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Abstract Virtualization is the trend for the future mobile networks. With the advantage of virtualization,

we can abstract the physical mobile network into the virtual network function (VNF) and design the network

without the details. In this paper, we focus on the virtualization of the physical resources so that the resource

allocation scheme considers not only the time-varying characteristic of wireless channels but also the amount

of storage and computing resources. Virtual resources are composed of radio, storage and computing resources

based on the virtualization technology. Since the cloud radio access network (C-RAN) is a successful paradigm

to introduce computing resources into mobile networks, we investigate the virtual resource allocation scheme

in the C-RAN architecture. With the content caching technology, we introduce the storage resources into joint

resource allocation scheme further. In order to evaluate the performance of proposed scheme, we choose the

effective capacity as the metric to include the influence of service latency. The purpose of the optimization

problem is maximizing the system effective capacity with constraints of radio, storage and computing resources.

It is simplified and converted into a convex problem solved by the subgradient method. Simulation results are

provided to demonstrate performance gain of the effective capacity based joint resource allocation scheme.
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1 Introduction

Capacity and ultra-reliable communication are the requirements for the fifth generation (5G) wireless

communication system [1]. Due to the mobile data traffic explosion with the rapid emergence of various

mobile services, it is obvious that the exponential growth of mobile data will continue in the foreseeable

future [2]. To meet the requirements above, 5G wireless communication system should achieve system

capacity growth by a factor of at least 1000 [3]. Many novel technologies, such as CoMP [4], content

caching and Mobile Edge Computing (MEC), have been proposed to achieve this goal. Network Function

Virtualization is a promising technology to combine them into the same architecture by incorporating
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radio, storage and computing resources together, which extends the concept of resources of radio access

network (RAN).

Virtualization derives from the wired networks and develops for decades. The applications of this

technology are virtual private networks (VPNs) over wide area networks (WANs) and virtual local area

networks (VLAN) in enterprise networks, which aims at overcoming the resistance of the current Internet

to fundamental architecture changes [5]. Because of the enormous data traffic demand in mobile networks,

it is promising and necessary to introduce virtualization into wireless networks. With the help of virtual-

ization, wireless networks can decouple the services from the infrastructure so that different services can

share the same infrastructure, reducing the capital expenses and operation expenses of mobile network

operators. Above all, virtualization can abstract and isolated different kinds of physical resources into

virtual resource blocks so that radio, storage and computing resources can work together to maximize

the utility of system resources. Virtual resource blocks are divided into various quality of service (QoS)

supporting abilities, which can correspond the specific service requirement effectively. In other words,

the mobile network is abstracted into the virtual network functions to support the network slices and are

shared by multiple users through isolating from each other.

Cloud radio access network (C-RAN) is being recognized as a possible scheme of future mobile network

architecture. Its main idea is to decompose tradition base stations (BSs) into remote radio heads (RRHs)

and baseband unit (BBU). RRHs are distributed geographically and responsible for the transmitting

and receiving signals for users while BBU is centralized into a BBU pool which processes the joint

decompressing and decoding schemes effectively. The connection between RRHs and BBU is called the

fronthaul link so that they can exchange information conveniently. The capacity limits of fronthaul links

increase the service delay of users and degrade the performances of C-RAN. To overcome the disadvantages

of C-RAN with long delay experienced, heterogeneous C-RAN is proposed to meet this challenge in [6].

The control plane is transferred from BBU pool to high power node (HPN) to alleviate the burden

of fronthaul links. HPN can provide the seamless coverage and broadcast the control signals to user

equipment without fronthaul links and RRHs can concentrate into high-speed data rate transmission. To

make the cloud closer to user and decrease the delay of services further, Ref. [7] proposes a distributed

mobile cloud computing architecture where radio and computing resources are orchestrated jointly under

the constraints of QoS requirements of services. It also puts forward the scheme of computing offloading

to minimize the overall energy consumption at the mobile slides. The advantage of MEC is revealed in

this paper which explores the benefit of scheduling radio and computing resources jointly.

Along with the cloud edge computing, it is a natural idea to explore the potential of storage resources

in the clouds. Content caching is proposed to bring contents, which can be stored in clouds, much closer

to users shrinking the latency of service caused by backhaul links. According to the research of [8], most

parts of data traffic are caused by a small number of popular contents (such as popular videos and music).

If we have cached the popular contents in advance, numerous duplicate downloads from servers in the

mobile networks would be reduced and the service respond rate would be improved significantly.

Therefore, motivated by the capacity of C-RAN in storage and computing, the virtualization of ra-

dio, storage and computing resources can take the advantages of content caching and MEC. The main

contributions of this paper can be summarized as follows.

1) We packet the radio, storage and computing resources into virtual resources and investigate the

joint resource allocation scheme. Compared with the existing work, such as [7, 9], which only introduce

storage or computing resources into RAN separately, we take both of them into the resource allocation

based on the virtualization technology.

2) With the help of the virtual resources, the user association and scheduling are optimized cooperated

with the storage and computing resources. Users prefer to associate with the cloud which has cached the

required content already in order to reduce the latency. The user scheduling is not only based on the

wireless channel conditions but also the baseband processing ability of computing resources in clouds.

3) Since the effective capacity theory can include the backhaul latency into user data rate, the joint

resource allocation problem is formulated as the maximization of overall effective capacity under the

constraints of radio, storage and computing resources. With this criterion, the performance gains of
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Figure 1 Network model with content caching and edge computing.

content caching and edge computing are explored.

4) As to the impact of content caching for radio resource allocation, we convert the problem into convex

and solve it with subgradient method. We formulate the user scheduling scheme which takes computing

resources of clouds into the consideration as a knapsack problem. Simulation results show that system

performance gains are improved by about 50% with the joint resource allocation scheme.

The remaining of this paper is as follows. System model in the aspects of network, link, computing

and cache is introduced in detail in Section 2. In Section 3, the effective capacity based joint resource

allocation scheme is formulated and the simplification of the original problem is proposed to find the

sub-optimal solutions. Performance evaluation is provided to testify the advantage of content caching

and edge computing in Section 4. Finally, conclusions are drawn in Section 5.

2 System model

2.1 Network model

In this paper, we investigate the joint virtual resources allocation and scheduling scheme in the archi-

tecture of edge computing with content caching. As Figure 1 shows, RRHs have the access to clouds

through the fronthaul links. The wired connections between Edge Clouds and Central Cloud are called

backhaul links. RRHs are responsible for transmitting and receiving the radio signals and the baseband

processing is executed at the clouds while HPN is mainly in charge of seamless control signals cover-

age. The storage and computing abilities of Edge Clouds are smaller than Central Cloud’s while Edge

Clouds bring resources closer to users reducing the latency caused by backhaul links. The radio, storage

and computing resources are packaged into virtual resources to facilitate the scheduling of the system.

With the purpose of satisfying the QoS requirements, the virtual resources are allocated to users which

indicates the association schemes of RRHs and clouds.

2.2 Link model

We consider the downlink scenario of our proposed architecture with K mobile users which associate

with N RRHs and Y clouds through M resource blocks (RBs). We assume that RB m can only be

allocated to one user at a transmission time interval (TTI) and the allocation scheme is dynamic with the

wireless channels changing. Denote Pk,m,n as the transmit power allocated to the nth RRH on the mth

RB serving the kth user. The channel gain from the kth user to the nth RRH on the mth RB is defined



Xu X D, et al. Sci China Inf Sci April 2017 Vol. 60 040304:4

as |Hk,m,n|
2. The bandwidth of each RB is B and the power spectral density of noise is N0. Hence, we

can use SNRk,m,n to indicate the channel condition of the kth user on the mth RB associating the nth

RRH. The expression is written as follow:

SNRk,m,n = Pk,m,n · |Hk,m,n|
2/(N0B). (1)

According to Shannons capacity formula, the data rate achieved for the kth user on the mth RB

associating the nth RRH can be formulated as follow:

Rk,m,n = B log(1 + Pk,m,n · CNRk,m,n), (2)

where the channel-to-noise ratio is formulated as CNRk,m,n = |Hk,m,n|
2/(N0B). Denote a binary RB

allocation matrix a ∈ {0, 1}K×M×N to indicate the allocation scheme, where ak,m,n = 1 represents that

the mth RB is allocated to the nth BS to serve the kth user, otherwise ak,m,n = 0. Hence, the sum data

rate the kth user achieved at the nth RRH can be expressed as follow:

Rk,n =
∑

m

ak,m,n ·Rk,m,n. (3)

2.3 Computing model

The computing capability of the yth cloud is characterized by Fy million operations per time slot (MOPT-

S). The computing resource allocation scheme is based on the computing complexity of the baseband

processing. However, the exact relationship between baseband processing and consumed computing re-

sources is still uncertain. As the paper [10] analyses, the computing in BBU pool is mainly related to the

number of RRHs a user associated and the transmission data rate a user achieved. According to [10], the

computing resource required for the kth user is defined as follow:

wk = µNk
3 + γRk + w0, (4)

where the number of RRHs the kth user associated is denoted as Nk and the computing complexity of it

is as high as O(N3). The consumption of computing resource is linear with the transmission data rate

Rk. w0 is the constant which indicates the basic demand of computing resources.

2.4 Cache model

In our senario, clouds are equipped with content cache to alleviate the burden of backhaul links. The

storage ability of the yth cloud is defined as Ay. The scope of contents which are requested by mobile

users is a library of F files. The numerical results reveal that content popularity distribution follows Zipf

distribution. Without loss of generality, the probability of a user call for the j th content zj is organized

as decreasing order z1 > z2 > · · · > zF . The expression of zj can be written as follow:

zj =
j−γ

∑F

j=1 j
−γ

, (5)

where γ > 0 is the Zipf parameter. Generally, γ indicates the degree of skewness of popularity distribution.

The requirement of a specific content would be checked in the local cache of Edge Clouds first. On the

condition that the content is available in the Edge Cloud, the requirement will be responded immediately

without the latency caused by backhaul links. Otherwise, the content will be searched in the cache of

Central Cloud. For convenience, we assume all contents can be found out in the Central Cloud [9], so the

content would be sent back to the Edge Cloud via backhaul links and then transmitted to users later. It

is obvious that the application of content caching can reduce the service latency of users and provide a

better QoS guarantee at the same time. Let the set F = {1, 2, 3, . . . , F} represents the content library

and the size of the f th content is defined as Xf . The cache placement matrix is denoted as C ∈ {0, 1}F×Y
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to indicate whether the content f is cached in the yth cloud. Hence, the amount of contents the yth

cloud can cache is constrained by the following formula:

F
∑

f=1

Xf · Cf,y 6 Ay. (6)

As mentioned in [11], the popularity distribution of the contents, which remains for several days,

changes much more slowly than the state of RBs. It is not at the same time-scale of radio resource

scheduling. Therefore, we consider the cache placement matrix C as a constant matrix when optimizing

the power and RB allocation schemes.

2.5 Effective capacity

The deployment of edge clouds and the application of content caching bring the computing resources and

storage resources closer to users so that the system performance is improved significantly. However, it is

necessary to find a suitable metric to evaluate the QoS guarantee performance of our schemes. Effective

capacity which is proposed to form channel model in link layer is convenient to convert the impact of

latency into the user achieved data rate. The criteria indicates the maximum arrival data rate a wireless

channel can support under QoS requirements with the queuing theory showing a good performance in [12].

The maximum arrival data rate a wireless channel can support is measured by the log-moment generation

function as follow:

EC(θ) = − lim
t→∞

1

θt
logE

{

e−θS(t)
}

, (7)

where S(t) =
∫ t

0 r(t)dt indicates the throughput accumulated on time domain and θ represents the QoS

guarantee parameter. A large value of θ implies a tighter QoS guarantee requirement. When the channel

coefficients keep constant over the frame duration T and vary independently for each frame, the formula

of effective capacity can be rewritten as follow:

EC(θ) = −
1

θT
logE

{

e−θTR[i]
}

, (8)

where R[i] indicates the instantaneous channel capacity during the ith frame.

Since the time-varying and randomness of wireless channels, effective capacity denotes QoS guarantee

parameter θ to characterize the statistical QoS requirements. According to [13], the delay violation

possibility can be formulated as follow:

Pr{D(∞) > Dmax} ≈ e−θ·Dmax , (9)

where D(∞) is the steady-state delay experienced by a data flow, and Dmax represents the delay bound.

It is obvious that the probability of D(∞) exceeding a delay bound Dmax decreases with the increasing

of θ,which indicates a tighter QoS constraints. Note that when θ approaches to zero, the effective capacity

converges to the ergodic capability [14].

Based on the theorem 2 in [15], to achieve the same delay experience, the QoS guarantee parameter θ

of different users should satisfy the following condition:

θfb,k =
1

1−
2Xf

rBH·Dmax

θfa,k. (10)

If the content requested by the kth user is cached in the nth RRH, in other words Cfk,n = 1, θk,n = θfa,k.

Otherwise, θk,n = θfb,k.
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3 Effective capacity based joint resource allocation scheme

In this section, we firstly formulate the resource allocation problem with the constraints of radio,

storage and computing resources. Then we simplify the original problem with the Taylor expansion of

the objective function and use Lagrange dual optimization to turn the problem more tractable to solve.

And then we optimize the resource allocation scheme of radio and storage resources jointly. Using effective

capacity theory, the impact of content caching is calculated with different QoS guarantee parameters.

The subgradient method is used to find the sub-optimal solution and a low-complexity algorithm is

proposed. Finally, the allocation scheme of cloud computing resources for baseband processing is treated

as a knapsack problem.

3.1 Problem formulation

Based on the system model and effective capacity theory previously mentioned, the effective capacity

achieved by the kth user in the nth RRH can be expressed by the following formulation:

EC(θk,n) =−
1

θk,nT
logE

{

e−θk,nTRk,n
}

. (11)

The problem can be formulated as follows with the purpose of maximizing the sum effective capacity

of the whole system.

max
∑

k

∑

n

EC(θk,n), (12)

s.t.
∑

k

∑

m

ak,m,nPk,m,n 6 Pn, (13)

∑

k

fk,y 6 Fy , (14)

∑

f

Xf · Cf,y 6 Ay , (15)

∑

k

∑

n

ak,m,n = 1. (16)

In constrain (13), the whole transmitting power of users associating with RRH n should be no more

than Pn. The constraints of computing resources and storage resources are defined as (14) and (15)

respectively. Constraint (16) denotes the RB allocation limitation that each RB should only be allocated

to one user at the same time. As aforementioned, the allocation of storage and computing resources can

be treated as constant when optimizing the power and RB allocation schemes.

Obviously, the optimal problem is a Mixed-Integer Nonlinear Programming (MINLP) and it is highly

complicated to find the global optimization solution. In the next section, the original problem is simplified

and converted to a convex problem. After that a low-complexity algorithm is proposed to solve the

problem.

3.2 Optimization reformulation

Because the original objective is too complex to solve directly, we make the Taylor expansion of it to

make the problem more tractable. Taking notice of θk,nT → 0 and e−θk,nTRk,n → 1, we make the Taylor

expansion around the point 1.

∑

k

∑

n

−
1

θk,nT
logE

{

e−θk,nTRk,n
}

=
∑

k

∑

n

−
1

θk,nT
logE

{

∏

m

(1 + Pk,m,nCNRk,m,n)
−αk,m,n·βk,n

}
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=
∑

k

∑

n

−
1

θk,nT







{

E

{

∏

m

(1 + Pk,m,nCNRk,m,n)
−αk,m,n·βk,n

}

− 1

}

−
1

2

{

E

{

∏

m

(1 + Pk,m,nCNRk,m,n)
−αk,m,n·βk,n

}

− 1

}2

+ · · ·







, (17)

where βk,n =
θk,nTB

ln 2 . Omitting high order terms, the approximation of the objective function can be

rewritten as follow:

max

(

∑

k

∑

n

−
1

θk,nT

{

E

{

∏

m

(1 + Pk,m,nCNRk,m,n)
−αk,m,n·βk,n

}

− 1

})

. (18)

Since the popularity distribution of contents changes slowly, ranging from 3 hours to weeks [11], the

scheduling of storage resource is much slower than the radio scheduling. So that we can consider the

allocation of storage resource is constant when we optimize the RB allocation scheme. Based on (10)

we convert the system gain of content caching into the QoS guarantee parameter. The scheduling of

computing resources can be regarded as the knapsack problem, in this paper each cloud is treated as a

knapsack whoes capacity limit is represented in constraint (14). wk is regarded as the item packing into

the knapsack while the effective capacity achieved by the kth user is treated as the value of items. Above

all, the constraints of (14) and (15) can be omitted when we optimize radio resource allocating scheme.

The Lagrange function of the primal problem is given by

L(a, P, λ) =
∑

k

∑

n

−
1

θk,nT

{

E

{

∏

m

(1 + Pk,m,nCNRk,m,n)
−αk,m,n·βk,n

}

− 1

}

+
∑

n

λn

(

Pn −
∑

k

∑

m

Pk,m,n

)

, (19)

where λ = [λ1, λ2, . . . , λN ] is the Lagrange vector associated with the power constraints.

The Lagrange dual optimization problem can be expressed as follow:

g(λ) =max

(

∑

k

∑

n

−
1

θk,nT

{

E

{

∏

m

(1 + Pk,m,nCNRk,m,n)
−αk,m,n·βk,n

}

− 1

}

+
∑

n

λn

(

Pn −
∑

k

∑

m

Pk,m,n

))

. (20)

And the dual optimization problem can be written as follow:

min {g(λ)} s.t. λ > 0. (21)

3.3 Effective capacity based joint resource allocation scheme

The dual problem is convex and more tractable for the reason that we can use convex optimization

methods to sovle it. According to [16], a subgradient method is proposed to solve the convex optimization

problem by updating λ simultaneously. Similar with the approach [17], the subgradient of (20) can be

written as follow:

∆λn = Pn −
∑

k

∑

m

Pk,m,n. (22)

The updating of λ follows the following formula:

λs+1
n =

{

λs+1
n − τs

[

Pm −
∑

k

∑

m

Pk,m,n

]}+

, (23)
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where s denotes the iteration number and τs represents a proper step size. There are several step size

rules in subgradient method [18] and diminishing step size rule shows a better performance. Then we

choose this rule to design the value of τs. A typical example is τs = a√
s
, where a > 0.

Suppose P ∗
k,m,n is the optimal solution of power assignment. Applying the KKT conditions

∂L(λ)

∂P ∗
k,m,n

= 0. (24)

We can calculate the expression of P ∗
k,m,n is

P ∗
k,m,n =





(

βk,n

λnθk,nT

∏

CNRk,m,n
−βk,n

m

)
1

Mβk,n+1

−
1

CNRk,m,n





+

. (25)

Substituting (25) into (20), the form of Lagrange dual function of is given as

g(λ) = max







∑

k

−
1

θk,nT











E















(

βk,n

λnθk,nT

∏

CNRk,m,n
−βk,n

m

)
1

Mβk,n+1

CNRk,m,n





−ak,m,nβk,n











− 1











+
∑

n

λn






Pn −

∑

k

∑

m

ak,m,n





(

βk,n

λnθk,nT

∏

CNRk,m,n
−βk,n

m,n

)
1

Mβk,n+1

−
1

CNRk,m,n





+











.

(26)

We can use the dual decomposition method and get the effect of allocating the mth RB to the kth

user associated with the nth RRH. The expression can be measured as follow:

gk,m,n =−
1

θk,nT











E















(

βk,n

λnθk,nT

∏

CNRk,m,n
−βk,n

m

)
1

Mβk,n+1

CNRk,m,n





−βk,n











− 1











− λn





(

βk,n

λnθk,nT

∏

CNRk,m,n
−βk,n

m

)
1

Mβk,n+1

−
1

CNRk,m,n





+

. (27)

It is obvious that optimal user k and RRH n which RB m should be allocated is the (k,n) with the

maximum value of gk,m,n. So we can get the RB allocation matrix as follows:

ak,m,n =

{

1, argmax{gk,m,n},

0, otherwise.
(28)

Define the diagonal matrixes ak to indicate the association relationship between the kth user and

RRHs. The expression can be written as follow:

ak = diag(ak,1,1, ak,1,2, . . . , ak,M,N ). (29)

The expression of Nk in (4) can be calculated by Nk = Tr(ak). Based on (28), the data rate user k

achieved is Rk =
∑

n Rk,n =
∑

n

∑

m ak,m,n ·Rk,m,n. The computing resources for supporting baseband

processing of the kth user can be obtained according to (4). In this paper, we regard the computing

resources in clouds as the volume of knapsack and wk is regarded as the size of the item with the value of

effective capacity. Thus the allocation of computing resources can be converted into a knapsack problem

which can be solved by the greedy algorithm.
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Table 1 Simulation parameters

System parameters

Number of BSs 7

Number of subchannels 50

Maximum power of BSs 46 dBm

Carrier frequency 2 GHz

Bandwidth 10 MHz

Cell average radius 500 m

Pathloss model PL = 128.1 + 37.6log10d, d(km)

Shadowing standard deviation 8 dB

Fast fading Rayleigh fading

Noise Density −174 dBm/Hz

Cache parameters

Backhaul rate 500 Mbps

Mean of content size 30 Mb

Zipf parameter 0.5

Computing parameters

Edge cloud ability 1000 MOPTS

Central cloud ability 3000 MOPTS

4 Performance evaluations

4.1 Simulation environment

In this section, we provide simulations to evaluate the performance of joint scheduling scheme of radio,

computing and storage resources in the downlink scenario. Our numerical evaluations are based on 19-cell

mobile network which contains 3 sectors in each cell. Each sector is deployed with one RRH, so the total

number of RRHs is 57. There are 3 edge clouds and 1 central cloud to meet the baseband processing

requirements of these RRHs. The edge cloud brings computing and storage resources much closer to users

while the central cloud has more resources to schedule. In our scenario, each edge cloud is configured with

1000 MOPTS computing resources and central cloud is configured with 3000 MOPTS [10]. We define the

content library with 50 files and the size of each file is a normal random variable with the mean of 30 Mb.

The content requests of users follow a Zipf distribution with Zipf parameter γ = 0.5. More details of

simulation environment settings are listed in Table 1.

4.2 Simulation results

We firstly verify the performance gain with content caching. System throughput is calculated by the sum

of all users effective capacity. In Figure 2, we investigate the performance of content caching with the

cache size of 25 files in each Edge Cloud. The system performance without cache is simulated as the

baseline with QoS guarantee parameter θ = 0.005. In the condition of content caching, QoS guarantee

parameter θ is calculated by (10). As Figure 2 shows, system throughput is improved about 3 Mbps when

we pre-fetch the popular contents in Edge Clouds. That is because contents are much closer to users,

which can greatly reduce the service latency caused by backhaul links and the radio resources can be

used more effectively. When the number of users is large enough, the radio resources tend to saturation,

so the system throughput does not improve any more.

Since content caching can improve the system throughput significantly, it is a natural idea to investigate

the relationship between system throughput and the number of cached files. As Figure 3 shows, the system

performance with different user number is simulated following the cache size rising. We can find out that

system throughput is improved with cache size rising. It illustrates that with cache size increasing the

content hit probability rises at the same time, resulting more contents can be found at edge clouds. Thus,
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Figure 2 (Color online) System throughput gain with

content caching.
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Figure 4 (Color online) System throughput gain with

edge computing.
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Figure 5 (Color online) System throughput gain with

edge computing.

the backhaul latency can be reduced and user data rate is higher.

As aforementioned, the allocation scheme of cloud computing resources supporting baseband process

is treated as a knapsack problem. In our scenario, the total computing resources of edge clouds are

equivalent with the ones of central cloud. As Figure 4 shows, the edge clouds show a better performance

at system throughput. It demonstrates even though the computing resources in edge clouds is smaller

the distance reduction between users and computing resources can bring about 50% increase in the

performance gain.

Finally, we investigate the influence of computing resources on system throughput to induct the config-

uration of cloud. Through Figure 5, we find that as computing resource increases, the system throughput

improves at first and then tends to steady. As the simulation results reveal, we can find out the proper

computing resources to support the associated users in a cloud. For example, a cloud equipped with 2400

MOPTS computing resources is capable to support the baseband processing of 35 users. With the user

number rising, the need of computing resources increases at the same time while the system throughput

is higher.

As simulation results above show, effective capacity based joint resource allocation scheme has the

advantage of releasing the potentials of storage and computing resources. The more storage resources of

Clouds can cause more user association, which leads to more demand of computing resources. The system

throughput is improved by about 50% with content caching and edge computing. The user association

and scheduling scheme are not only based on wireless channel conditions but also storage and comput-

ing resources. Furthermore, the requirement of storage and computing resources for communication is

investigated, which can instruct the configuration of storage and computing resources in clouds.
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5 Conclusion

In this paper, we abstract the physical resources into the virtual ones and proposed the effective capacity

based joint resource allocation scheme in the downlink scenario. To evaluate the influence of introducing

storage and computing resources into the joint resource allocation scheme, effective capacity is considered

as the suitable metric to include the service latency into user data rate. Taking advantage of edge

computing and content caching, users are much closer to physical resources which make a difference on

user association and scheduling scheme. Users prefer to associate with the cloud which has already cached

the required content in order to reduce the latency while scheduling is not only based on the wireless

channel conditions but also the baseband processing ability of computing resources in clouds. Simulation

results are provided to demonstrate that performance gain of the joint optimal resource allocation scheme

could achieve about 50% increase in system throughput. Furthermore, the proper computing and storage

capacity configuration for clouds are investigated to achieve a high system throughput.
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