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I. Introduction -- Motivation 

Long Range  

Flight Efficiency 
VTOL  

Maneuverability 

An aircraft with VTOL and 

cruise flight capability 
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• Long range  

 

• Fast speed 

 

• VTOL Capability 
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I. Introduction -- Sea surveillance  
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I. Introduction -- Existing platforms 
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I. Introduction -- U-Lion  
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II. Platform design 
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II. Platform design -- Evolution 

First prototype 

Second prototype 

Current prototype 



 Tail sitter configuration 

 

 Reconfigurable wing 

 

 Vectoring thrust 

 

 Multiple control surfaces tail 
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II. Platform design – Overall Structure 



 

 

 Multi-direction lift 

 

 6-D motion control 

 

 Fast response 

 

 Direct torque for transition 
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II. Platform design -- Vectoring thrust 



 

 VTOL yaw control 

 

 Transition control 

 

 Extra controllability 
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II. Platform design -- Tail fins structure 



 Light weight 

 

 Provide up to 30% of lift 

 

 Installment of avionics  
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II. Platform design -- Fuselage design 
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II. Platform design -- Avionics system 

Airspeed 

sensor 
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III. Inner loop control design 
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III. Overall inner loop control structure 
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Xint 

(a) Alien Zv-axis with the Zr-axis    

by rotating about the K-axis  which 

is perpendicular to the two axes by 

an angle of γ and results in an 

intermediate frame Fint 

2 

Xr 

Xint 

Yint 

Yr 

o 

(b) Rotate the frame Fint    

about Zr-axis by an angle of  

ψe  to match the reference axis 

 

 

Xv 

Xr 

Yv 

Yr 

o 

Zv 
Zr 

(c) The original frame Fv and 

the reference frame Fr 
 

 

1 

Yv 

K 

o 

γ 

III. VTOL inner loop control  
  -- Rotation angle generator 

Xv 

Zv 

Yint 

Zr Zr 
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• Find the angle error in the true body frame 

 

• Works well in wider pitch angle range 

 

• Applicable for transition control 

 

• Stabilize the U-Lion in any initial condition 

 

• Allow for faulty recovery from fail transitions 

III. VTOL inner loop control  
  -- Advantages 



18 

• Let the state be the angle error, angular rate and angle error integration  

• The state space equation is then 

      where u is the virtual acceleration input 

• Design the LQR controller with u = Fx, so that the cost function  

      is minimized 

III. VTOL inner loop control  
  -- LQR control on pitch channel 



19 

• Pitch angular acceleration provided by 

vectoring thrust 

T       ------    Thrust by the propulsion 

𝜃tilt  ------   Tilting angle of vectoring 

    thrust in pitch direction 

Lm      ------   Distance between CG to 

     motor 

Iy       ------    Moment of inertia in y 

     direction 

• The tilting angle 𝜃tilt could be obtained  

• Map the 𝜃tilt to the servo input  

𝑢 = 𝑇𝑠𝑖𝑛 𝜃tilt 𝐿𝑚/𝐼𝑦 

III. VTOL inner loop control  
  -- Map the angular acceleration to actuators 
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• Transform the rotation matrix into cruise frame Euler angle representation  

• Apply the LQR controller to obtain the angular acceleration input 

• Map the angular acceleration input to the control surface tilting angle 

by the relationship 

𝛿fin   ------   The control surface deflection angle 

𝜌        ------   The air density  

𝑉air   ------   The air flow velocity 

𝑆fin   ------   Control surface area 

𝑙fin    ------   The distance from the control surface center to the CG 

𝑀 𝛿fin = 𝜋𝛿fin𝜌𝑉air
2 𝑆fin𝑙fin 

III. Cruise inner loop control  
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• Generate smooth rotation matrix trajectory to push the head down 

x 
y 
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y 

z 
x 

y 
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• Generate smooth trajectory for the pitch angle reference 

III. Transition inner loop control 

 -- VTOL to cruise transition 
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• LQR controller 

• Larger Q matrix for higher bandwidth of control 

• All possible actuators utilized for assisting the transition process  

• Actuator mapping 

Pitch mapping Roll mapping Yaw mapping 

• Proportional controller applied for the speed control 

• Once falls in the stabilizable region of cruise flight, switch to cruise flight 

III. Transition inner loop control 

 -- VTOL to cruise transition 
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IV. Outer loop control design 



24 

IV. Overall outer loop control structure 

Trajectory 

generation 

algorithm layer 

Outer loop control 
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User mission 
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IV. Trajectory generation algorithm layer 
        -- L1 guidance generation  
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• Based on the target position 

distance the speed reference 

is generated as a trapezoidal 

shape 

 

• Velocity profile includes 

acceleration phase, cruising 

phase and deceleration 

phase 

 

 

IV. Trajectory generation algorithm layer 
        -- Speed reference generation 

 



27 

IV. Outer loop control logic layer 
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Reference 
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IV. Outer loop control algorithm layer 
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V. Results -- An autonomous fly test 
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(a) Position response (b) Angle response 
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V. Results -- An autonomous fly test data 

-100

-50

0

50

-120-100-80-60-40-200

40

60

80

 

 

Take off position

Landing position

VTOL trajectory

Transition trajectory

Cruise trajectory

Waypoints



 Autonomous hybrid UAV platform U-Lion 

 

 Designed featured with vectoring thrust and reconfigurable wings 

 

 Inner loop control algorithm proposed for three flying mode 

 

 Entire control framework proposed for autonomous waypoint flight  

 

 Auto flight test demonstrates the effectiveness of platform design and control 

frame work 
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VI. Conclusion 



 

 

 Continue to optimize platform structure  

 

 Improve control performance  

 

 Integrate vision-based target detection and tracking system to carry out some 

real applications 
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VI. Future work 
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