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Abstract With squeezed states or entangled states being the source, quantum metrology, imaging and sensing

can break the standard quantum limit (SQL), even reach the Heisenberg limit (HL), which is difficult to achieve

by traditional methods. However, the photon loss or phase fluctuation caused by the atmospheric attenuation

and turbulence cannot be ignored in the actual application. Atmospheric transmittance and phase fluctuation

are related to the detection distance, and the phase sensitivity becomes worse as the distance increases. As the

functions of distance, the photon loss and phase fluctuation are uniformly expressed according to the introduction

of atmospheric attenuation coefficient, turbulence structure constant and receive aperture size in this paper.

The density matrixes and phase sensitivities of N00N states and M&M′ states in the atmospheric environment

are proposed in terms of distance variables. Then the quantitative computation of super-sensitive distance is

carried out. SQL-contour is proposed to describe the super-sensitive ability of the quantum interferometer for

the affection from both photon loss and phase fluctuation. The simulation results show that, in atmospheric

environment the super-sensitive distance can reach hundreds of meters. M&M′ states with less total photon

number are more likely to reflect the advantage of super-sensitivity. SQL-contour can provide references for

interferometric source choosing.
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1 Introduction

With the continuous development of quantum technology, quantum enhanced sensing with non-classical

quantum states is getting more and more attention [1–3]. The phase estimation error can achieve the

Heisenberg limit by the use of Path-Number entangled states (such as N00N states), and this quantum

super-sensitive detection system is a new direction for Radar and Lidar systems [4,5]. As the correlations

of quantum states are fragile to the noise environment which typically collapses the quantum state and

destroys the phase information, the system decoherence caused by noise environment is the core problem

for quantum metrology. Moreover, because the interaction with atmospheric environment is inevitable,
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Figure 1 Interferometer model with photon loss and phase fluctuation.

photon loss and phase fluctuation noise are the main causes which lead to system decoherence and

ultimately increase the error of phase estimation.

Several researches on N00N have been made under the condition of photon loss, and it turns out that

photon loss makes N00N states decohere fast, and it is difficult to realize the actual application in the

atmosphere environment [6–8]. In 2008, Huver et al. [9] proposed M&M′ states for robust quantum

optical metrology, imaging and sensing by comparing N00N with M&M′ states under photon loss. Jiang

et al. [10] gave the strategies for choosing path-entangled number states for robust quantum optical

metrology in the presence of loss in 2012. And the phase fluctuation is researched by Bardhanh’s papers

in 2013, in which the effect of fluctuation to sensitivity, visibility and quantum Cramer-Rao bound is

discussed [11, 12].

Since there is less research on quantitative description considering the two influences of photon loss and

fluctuation in the properties of quantum interferometers, this paper does it. Based on the atmospheric

attenuation coefficient and the atmospheric turbulence structure constant, this paper discusses the de-

tection performance of the quantum interferometers with different input photon numbers in atmosphere

to offer reference for supersensitive interferometric quantum radar.

2 Density matrixes with atmospheric attenuation and phase fluctuations

The atmospheric absorption, scattering and turbulence would cause photon loss and phase fluctuation

for the entangled states. We set two fictitious beam splitters in the Mach-Zehnder interferometer (MZI)

to mimic the loss of photon in Figure 1. Ti, Ri (i = a, b) represent the atmospheric transmittance and

attenuation rate for corresponding channel respectively. The sensor source provides path-entangled states,

and the receivers are photon number resolving detectors. The upper beam passes through a phase-shifter

φ, and the phase fluctuation ∆φ is shown in the dotted box.

According to Beer Lambert law [13], the photon transmittance in the atmosphere can be expressed as

T = exp(−χλ · L), (1)

where χλ is the atmospheric attenuation coefficient at wavelength λ and L is the transmission distance.

As the phase fluctuation caused by turbulence is related to the aperture size of the receiver [14], we have

the phase fluctuation variance as

σ2
φ = 1.03(D/r0)

5/3, (2)
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where D is the aperture size of the receiver and r0 is the atmospheric coherent radius with

r0 = (0.423k2λC
2
nL), (3)

in which kλ represents the wave number of the photons and C2
n is the turbulence structure constant. The

phase fluctuation can be treated as a wiener process described by a zero mean Gaussian distribution with

the variance σ2
φ, that is

〈∆φ〉 = 0, 〈∆φ2〉 = σ2
φ = 1.03(D/r0)

5/3 = 0.44D5/3k2λC
2
nL. (4)

N00N state is the maximally number-path entangled state which can be produced by SPDC (spon-

taneous parametric down-conversion). It is a superposition of all photons in one path with none in the

other. And for M&M′ states, there are photons in both paths. The expressions of N00N states and

M&M′ state in Fock space are

|N00N〉a,b =
1√
2
[|N0〉+ |0N〉], (5)

|M :: M ′〉a,b =
1√
2
[|MM ′〉+ |M ′M〉], (6)

where the subscript a, b indicate the two paths and the double-colon in |A :: B〉 refers to A > B.

We suppose that channel A is the signal photons in free space, and channel B is the idler photons

in optical fiber. Therefore, the measured phase and phase fluctuation only exist in channel A and the

photon loss exists in both channels with different attenuation coefficients, N00N states passing through

the atmosphere can be defined as [1]

|N00N〉φ =
1√
2

[

T
N
2

a eiNφeiN∆φ|N0〉+ T
N
2

b eiNφ|0N〉
]

+ |Φ〉, (7)

where |Φ〉 represents those states scattered into the atmosphere. Therefore the density matrix is

ρ|N00N〉 =
1

2
[TN

a |N0〉〈N0|+ TN
b |0N〉〈0N |+ (TaTb)

N
2 e−iNφe−iN∆φ|N0〉〈0N |

+(TaTb)
N
2 eiNφeiN∆φ|0N〉〈N0|+ · · · ].

(8)

And similarly, M&M′ states passing through the atmosphere is given by

|M :: M ′〉φ =

( M
∑

k=0

M ′

∑

k′=0

α(k, k′)|k, k′〉
)

+
M ′

∑

k=0

M
∑

k′=0

β(k, k′)|k, k′〉, (9)

with M > M ′ and

α(k, k′) =
1√
2

((

M

k

)(

M ′

k′

)

T k
aR

M−k
a T k′

b RM ′−k′

b

)

1

2

eik(φ+∆φ),

β(k, k′) =
1√
2

((

M

k′

)(

M ′

k

)

T k
aR

M ′−k
a T k′

b RM−k′

b

)

1

2

eik(φ+∆φ).

(10)

So we can get the density matrix of M&M′ states as

ρ|M ::M ′〉 =

M
∑

k=0

M ′

∑

k′=0

|α(k, k′)|2|k, k′〉〈k, k′|+
M ′

∑

k=0

M
∑

k′=0

|β(k, k′)|2|k, k′〉〈k, k′|

+

M ′

∑

k=0

M ′

∑

k′=0

α(∆M + k, k′)β∗(k,∆M + k′)|∆M + k, k′〉〈k,∆M + k′|

+

M ′

∑

k=0

M ′

∑

k′=0

α∗(∆M + k, k′)β(k,∆M + k′)|k,∆M + k′〉〈∆M + k, k′|.

(11)
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3 Measured phase operator and phase sensitivity

In order to get more of the phase information, we choose the same operator used in [9], which sums

up all the off-diagonal terms of the density matrix and provides sub-shot-noise sensitivity and can be

implemented with number-resolving photon counting detectors,

Â =
M ′

∑

r,s=0

(|M − r,M ′ − s〉〈M ′ − r,M − s|+ |M ′ − r,M − s〉〈M − r,M ′ − s|). (12)

In the MZI phase measurement, the phase sensitivity can be described as

δφ =
∆Â

|∂〈Â〉/∂φ|
, (13)

where ∆Â = (〈Â2〉 − 〈Â〉2) 1

2 , 〈Â〉 = tr[Âρ].

Based on Taylor expansion, the term containing ∆φ can be simplified as

〈eik∆φ〉 = 1 + ik〈∆φ〉 − 1

2
k2〈∆φ2〉+ · · · ≈ e−0.22k2D5/3k2

λC
2

nL. (14)

Using Â to measure N00N and M&M′ in the MZI system shown in Figure 1, we can obtain the phase

sensitivity as

δφN00N =

√

TN
a +TN

b

2 − (TaTb)Ne−0.44k2D5/3k2

λC
2
nL cos2 Nφ

|(TaTb)N/2e−0.22k2D5/3k2

λC
2
nLN sinNφ|

, (15)

δφM&M′ =

√

Q− S2e−0.44k2D5/3k2

λC
2
nL cos2 ∆Mφ

|Se−0.22k2D5/3k2

λC
2
nL∆MN sin∆Mφ|

, (16)

where

Q =

M ′

∑

k,k′=0

|α(∆M + k, k′)|2 + |β(k,∆M + k′)|2,

S = 2Re





M ′

∑

k,k′=0

α∗(∆M + k, k′)β(k,∆M + k′)



 .

(17)

In Eqs. (15) and (16), if the photon loss and phase fluctuation are ignored, the results of phase

sensitivity are δφN00N = 1/N and δφM&M′ = 1/∆M , which are the Heisenberg limit. When the phase

shift φ = π

2N or π

2∆M , we get the minimum phase sensitivity. As the wavelength is short enough, we can

obtain equaling integral multiple of φ = π

2N or π

2∆M at arbitrary distance through adjusting the optical

fiber delay, which makes the interferometer work at the optimal sensitivity.

4 Simulation analysis and SQL-contour

These above two entangle states can achieve super sensitivity detection in the MZI. As the atmospheric

transmittance and the phase fluctuation variance are related to the distance, the phase sensitivity becomes

worse as the distance increases. The distance where the sensitivity equals the standard quantum limit is

defined as the super-sensitive detection distance.

We take 810 nm infrared photons produced by 405 nm photons through SPDC as the source, which

is an typical wavelength for the generation of N00N state and was used by Afek in realizing high-N00N

states [15]. The aperture size is set as 10 cm. According to the atmospheric turbulence vertical profiles

model of spring in Hefei area, the turbulence structure constant is about 10−16m−2/3 at the height of

1 km [16]. Despite the photon loss and taking phase fluctuation into consideration, we get the relationship

between the minimum sensitivity and distance shown in Figure 2.
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Figure 2 Relationship between minimum sensitivity and

distance with phase fluctuation but no photon loss.

Figure 3 Relationship between minimum sensitivity and

distance with both phase fluctuation and photon loss.

In Figure 2, we take N00N state |10 :: 0〉, M&M′ states |20 :: 10〉 and |8 :: 2〉 as our analysis object.

The corresponding SQL is 1/
√
10 for |10 :: 0〉 and |8 :: 2〉, 1/

√
30 for |20 :: 10〉. As N = ∆M and the

photon loss is ignored, we can get sensitivity curves of |10 :: 0〉 and |20 :: 10〉 coinciding with Eqs. (15)

and (16). However, |20 :: 10〉 has the lager total photon number and lower SQL. So the super-sensitive

distance of N00N states is greater, 220 m for |20 :: 10〉 and 420 m for |10 :: 0〉, under the condition above.

At the same time, although having the same total photon number with |10 :: 0〉, the M&M′ state |8 :: 2〉
gets the super-sensitivity detection distance of 630 m, which is much better than the other two states.

This shows that the entangled Fock states with the same photon number difference are equally affected

by phase fluctuation. With the same total photon number, M&M′ states perform better than N00N

states. As SQL is inversely proportional to the total number, M&M′ states with less photons should be

considered to reach further super-sensitive distance under the influence of only phase fluctuation.

Influenced by the atmospheric attenuation, the detected photons decrease and the SQL for both N00N

and M&M′ states is no longer constant but increasing with the distance. Figure 3 shows that the sensi-

tivity curves move upward obviously when the photon loss is involved and the super-sensitive distances

for |10 :: 0〉, |20 :: 10〉 and |8 :: 2〉 drop to 245 m, 200 m and 475 m, respectively. As the phase fluctuation

affects states |10 :: 0〉 and |20 :: 10〉 equally, the perform difference in Figure 3 can be considered all

originated from the photon loss. Although both of the super-sensitive distances reduce, the former is

more affected. It is worthy noting that comparing with |10 :: 0〉, |8 :: 2〉 obtains better minimum phase

sensitivity at about 300 m without loss (see in Figure 2), but better performs at 158 m with the loss (see

in Figure 3). All of this shows the superiority of M&M′ states under photon loss.

In order to describe the influence of phase fluctuation and photon loss to the sensitivity of quantum

interferometer more intuitively, we calculate the contour lines of the phase sensitivity with attenuation

coefficient and atmospheric turbulence structure constant variables in a certain distance. Every point in

this coordinate represents a working condition. And we define SQL-contour as the certain contour line

which has the sensitivity equaling SQL. As the original point represents the ideal conditions, according

to the dividing line of the SQL-contour of a certain state, region near the origin means this state could

get super-sensitivity under those conditions.

With the SQL-contour, relationships between atmospheric environment and super-sensitivity of quan-

tum interferometer could be analyzed. Figure 4 shows the SQL-contour of four different states in

200 m. All the contours decrease monotonously. Taking N00N state |10 :: 0〉 and M&M′ states |12 :: 2〉
and |20 :: 10〉 which share the same photon number difference as research objects, N00N state covers the

area with stronger phase fluctuation with low photon loss. |20 :: 10〉 has the SQL contour lower than

|12 :: 2〉 state until the attenuation coefficient reaches 1.8 km−1. Because of the low number of total

photon number and tolerance to photon loss as an M&M′ state, |8 :: 2〉 owns the highest SQL-contour

in Figure 4, which means the best super-sensitive performance. The intersection of the SQL-contour for
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Figure 4 SQL-contour of different path entangled Fock states.

different states could be used as the reference point for source choosing. Taking the intersection (x, y) of

the SQL-contours of |10 :: 0〉 and |20 :: 10〉 in Figure 4, as example, we may choose |20 :: 10〉, and choose

|10 :: 0〉 when the attenuation coefficient is greater than x.

5 Conclusion

Phase sensitivity and super-sensitivity detection distance for path entangled Fock states (N00N and

M&M′ states) affected by both photon loss and phase fluctuation is researched in this paper. Based on the

atmospheric attenuation coefficient and the atmospheric turbulence structure constant, the relationship

between phase sensitivity and detection distance is discussed. The SQL-contour is defined to describe

the combined impact of photon loss and phase fluctuation, and provides references for interferometers’

source choosing. Simulation shows that MZI with path-number entangled source gets super-sensitivity at

the distance of hundreds of meters. States with the same photon number difference are equally affected

by phase fluctuation. States with higher total photon number only perform better than the lower ones

in high-loss environment. And super-sensitivity for M&M′ states with low photon number is the easiest

to reach. For now, the entangled source with large photon number is still a technical problem. But the

quantitative computation method of the super-sensitivity in this paper is still helpful for future quantum

radar design.
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