi B, Hochwald B M. How much training is needed in multiple-antenna wireless links? IEEE Trans Inf Theory,

2003, 49: 951–963

12 Ngo H Q, Marzetta T L, Larsson E G. Massive MIMO with optimal power and training duration allocation. IEEE

Wirel Commun Lett, 2014, 3: 605–608

13 Guo K F, Guo Y, Fodor G, et al. Uplink power control with MMSE receiver in multi-cell MU-Massive-MIMO systems.

In: Proceedings of IEEE International Conference on Communications, Sydney, 2014. 5184–5190

14 You L, Gao X Q, Xia X G, et al. Pilot reuse for massive MIMO transmission over spatially correlated Rayleigh fading

channels. IEEE Trans Wirel Commun, 2015, 14: 3352–3366

15 Pedersen K I, Mogensen P E, Fleury B H. A stochastic model of the temporal and azimuthal dispersion seen at the

base station in outdoor propagation environments. IEEE Trans Wirel Commun, 2000, 49: 437–447

16 Biguesh M, Gershman A B. Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal

training signals. IEEE Trans Signal Process, 2006, 54: 884–893

17 Zhang X L, Matthaiou M, Coldrey M, et al. Impact of residual transmit RF impairments on training-based MIMO

systems. IEEE Trans Commun, 2015, 63: 2899–2911

18 Moon T K, Stirling W C. Mathematical Methods and Algorithms for Signal Processing. Upper Saddle River: Prentice

Hall, 2000

19 Li P, Paul D, Narasimhan R, et al. On the distribution of SINR for the MMSE MIMO receiver and performance

analysis. IEEE Trans Inf Theory, 2006, 52: 271–286

20 Boyd S, Vandenberghe L. Convex Optimization. London: Cambridge University Press, 2004

21 Gao F F, Zhang R, Liang Y C, et al. Design of learning based MIMO cognitive radio systems. IEEE Trans Veh

Technol, 2010, 59: 1707–1720

22 Ngo H Q, Marzetta T L, Larsson E G. Analysis of the pilot contamination effect in very large multicell multiuser

MIMO systems for physical channel models. In: Proceedings of IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Prague, 2011. 3464–3467

23 Chong E K P, Zak S H. An Introduction to Optimization. 3rd ed. Hoboken: Wiley-Interscience, 2008

24 Cho Y S, Kim J, Yang W Y, et al. MIMO-OFDM Wireless Communications with MATLAB. Singapore: John Wiley

& Sons (Asia) Pte Ltd., 2010


	Introduction
	System model and problem formulation
	Channel model
	Pilot-assisted uplink transmission scheme
	Uplink training phase
	Uplink data transmission phase

	Problem formulation

	Achievable sum-rate analysis and resource allocation
	Achievable sum-rate analysis
	Training length and training power optimization
	Pilot length optimization
	Data transmission power optimization
	Overall optimization algorithm

	Training length design with equal power allocation

	Numerical results
	Conclusion

