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Dear editor,

Hybrid systems are widely used in modeling safety-
critical systems [1]. In recent years, safety verifi-
cation of hybrid systems, whose aim is to decide
whether the systems will reach a dangerous or un-
wanted configuration, has attracted much research
attention. Due to the intrinsic complexity, verifi-
cation of such systems presents a grand challenge.

In recent years, several methods, based on nu-
meric computation and symbolic computation,
have been proposed to compute invariants for
safety verification of hybrid systems. For exam-
ple, polynomial optimization [2] via semidefinite
programming (SDP) is utilized to compute invari-
ants for polynomial hybrid systems [3, 4]. Tak-
ing advantage of the error-free property, several
symbolic methods [5–7] are applied to providing
mathematical proofs of the existence of invariants
of hybrid systems. However, some are subject to
numerical errors and some suffer from high com-
putational complexity. Furthermore, the methods
for handling polynomial hybrid systems cannot be
extended to a more general class of non-polynomial
hybrid systems. To resolve this issue, Ref. [8] pro-
posed a symbolic abstraction approach for reduc-

ing non-polynomial hybrid systems to polynomial
ones, and then studied properties of the latter sys-
tems instead.

In this letter, we suggest a new method for
safety verification of general nonlinear hybrid sys-
tems. The main task can be reformulated as
how to compute linear over-approximations for
the nonlinear functions. For a given nonlinear
function over a compact set, we propose a lin-
ear model (LM), composed of a linear approxi-
mate function and an error bound, as its over-
approximation. The problem of computing the
optimal LM is equivalent to dealing with a non-
linear optimization problem with universal quan-
tifiers, which is computationally hard. To reduce
the computational complexity, we present a new
sampling-based relaxation approach to compute a
tight LM, as the guaranteed over-approximation of
the nonlinear function. Our linear approximation
method can be easily applied to transform non-
linear hybrid systems into the associated linear
ones with uncertain parameters, which is highly
efficient and applicable to non-polynomial hybrid
systems.

Safety verification. Let H : 〈V, L, T ,Θ, D, Ψ,
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ℓ0〉 be a hybrid system with the set V of system
variables, the finite set L of locations, the set T
of discrete transitions, the assertion Θ specifying
the initial condition, the differential rule D(ℓ) and
location condition Ψ(ℓ) for each ℓ ∈ L, and the
initial location ℓ0 ∈ L. Given an unsafe assertion
Xu, we determine whether H is safe, namely, tra-
jectories of H starting from the initial condition
Θ at the initial location ℓ0, cannot evolve to any
state specified by Xu.

As said in [2, 9], safety verification of the hy-
brid system H can be reduced to finding inequal-
ity inductive invariants ϕℓ(x) > 0 for each location
ℓ ∈ L, which satisfy the following requirements:

Initiation: Θ |= ϕℓ0(x) > 0,
Discrete consecution:

ϕℓ(x) > 0 ∧ T |= ϕℓ′(x
′) > 0,

Continuous consecution:

ϕℓ(x) = 0 ∧Ψ(ℓ) |= ϕ̇ℓ(x) > 0,

Safety: Xu(ℓ) |= ϕℓ(x) < 0.
A new method for safety verification of general

nonlinear hybrid systems is suggested in this let-
ter. We focus on how to transform a nonlinear hy-
brid system into an associated over-approximate
linear system, whose safety property can be eas-
ily verified by quantifier elimination method. The
key problem is how to compute the linear over-
approximations for the nonlinear functions.

Linear approximation. A linear model (LM)
over a compact set D ⊂ R

n is a pair (ρ,X) of
a linear function ρ over variables x ∈ R

n and a
remainder interval X ∈ IR. We say that (ρ,X) is
an over-approximation of a function φ : D → R,
written as φ ∈ (ρ,X), iff for each x ∈ D we
have φ(x) ∈ ρ(x) +X := {ρ(x) + κ|κ ∈ X}, i.e.,
φ ∈ (ρ,X) ⇐⇒ φ(x)− ρ(x) ∈ X for each x ∈ D.

Intuitively, one may try to compute the tightest
LM, which can be done by computing v and a, b

such that

v
T · x+ a 6 φ(x) 6 v

T · x+ b, ∀x ∈ D,

where v ∈ R
n, v 6= 0, and the distance of two hy-

perplanes, that is |b−a|√
‖v‖2

2
+1

, is minimal. Therefore,

the problem for searching the minimum-distance
hyperplanes can be reformulated as follows:

inf
v,a,b

(b−a)2

‖v‖2
2
+1

s.t. φ(x)− v
T · x− a > 0, ∀x ∈ D,

φ(x)− v
T · x− b 6 0, ∀x ∈ D.















(1)

To solve (1), we need to deal with an optimization
problem with universal quantifiers, which is com-
putationally hard. Hence, we propose a learning-
based method to compute a suboptimal solution to

(1) by using a relaxation technique. As shown in
Figure 1, we first construct sampling hyperplanes
y − v

∗T · x − a∗ = 0 and y − v
∗T · x − b∗ = 0

(dashed ones) by utilizing the sample points in D,
then relax these two hyperplanes to the verified
ones (solid ones), which enclose φ(x) for all x ∈ D
and the distance is tight.

Let c = 2
b−a

, d = a+b

b−a
and w = c · v, we

have (b−a)2

‖v‖2

2
+1

= 4
c2+‖w‖2

2

. Therefore, Eq. (1) can be

transformed into the following optimization prob-
lem:

p := sup
w,c,d

‖w‖22 + c
2

s.t. c φ(x)−w
T · x− d+ 1 > 0, ∀x ∈ D,

c φ(x)−w
T · x− d− 1 6 0, ∀x ∈ D.















(2)

Now we present a relaxation method to solve (2)
by removing universal quantifiers. We first con-
struct a rectangular mesh M in D with a mesh
spacing s ∈ R+ (say s = 0.05) and mesh point
set χ = {x1,x2, . . . ,xm}. Then, Eq. (2) can be
relaxed as the following quadratic programming
problem:

p∗ := sup
w,c,d

[w, c]T · [w, c]

s.t. c φ(xi)−w
T · xi − d+ 1 > 0, 1 6 i 6 m,

c φ(xj)−w
T · xj − d− 1 6 0, 1 6 j 6 m,















(3)

whose objective function is 2-norm square of the
variable vector. It is easy to solve (3) by use of
its Karush-Kuhn-Tucker (KKT) conditions which
becomes a linear programming problem. Suppose
w

∗, c∗ and d∗ are the optimal solution of (3).
Thus, the following sampling hyperplanes

c∗y −w
∗T· x− d∗ − 1 = 0,

c∗y −w
∗T· x− d∗ + 1 = 0,

}

(4)

are able to enclose φ(xi) with 1 6 i 6 m, i.e., for
each xi, the constrain conditions of (3) are satis-
fied.

Now, the remaining task is to relax the sam-
pling hyperplanes (4) as verified ones, which can
tightly enclose φ(x) over domain D, that is, for
each x ∈ D the following conditions are satisfied
exactly:

c∗φ(x)−w
∗T · x− d∗ − δ − 1 6 0,

c∗φ(x)−w
∗T · x− d∗ + δ + 1 > 0,

}

(5)

and δ ∈ R>0 is as small as possible. From the
construction of mesh M in D, for each x ∈ D,
there exists a mesh point xi in the same mesh with
x. Following the mean value theorem, φ(x) over
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Figure 1 The sampling and verified hyperplanes.

x ∈ D can be bounded by |φ(x)− φ(xi)| 6 1
2nsη,

where η = sup
x∈D ‖∇φ(x)‖∞. Thus, by choos-

ing δ = s

2 (c
∗nη + ‖w∗‖1), we can easily ver-

ify that the conditions in (5) hold, which means
two hyperplanes enclosing φ(x) over D are ob-
tained. Thus, (ρ,X) is a LM of φ(x) over D, where
ρ(x) = w

∗

c∗
· x+ d

∗

c∗
and X = [− 1+δ

c∗
, 1+δ

c∗
].

Linear invariant generation. Let H : 〈V, L,
T ,Θ,D,Ψ, ℓ0〉 be a hybrid system whose com-
ponents are all described by polynomial or non-
polynomial functions in x. By applying the above
linear approximation method to compute the over-
approximation LM for each nonlinear function in-
volved in H , we can obtain an over-approximate
linear hybrid system Hu : 〈V, L, T ,Θ,D,Ψ, ℓ0〉.

As stated above, safety verification ofHu can be
reduced to finding inequality inductive invariants
ϕℓ(x) > 0 for each location ℓ ∈ L, which imply
the safety property, then the safety of the system
Hu is guaranteed. We will apply quantifier elimi-
nation method to obtain the sufficient and neces-
sary condition on the existence of such inductive
invariants of Hu. From a computational point of
view, we aim to compute a linear invariants ϕℓ(x)
for each ℓ ∈ L. We first predetermine a linear
template of invariants of the form ϕℓ(x) = αT

ℓ
· x

where αℓ ∈ R
n is an unknown vector. We then

apply quantifier elimination method to obtain the
equivalent quantifier-free formulae with αℓ for all
ℓ ∈ L.

Suppose that ϕℓ(x) > 0, ℓ ∈ L are the computed
linear invariants for safety verification of the un-
certain linear hybrid system Hu. Then, the exis-

tence of such ϕℓ(x) also can ensure the safety of
the original hybrid system H obviously.

Conclusion. In this letter, we consider the prob-
lem of safety verification of general nonlinear hy-
brid systems. A linear approximation approach,
based on quadratic programming, is applied to
transforming a given nonlinear hybrid system into
an associated linear one with uncertain parame-
ters, and quantifier elimination method is used
to obtain linear invariants, which guarantee the
safety property of the resulting uncertain linear
hybrid system. The efficiency of the presented
method is illustrated by some numerical examples.
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