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Abstract We propose an improved Unscented Particle Filter (UPF) algorithm for the Celestial Navigation

System/Redshift (CNS/Redshift) integrated navigation system. The algorithm adopts the iterated spherical

simplex unscented transformation rather than the traditional unscented transformation. The navigation per-

formance of the proposed algorithm is assessed by several indexes. Simulation results show that the proposed

UPF algorithm has advantages over the traditional UPF algorithm in terms of computation burden, navigation

accuracy, and numerical stability.
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1 Introduction

With increasing aerospace technology and human interest in the universe, deep space exploration is

an active aerospace field. Deep space exploration is becoming a new hot spot in international space

activities. The basic generic technologies of deep space exploration include deep space navigation, deep

space communication, power propulsion, etc. The autonomous navigation problem is one of the most

basic technologies and of great importance.

At present, the main navigation methods include ground measurement and control, satellite navigation,

inertial navigation and celestial navigation. In general, a deep space probe relies on radio measurements

and control by a ground station for navigation, but a ground station is vulnerable during wartime,

restricted by geographical conditions, low angle measurement accuracy, and prolonged time delays. All of

these problems threaten the safety and reliability of a deep space probe. Conventional navigation methods

have limitations that require the introduction of spacecraft orbital dynamics, which lead to a variety of

complex computations. A Celestial Navigation System (CNS) can realize autonomous navigation by

celestial body sensors, i.e., without any other hardware equipment [1–3]; these sensors can only obtain

position and angle information between celestial bodies or between a celestial body and the probe and
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cannot obtain distance and velocity information. Furthermore, limited to measurement accuracy, a CNS

cannot achieve high navigation accuracy. Conversely, Redshift can calculate the relative velocity between

a probe and a permanent position, but it cannot obtain all state estimations; as a result, it cannot be

separately applied to autonomous navigation. The CNS/Redshift integrated navigation system proposed

in this paper utilizes filter information fusion technology, merging CNS angle information, and Redshift

velocity information to effectively improve the precision of a navigation system. moreover it implements

probe accurate positioning in the whole segment.

Filtering methods play a significant role in navigation calculations. They can compensate for some

existing hardware problems to some extent, such as fixed and random errors. For nonlinear problems, the

most conventional solution to this problem is the extended Kalman filter (EKF) [4], which is a first-order

linear truncation to the Taylor series expansion of a nonlinear function that ignores the remaining high-

order items; thus, applying Kalman filter to a nonlinear system converts a nonlinear problem to a linear

one. However this has two defects [5]. First, when the system has strong nonlinearity, filter performance

is poor, which may lead to divergence, and second, it requires calculating the Jacobian matrix [6]. To

address these problems, the Unscented Kalman filter (UKF) [7] has been proposed, which is based on

the Unscented Transformation (UT) [8, 9]. This filter produces a more accurate result and is easier to

implement compared with the EKF. Nevertheless, its limitations appear when it is applied to a general

non-Gaussian distribution. Particle filters (PFs) [10,11] are known as a sequential Monte-Carlo methods,

they utilize a large number of random samples to represent the probability density function(pdf) of a

system and have greater ability to handle nonlinear/non-Gaussian systems. While particle degeneracy is

a common problem in PFs, a modification that combines the PF the UKF algorithms is the Unscented

Particle filter (UPF) [12], which- has been proposed to overcome this drawback. However, its performance

has been proved satisfactory at the price of a significant increase in the computational cost. Furthermore,

the UPF algorithm is a third-order approximation, which has high computational burden. In this paper,

we propose the improved UPF algorithm. The conventional UPF is based on the Unscented Transforma-

tion (UT)- to handle nonlinear transformations of the mean and covariance. Since the number of Sigma

points selected in the UT determines the computational burden, decreasing the required points becomes

crucial. The Sphere Simplex unscented transform (SSUT) [13] was proposed by Julier in 2003. It uses

n + 2 hypersphere distribution Sigma points, rather than 2n + 1 symmetric distribution Sigma points

in the conventional UT, and can greatly reduce the computational burden on the premise of guaranteed

navigation precision. In terms of filtering performance, adaptive methods have been adopted [14–18] for

improvement, such as [19] achieved with an adaptive neural network. All the filter mentioned above are

single iterate approximations. Disregarding higher-order terms implies the introduction of a truncated

error. Iterative methods incorporate the latest measurements to outperform the estimation. The iterated

UKF (IUKF) achieves a maximum a posteriori estimate when it is applied as the generating proposal

distribution in the particle filter framework; in particulr, the approximated posterior density function

exhibits more precisely. We combine the SSUT and IUKF to obtain the Iterative Spherical Simplex Un-

scented Particle filter (ISSUPF) algorithm, which can achieve better navigation performance with lower

computational burden.

The remainder of this paper is arranged as follows. In Section 2, we introduce the orbit dynamics

model of probe motion. In Section 3, the CNS/Redshift integrated navigation system is proposed. Next

in Section 4, we describe the ISSUPF in detail. Section 5 describes our simulation. Then Section 6, we

give some system assessments. Finally, in Section 7, conclusion is drawn.

2 Orbit dynamics model

The Mars probe orbit dynamic model can be considered as a circular restricted four segments model,

which must consider the impact of the center of gravity of the sun, Mars, and Earth on the probe and the

gravitational force of other celestial bodies as perturbing factors. Assuming that Mars and Earth orbit

the sun in uniform circular motion, the radius is the average distance between the sun and Mars rsm and



Fu K, et al. Sci China Inf Sci April 2017 Vol. 60 042201:3

Asteroid1

Asteroid2

Asteroid3

Mars
Probe

s1

s2

s3

r

α1

α2

α3

Figure 1 Measurement model.

an astronomical unit (AU); the motion can be expressed as follows [20]:

r̈ps = −µs

rps

r3ps

− µm

[

rpm

r3pm

− rsm

r3sm

]

− µe

[

rpe

r3pe

− rse

r3se

]

, (1)

where µs, µm, and µe refer to heliocentric, center of Mars and the geocentric gravitation constant,

respectively; rps is the vector form of heliocentric to the probe, rpm is the vector from Mars to the probe,

rsm is the vector from center of Mars to heliocentric, rpe is the vector from Earth to the probe, and rse

is the vector from geocentric to heliocentric.

3 CNS/Redshift integrated navigation system

In this section, we review the CNS and Redshift navigation systems. Then we propose a CNS/Redshift

navigation system.

3.1 Celestial navigation system

In a deep space mission to Mars, the probe will enter Low Earth Orbit (LEO) after launch; after that, it

enters a transfer orbit between Earth and Mars and then flies to Mars. The probe in transfer orbit has

not been out of the Earth’s gravity and is mainly affected by the gravity of Mars, Earth, and the sun;

other celestial bodies have little impact on it, so the problem can be regarded as circular restricted four

segments model as discussed in Section 2. The main obstacle of automation celestial navigation is the

problems of the nonlinearity of the system and the non-Gaussian distribution of noise. We use a four

segments orbit dynamic model as given by (1), choose state vector X = [x, y, z, vx, xy, vz]
T, and chose

state model noise W = [wx, wy, wz , wvx , wvy , wvz ]
T. Then, the state equation can be written as

Ẋ(t) = f(X, t) +W (t). (2)

In an autonomous navigation system, we usually use starlight angular distance as the measurement value.

The measurement model is shown in Figure 1.

Here, α1, α2, and α3 denote three starlight angular measurements, which indicate the angles between

the vector from the probe to Mars and the vector from the probe to asteroids. According to the geometrical

relationship in Figure 1, we obtain the following expressions for the starlight angular distance:

α1 = arccos
(r · s1

r

)

+ vα1
, (3)

α2 = arccos
(r · s2

r

)

+ vα2
, (4)

α3 = arccos
(r · s3

r

)

+ vα3
, (5)

where vα1
, vα2

, and vα3
represent noise measurements.
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Figure 2 The operating principle of Redshift navigation.

3.2 Redshift navigation system

When a wave source moves toward or away from the receiver, the frequency of the wave measured by the

receiver becomes bigger or smaller, which is called the Doppler effect. On the basis of the Doppler effect,

the probe Redshift autonomous navigation method utilizes the light signal of celestial bodies in the solar

system as a navigation information source and combines this information with ephemeris information

of celestial bodies and probe attitude information. According to the Redshift effect measurement, we

obtain the velocity of the probe in the inertial coordinate system, and by integration, we further obtain

the position information of the probe [2,21]. In the probe automation navigation system, we select three

asteroids as light sources. When relative motion happens between the probe and a light source, the

frequency measured on the probe will have some change compared with that measured on the Earth.

The relationship between the two frequencies and speeds can be described as follows [22]:

fm = f0

√

1− |v|2/c2
1 + |v| cos θ/c , (6)

where fm is the frequency measured on the probe, f0 is the frequency measured on Earth, v represents

the velocity vector of the probe relative to the light source, θ is the angle between the light source vector

and the velocity vector, and c is the velocity of light in a vacuum. The operating principle of Redshift

navigation [23] is shown in Figure 2.

We use three non-collinear asteroids as light sources. Another formation of (6) can be described by

vr =
fo
fm

√

c2 − |vp|2 − c. (7)

Together with Figure 2, Eq. (7) becomes (8);















vr1 = f01
fm1

√

c2 − |vp|2 − c,

vr2 = f02
fm2

√

c2 − |vp|2 − c,

vr3 = f03
fm3

√

c2 − |vp|2 − c.

(8)

The geometric relation can be described by (9):















vr1 = (vp − v1) · u1,

vr2 = (vp − v2) · u2,

vr3 = (vp − v3) · u3,

(9)

where vr1, vr2, and vr3 denote the velocity vectors of the navigation celestial bodies in the inertial frame,

and v1, v2, and v3 are the unit vectors of the probe position in the inertial frame. From above, we obtain
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Figure 3 CNS/Redshift integrated navigation system.

the state estimation equations of the position and velocity as follows:

{

vp = f(v1,v2,v3,u1,u2,u3, vr1, vr2, vr3),

rp =
∫

vpdt.
(10)

By solving these equations, we obtain information about vp and rp.

3.3 Integration navigation system

The CNS/Redshift integrated navigation system utilizes information fusion methods fusing celestial in-

formation and Redshift information, reducing the complexity of equipment, greatly improving navigation

accuracy, and realizing accurate positioning in the whole segment. Its basic principle diagram is depicted

in Figure 3.

In this integrated navigation system, we use (2) as the state equation. Furthermore, we assume that

Z = [α1, α2, α3, vr1, vr2, vr3]; in this case, the measurement model can be expressed as

Z(t) = H(X(t), t) + V (t), (11)

where V is the noise measurement.

4 Iterative spherical simplex unscented particle filter

4.1 Traditional unscented particle filter

The traditional UPF is consists of importance sampling and resampling. In importance sampling, the

UPF adopts the UT to obtain the proposal distribution of each particle. The basic UKF algorithm can

be described as follows.

1. Initialize:

x̂0 = E[x0], P0 =
[

(x0 − x̂0)(x0 − x̂0)
T
]

. (12)

2. Calculate Sigma points:

χk−1 =
[

x̂k−1 x̂k−1 + η
√

Pk−1 x̂k−1 − η
√

Pk−1

]

. (13)

3. Time update:

χi,k|k−1 = f(χk−1), (14)
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x̂−
k =

2L
∑

i=0

Wm
i χi,k|k−1, (15)

P−
k =

2L
∑

i=0

Wm
i [χi,k|k−1 − x̂−

i ][χi,k|k−1 − x̂−
i ]

T +Qk. (16)

4. Measurement update:

γi,k|k−1 = h(χi,k|k−1), (17)

ŷ−k =

2L
∑

i=0

Wm
i γi,k|k−1, (18)

Pykyk
=

2L
∑

i=0

W c
i (γi,k|k−1 − ŷ−k )(γi,k|k−1 − ŷ−k )

T +Rk, (19)

Pxkyk
=

2L
∑

i=0

W c
i (χi,k|k−1 − x̂−

k )(γi,k|k−1 − ŷ−k )
T, (20)

κk = Pxkyk
P−1
ykyk

, (21)

x̂k = x̂−
k + κk(yk − ŷ−k ), (22)

Pk = P−
k − κkPykyk

κT
k . (23)

The basic UPF algorithm can be described as follows.

1. Initialization, t = 0:

For i = 1, . . . , N , draw particle xi
0 ∼ p(x0) and set t = 1.

2. Importance sampling step:

For i = 1, . . . , N , use UKF to generate the importance distribution N(xi
t, P

i
t ) from particle xi

t.

Sample xi
t ∼ N(xi

t, P
i
t ).

3. Importance weight step:

For i = 1, . . . , N , evaluate the importance weights ω̃i
t =

p(ytx
i
t)p(x

i
t|x

i
t−1

)

N(xi
t,P

i
t )

;

For i = 1, . . . , N , normalize the importance weights ωi
t =

ω̃i
t∑

N
j=1

ω̃i
t

.

4. Resampling step:

Resample N particles x̃i
1:t from xi

1:t according to the normalized importance weights. Set ωi
t =

1
N
.

4.2 Improved unscented particle filter

The traditional UPF algorithm uses UKF to obtain the importance distribution and combines the latest

observations; it is a third-order approximation of the state. Its computational burden largely depend on

the number of Sigma points. The standred UT, which adopts Sigma symmetric sampling, requires 2n+1

Sigma points. The computational burden increases over the vector dimension. The ISSUPF uses the

Iterative Spherical Simplex Unscented Kalman Filter (ISSUKF) to obtain the importance distribution

and uses 2n+1 Sigma points that are noncentrosymmetrical, which can greatly reduce the computational

burden. In ISSUKF, sampling spherical simplex points are required. We assume that χj
i is the ith Sigma

point in the set for the jth dimensional space, without loss of generality, and that x = 0 and Pxx = I.

We first consider a single dimension, where the three points are χ1
0 = [0], χ1

1 = [−x1], and χ1
2 = [x2].

The corresponding weights are W0, W1 and W2, respectively. According to these conditions, we obtain

the following equations:

W0 +W1 +W2 = 1, (24)
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−W1x1 +W2x2 = 0, (25)

W1x
2
1 +W2x

2
2 = 1. (26)

Under the assumption that these simplex points are the same distance from the origin, it is very ap-

propriate to add the constraint that x1 = x2. By solving the above equations, it is easy to conclude

that W1 = W2 = (1 − W0)/2, x1 = x2 = 1/
√
W1, and W0 is a free parameter. Extending this to two

dimensions, a new point (0, s3x3) with weight W3 is introduced with scaling factor s3. Then, we obtain

the following:

W0 + 2W1 +W3 = 1, (27)

−2W1x1 +W3x3 = 0, (28)

2W1x
2
1 +W3s

2
3x

2
3 = 1. (29)

Each point is the same distance from the origin, so W1 = W3. By solving the above equations, we obtain

s3 = 2, x2
1 = 1/2W1 and x2

3 = 1/6W1. The point selection algorithm for the SSUT can be described as

follows:

1. Choose 0 < W0 < 1.

2. Choose weight sequence

Wi = (1 −W0)/(n+ 1).

3. Initialize vector sequence

χ1
0 = [0], χ1

1 =

[

− 1√
2W1

]

, χ1
2 =

[

− 1√
2W1

]

.

4. Expand vector sequence for j = 2, . . . , n according to

χ
j
i =



















































[

χ
j−1
0

0

]

, for i = 0,

[

χ
j−1
i

− 1√
j(j+1)W1

]

, for i = 1, . . . , j,

[

0j−1

j√
j(j+1)W1

]

, for i = j + 1.

(30)

This algorithm demonstrates two main issues: the weight for each Sigma point is the same and is relative

to (1 −W0)/(n + 1), all Sigma points lie on the hypersphere of radius
√
n/(1 −W0). According to the

SSUT, we obtain the ISSUKF algorithm as follows.

1. Initialize:

x̂0 = E[x0], P0 = E
[

(x0 − x̂0)(x0 − x̂0)
T
]

. (31)

2. Calculate Sigma points using (30).

3. Time update:

χi,k|k−1 = f(χk−1), (32)

x̂−
k =

L+1
∑

i=0

Wm
i χi,k|k−1, (33)

P−
k =

L+1
∑

i=0

Wm
i [χi,k|k−1 − x̂−

k ][χi,k|k−1 − x̂−
k ]

T +Qk. (34)
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4. Measurement update:

γi,k|k−1 = h(χk|k−1), (35)

ŷ−k =

L+1
∑

i=0

Wm
i γi,k|k−1, (36)

Pykyk
=

L+1
∑

i=0

W c
i (γi,k|k−1 − ŷ−k )(γi,k|k−1 − ŷ−k )

T +Rk, (37)

Pxkyk
=

L+1
∑

i=0

W c
i (χi,k|k−1 − x̂−

k )(γi,k|k−1 − ŷ−k )
T, (38)

κk = Pxkyk
P−1
ykyk

, (39)

x̂k = x̂−
k + κk(yk − ŷ−k ), (40)

Pk = P−
k − κkPykyk

κT
k . (41)

5. Iteration: Let x̂k,0 = x̂−
k , Pk,0 = p−k and x̂k,1 = x̂k, Pk,1 = Pk. Furthermore, let g = 1 and j = 2.

Then, generate new Sigma points bmχj by (30). Recalculate (33)–(41):

x̂−
k,j =

2L
∑

i=0

Wm
i χi,j , (42)

γj = h(χj), (43)

ŷ−k,j =
2L
∑

i=0

Wm
j γi,j , (44)

Pykykj =

2L
∑

i=0

W c
i [γi,j − ŷ−k,j ][γi,j − ŷ−k,j ]

T +Rk, (45)

Pxkykj =

2L
∑

i=0

W c
i [χi,j − x̂−

k,j ][γi,j − ŷ−k,j ]
T, (46)

κk,j = PxkykjP
−1
ykykj

, (47)

x̂k,j = x̂k,j + g · κk,j(yk − ŷk,j), (48)

Pk,j = Pk,j−1 − κk,jPykykjκ
−1
k,j , (49)

where the subscript j denotes the jth iterate; γi,j denotes the ith component of γj . We define ŷk,j =

h(x̂k,j), x̃k,j = x̂k,j − x̂k,j−1, and ỹk,j = yk − ŷk,j . If the inequality (50) is satisfied

x̃T
k,jP

−1
k,j−1x̃k,j + ỹTk,jR

−1
k ỹk,j < ỹTk,j−1R

−1
k ỹk,j−1, (50)

and j > N . Then, update g = η · g, j = j+1 and continue to the next iteration; otherwise, set x̂k = x̂k,j

and Pk = Pk,j , and terminate the iteration.

We adopt the ISSUKF algorithm as mentioned above rather than standard UKF to generate importance

distribution in standard UPF, then we can obtain ISSUPF algorithm.

5 Simulation

To illustrate the performance of ISSUPF, we consider the Redshift navigation system discussed in Sec-

tion 3. The initial simulation conditions are shown in Table 1.

In Figure 4, note the flightpaths of Mars, Earth and the probe, and the forecast paths of UPF, SSUPF,

IUPF, and ISSUPF, which are also shown in this figure.

From Figures 5–7, we can compare the position error of the UPF, SSUPF, IUPF, and ISSUPF in x,

y, and z directions.
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Table 1 The initial parameters

Total flight time 20332680 s

Total sampling points 338878

Sample interval time 60 s

Initial state
Position (0.7061, 1.2307, 0.5333) × 1011 m

Velocity (−2.8251, 1.4514, 0.6232) × 104 m/s

Model error diag([3 3 3 3× 10−3 3× 10−3 3× 10−3])

Measurement error diag([6× 102 6× 102 6× 102 1× 102 1× 102 1× 102])
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Table 2 System assessment

Runtime
UPF SSUPF IUPF ISSUPF

1.1331 × 104 8.0038× 103 2.0864× 104 1.7643 × 104

Position

RMS 6.1300 × 107 5.4563× 107 3.0470× 107 3.2191 × 107

Available point 141627 177982 336435 313770

Availability 0.41793 0.52521 0.99279 0.92591

Continuity point 315959 315918 315917 315903

Continuity 0.93237 0.93225 0.93225 0.93221

Velocity

RMS 4.4231 4.1242 5.7946 5.3550

Available point 274559 267418 246301 239445

Availability 0.8102 0.78913 0.72681 0.70658

Continuity point 164361 178593 338371 338429

Continuity 0.48502 0.52701 0.99851 0.99868

6 System assessment

We evaluate navigation performance using the root mean square (RMS):

RMS =

√

√

√

√

1

n

n
∑

i=1

1

mi

mi
∑

j=1

△2
ij , (51)

where n is the quantity of available experiment data, mi is the quantity of sampling points in one

experiment, and △ij is the error at these sampling points. We evaluate the service availability of the

navigation system using Service Availability Thresholds (SATs):

√

(xk − x̂k)2 + (yk − ŷk)2 + (zk − ẑk)2 < SATp. (52)

If position point (x̂k, ŷk, ẑk) satisfies (52), then the position point

√

(vxk − v̂xk)2 + (vyk − v̂yk)2 + (vzk − v̂zk)2 < SATv (53)

is valid. If the velocity point (v̂xk, v̂yk, v̂zk) satisfies (53), then the velocity point is valid. We use the

Accuracy Limit (AL) to evaluate the service availability of navigation the system; specifically,

√

(x̂k − x̂k−1)2 + (ŷk − ŷk−1)2 + (ẑk − ẑk−1)2 < ALp. (54)

If position point (x̂k, ŷk, ẑk) satisfies (54), then the navigation data is continuous at this point, i.e.,

√

(v̂xk − v̂x(k−1))2 + (v̂yk − v̂y(k−1))2 + (v̂zk − v̂z(k−1))2 < ALv. (55)

If velocity point (v̂xk, v̂yk, v̂zk) satisfies (55), then the navigation data is continuous at this point. We set

SATp = 4.9 × 107, SATv = 7.5, ALp = 1.86 × 106, and ALv = 0.48, this yields the assessment data in

Table 2.

7 Conclusion

In this paper, we presented a feasible autonomous navigation method, namely, the CNS/Redshift inte-

grated navigation, for deep space mission in the solar system. An improved UPF algorithm was proposed

by combining the iterative strategy and spherical single algorithm. Using the iterative strategy, we

achieved higher navigation accuracy, at the same time, spherical simplex algorithm reduce the compu-

tational burden. Results show that UPF and SSUPF have equal position accuracy, and IUPF has the

same position accuracy. Furthermore, we showed that the iterative strategy can have a positive role in
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improving the position accuracy. Simulation results also showed that the ISSUPF has better position

availability compared with the UPF and SSUPF and lower computational burden when compared with

the IUPF. Moreover, the ISSUPF and IUPF have better velocity continuity compared with the UPF and

SSUPF. Overall, the proposed ISSUPF algorithm can be successfully applied in integrated navigation

systems for deep space missions, and can achieve better position navigation performance.
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