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Abstract Software-defined networking (SDN) introduces centralized controllers to increase network pro-

grammability drastically. Distributed control planes, in which multiple SDN controllers work together to man-

age a network, have been proposed to satisfy the requirements of large-scale networks, and different kinds

of load-balancing approaches have been proposed to balance the workloads among these controllers. Current

load-balancing approaches generally use switch migration, which adjusts the mapping between switches and con-

trollers dynamically according to controller workloads. These switch migration-based approaches face challenges

under burst traffic as a result of their overhead and longer detection periods. This paper proposes Flow Stealer,

a lightweight load-balancing method for distributed SDN controllers. Flow Stealer uses a low-cost flow-stealing

method, in which idle controllers share workloads temporarily with overloaded controllers by stealing flow events

from them. The flow-stealing method not only can react to changes of network traffic more quickly, but can also

reduce the frequency of switch migration. In addition, Flow Stealer incorporates both flow stealing and switch

migration to adapt to burst traffic and long-term traffic changes. Experimental results show that Flow Stealer

can balance the workloads among controllers more efficiently, especially under burst traffic.

Keywords software defined networking, load balancing, flow stealing, distributed controller, switch migration

Citation Song P, Liu Y, Liu T X, et al. Flow Stealer: lightweight load balancing by stealing flows in distributed

SDN controllers. Sci China Inf Sci, 2017, 60(3): 032202, doi: 10.1007/s11432-016-0333-0

1 Introduction

Software-defined networking (SDN) isolates the control plane from the data plane in a network, thereby

allowing developers to write applications to control switches directly, without concerning themselves with

low-level network infrastructure. In large-scale networks, such as data center netwotks, fully physically

centralized control cannot satisfy numerous remote requests from switches [1]. To improve control-plane

scalability, researchers have proposed distributed SDN controllers [2–6], in which multiple SDN controllers

manage disparate network regions, and each controller accesses a global shared network view to handle

remote requests. Therefore, compared with a physically centralized controller, a distributed control plane

can provide higher throughput and fault tolerance.

In a distributed control plane, statically configuring the map between controllers and switches can

cause load imbalance among controllers, as network traffic changes continuously. This load imbalance
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problem influences the performance of the control plane and becomes a key limitation of distributed

solutions. Switch migration is used by current load balance approaches [7–11] for distributed controllers, in

which the mapping between controllers and switches is reconfigured dynamically to achieve balanced load

distribution among controllers. In current methods, each controller detects its workload periodically and

synchronizes the load information with other controllers. When a load imbalance occurs, the overloaded

controller calculates a switch reassignment according to factors such as latency and distance, and then

adjusts controller workload by migrating switches from overloaded to idle controllers.

In data centers, network traffic comes from applications, with some generating burst traffic during

their execution, thereby causing hotspots in network regions. For example, MapReduce [12] can generate

burst traffic among different nodes in the shuffling phase. In large-scale data center networks, network

traffic changes frequently, and the peak flow arrival rate for a switch can be 10–100 times higher than the

average [13]. This kind of situation presents challenges to current load-balancing approaches, including

response latency, calculation and switch-migration overhead, and workload thrashing.

To improve the efficiency of load balancing in distributed controllers, this paper proposes Flow Stealer,

a lightweight load-balancing approach for distributed SDN controllers. Inspired by work stealing [14] in

task scheduling for multi-/many-core processers, Flow Stealer provides a low-cost flow-stealing method

to balance workloads under burst traffic or frequent traffic fluctuations. In Flow Stealer, idle controllers

share the workload of the overloaded controller temporarily by stealing flow events from overloaded

controllers. The overhead of flow stealing is low, since it neither recalculates switch reassignment nor

migrates switches.

If the load imbalance among controllers lasts for a long time, Flow Stealer still uses switch migration

to adjust load distribution. Compared with current switch migration-based load-balancing approaches,

Flow Stealer not only can react more quickly to changes in network traffic by stealing flows, but can also

reduce the frequency of switch migration under burst traffic.

The remainder of this paper is structured as follows. Section 2 analyzes problems in current load-

balancing approaches for distributed SDN controllers, and introduces the motivation of this paper.

Section 3 proposes our solution, and Section 4 describes the implementation of Flow Stealer. Section 5

presents a performance evaluation of Flow Stealer with a discussion of the results. Section 6 presents

related work, and Section 7 concludes the paper.

2 Motivation

According to measurements over real data centers [13], there are frequent hotspots in the network of data

centers running MapReduce applications, because burst traffic occurs in different MapReduce execution

phases, e.g., the shuffling phase needs to carry out an all-to-all communication, which generates traffic in

most of the links in the network. We can also observe that the number of flows generated per second in

data center networks changes frequently, and there is a significant difference between peak and median

flow arrival rates, with a peak value up to 300 M and a median rate between 1.5 M and 10 M. In these

situations, traffic spikes can lead some controllers in a distributed control plane to be overloaded, with

the result that the resources of their controllers cannot satisfy the requirement of network regions with

traffic spikes.

In current switch migration-based load-balancing approaches, each controller in the control plane checks

its workload periodically, and once a load imbalance occurs, any idle controllers check to share the work-

load of overloaded controllers. If idle controllers are found, the switch connections of the overloaded

controller are migrated to idle controllers after a switch-reassignment calculation; otherwise, additional

controllers join in the control plane, with recomputed switch reassignment. This mechanism faces chal-

lenges in large-scale data centers as a result of its overhead and latency.

We analyze the overhead of load balancing in the following two respects:

(i) Switch reassignment calculation overhead. When calculating switch reassignment, multiple

factors (CPU utilization, latency, distance, and memory) must be considered to find optimal reassignment,
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Figure 1 (Color online) Migration time under different SDN applications. (a) Learning switch application; (b) routing

application.

typically formulated by researchers as an integer linear program (ILP) [11]. Therefore, various heuristic

algorithms are used to compute reassignment, e.g., the greedy knapsack (GK), simulated annealing, and

first-fit decreasing heuristics. Although these algorithms can discover optimal reassignment, they have

a high computational complexity that limits scalability and requires developers to trade off efficiency

against reactivity [8].

(ii) Switch-migration overhead. After calculating reassignment, workloads are adjusted by mi-

grating switches using specific protocols, e.g., the four-phase switch-migration protocol proposed by Elas-

tiCon [7]. During migration, that protocol can guarantee that the migrated switch connection remains

active, while avoiding packet loss. However, the execution time of this protocol is affected by controllers’

workloads and flow handling times. When a switch is migrated out from an overloaded controller, the

migration time will increase from millisecond-level to second-level.

To verify our analysis, we test the migration time for various controllers. In our experiment, an

initial controller A migrates one switch connection to a target controller B. Both controllers A and

B execute the same application. All switches have the same flow arrival rate. Before the migration,

controller B manages only one switch, and we adjust the number of switches managed by controller A

to generate different workloads. The migration time is also tested under two different applications with

disparate flow handling times. Learning switch application with shorter flow handling time (about 42 µs)

maintains a global shared hash table which contains all of the mac tables of switches in the whole network.

When handling a new flow, learning switch application will transmit flows directly by querying the hash

table. Compared to learning switch application, routing application has longer flow handling time (about

200 µs). When a new flow arrives, routing application will calculate a forwarding path for the flow by

Dijkstra algorithm, and configure the switches along the forwarding path.

The results are shown in Figure 1, in which the dashed line indicates the maximum throughput of

controller A. As the figure shows, the migration time grows from millisecond-level to second-level as the

workload of controller A increases, because the execution times of phases 2 and 3 increase dramatically.

According to the four-phase switch-migration protocol, controller A must communicate with the migrated

switch repeatedly during phases 2 and 3, and if controller A is overloaded, the migration messages sent

to controller A cannot be handled in time, resulting in increases in the execution times of both phases 2

and 3. Furthermore, the flow handling times of different applications also affect the migration time, since

they can block the handling of migration messages in controller A. Comparing Figure 1(a) with Figure

1(b), we can observe that when the controllers execute the routing application, which has a longer flow

handling time, the migration time exceeds 10 s (log(total time)> 4 ms), while in a similar situation, the

migration time for the learning switch application is approximately 3 s.

In addition to the problem of overhead and latency, switch migration-based approaches can cause

thrashing in switch migration with burst traffic. For instance, when burst traffic occurs in a network
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Figure 2 Flow stealing between SDN controllers.

region managed by a controller and causes it to overload, the controller will migrate some switches to

its neighbor controller to balance workloads. When the burst traffic has passed, the neighbor controller

can migrate switches back to minimize the standard deviation of utilization. If the burst traffic occurs

periodically, switches will be migrated back and forth between controllers.

In switch migration, simply prioritizing switch-migration messages over the other switch-to-controller

traffic in the overloaded controller can reduce the overhead of switch migration. However, this method

neither reduces the overhead of switch-reassignment calculation nor avoids workload thrashing.

Some solutions, like DevoFlow [15], preconfigure switches statically to forward new flows directly

without sending out Packet in messages to avoid controller overload. This mechanismmust notify switches

regarding which flows can be forwarded directly; however, it is difficult for network managers to identify

burst traffic before the network runs.

Based on the above discussion, we can see that switch migration-based approaches have overhead

problems, and the detection period is expected to be relatively longer, with a longer response latency, to

control overhead and avoid thrashing. A lightweight load-balancing mechanism is required to solve this

problem.

3 Solution

This paper proposes Flow Stealer, in which a low-cost flow-stealing approach (mentioned in Subsection

3.1) is used to solve the load imbalance problem caused by burst traffic or frequent traffic fluctuation to

improve efficiency of load balance in distributed SDN controllers. Throughout load-balance processing

(mentioned in Subsection 3.2), Flow Stealer incorporates flow stealing with switch migration and balances

workloads among controllers in a fine-grained manner.

3.1 Flow-stealing approach

Compared with switch migration, flow stealing is a lightweight load-balancing approach for distributed

SDN controllers. In flow stealing, when a controller is idle, it steals flow events from an overloaded

controller and handles them immediately without migrating switches; if the overload duration exceeds a

threshold, the overloaded controller still migrates switches to other controllers to reduce its workload. By

stealing flows from overloaded controllers temporarily, an idle controller can react to burst traffic more

quickly. Furthermore, flow stealing can avoid switch migration in many cases, especially under burst

traffic.

Figure 2 shows the process of flow stealing. During the detection period, if controller B is idle, its

flow-stealing module chooses the nearest neighbor controller A as a victim, and then sends a steal request
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to controller A ( 1©), which contains the IP address, port, and remaining computing resources of controller

B. After receiving the request, controller A calculates the number of flows sent to controller B according

to the remaining computing resources of A and B, and then the flow-stealing module of A informs all

threads in the Parallel Network I/O module to offer flow events ( 2©). All threads in the Parallel Network

I/O module push flow events to the global event queue by competing for a mutex ( 3©). If fails, the thread

stops to handle the flow event without waiting for the mutex; The main thread in controller A obtains

flow events from the global event queue ( 4©). If the number of flows satisfies the steal request, the main

thread informs threads in the Parallel Network I/O module to stop pushing flow events and sends all

obtained events to controller B immediately ( 5©). After controller B receives those flow events, multiple

threads handle them concurrently and return the configuration messages to controller A ( 6©). Finally,

the Parallel Network I/O module of controller A sends the received configuration messages to switches

to route flows ( 7©).

If a controller receives a steal request while it is stealing flows, it denies the request. If a controller

fails a stealing attempt, it chooses the next-nearest controller to steal from, and so on. If it fails three

times, it rechecks its workload and then decides whether it must continue stealing.

Using flow stealing, controllers neither calculate switch reassignment nor migrate any switches. As a

result of this low-overhead characteristic, flows can be stolen frequently among controllers in a traffic-

fluctuation or burst-traffic situation. If all of the controllers are idle or overloaded, current elastic meth-

ods [7] can be used to adjust the number of controllers.

3.2 Load-balancing procedure

As mentioned previously, Flow Stealer incorporates both flow stealing and switch migration. Throughout

the load-balancing procedure, Flow Stealer extends the detection period of switch migration, which can

reduce the frequency of switch migration. During a detection period, Flow Stealer balances the workloads

among controllers by using lightweight flow stealing, and at the end of the detection period, if a long-term

load imbalance among controllers is detected, Flow Stealer calculates switch reassignment according to

the status of threads, and migrates switches to achieve load balance.

If switch migration is needed at the end of a detection period, two steps will be taken to reconfigure the

mapping between controllers and switches at that time: reassignment calculation and switch migration,

both of which consider the status of threads.

The switch-reassignment algorithm of Flow Stealer is shown in Algorithm 1, in which each controller

manages its network region and a network region can be further divided into multiple zones. In the switch-

reassignment algorithm, a region contains a set of switches managed by the same controller, and a zone is

a subset of its region. There is no intersection between any two zones. We use the “zone” to distinguish

the switches in a region according to a switch’s alternative controller. The network region managed by

an overloaded controller is referred to as an Overloaded Region (OR). The algorithm first chooses an

alternative controller for every switch in an OR according to the switch-to-controller distance and divides

the OR into multiple zones. For every switch in the OR, the switch-reassignment algorithm chooses

the nearest non-overloaded controller as its alternative controller. Switches with the same alternative

controller will comprise a zone.

Figure 3 shows an example of switch reassignment. There are five network regions in Figure 3, each

managed by a unique controller. Supposing that regions 1 and 4 are the ORs, region 1 is divided into

three zones according to the above process. Regions 2, 5 and 3 are the alternative controllers of zones

1–3 respectively. Region 4 cannot be an alternative controller, since it is the OR.

In a multithreaded controller, a switch connection is usually served by a unique thread, such as Flood-

light1) and Ryu2). If a controller is overloaded, there must be one or more overloaded threads in the

controller. The switch-reassignment algorithm counts the “hit times” for each zone, which indicates the

1) Floodlight. Version 1.0. http://www.projectfloodlight.org/floodlight.
2) Ryu. Version 1.0. http://osrg.github.io/ryu/.
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number of switches served by overloaded threads for the zone. Then, the algorithm ranks zones in de-

scending order according to the hit times of each zone (lines 11–13). In Figure 3, the hit times of zones

1–3 are three, one and two, respectively. Thus, we attempt to migrate switches in zone 1 preferentially.

Algorithm 1 Switch reassignment algorithm

Input:

Topology, load information, set of switches in an overload region S, set of controllers C, controller capacity vector, set

of zones Z, set of marked switches R, set of alternative controllers B

Output:

New assignment

1: Z = R = B = ∅

2: for each switch s in S do

3: /* Find a nearest controller b without overload for a switch*/

b← get new controller()

4: B ← b /*Add the alternative controller to B*/

5: if b has a corresponding zone z in Z then

6: z ← s

7: else

8: create new zone z in Z

9: z ← s

10: end if

11: if s is served by an overload thread then

12: R← s and rank Z

13: end if

14: end for

/*Try to migrate each zone*/

15: for each zone z in Z do

16: try migrate(z)

17: if success then

18: upgrade R

19: end if

20: end for

21: if satisfy Eq. (4) then

22: return

23: end if

/*Assign switches by GK Algorithm*/

24: while True do

25: for each switch s in R do

26: for each controller b in B do

27: /*Calculate the value if migrate s to b*/

value(b,s)

28: end for

29: end for

30: if a (b,s) pair has the minimum value then

31: migrate s to b

32: upgrade R

33: else

34: return

35: end if

36: if satisfy Eq. (4) then

37: return

38: end if

39: end while

When choosing the target controller in switch migration, we use the following three limitations:
∑

i∈Pk

ai 6 cT , ∀k ∈ Z, (1)

∑

i∈Pk

bi 6 mT , ∀k ∈ Z, (2)

diT 6 distanceMax, ∀i ∈ Pk, ∀k ∈ Z, (3)
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where Z is the set of zones in an OR, k is the k-th zone in Z, Pk is a set of migrated switches in k, i is

the i-th switch in Pk, T is the alternative controller of k, ai is the computing requirement of switch i, bi
is the memory requirement of switch i, and diT is the distance between switch i and controller T . cT and

mT are the computing and memory resources available in controller T , respectively, and distanceMax is

the allowed maximum distance between a switch and a controller. Eqs. (1) and (2) specify the computing

and memory limits of resources, whereas Eq. (3) limits the communication cost between a switch and a

controller.

The switches served by overloaded threads in a zone are marked, and only these marked switches can

be migrated. There are two steps in switch reassignment. First, the algorithm accesses each zone and

attempts to assign all marked switches to their corresponding alternative controllers. If Eqs. (1)–(3) are

satisfied, then all marked switches in a zone will be migrated. Otherwise, the algorithm does nothing and

accesses the next zone (lines 15–20). After all zones are traversed, all of the remaining marked switches

in the region compose a new set R. If the size of R satisfies (4), the switch-reassignment algorithm stops.
∑Num(Z)

k=1 Num(Pk) is the total number of migrated switches in network, and the default value of α is 0.5.

Num(R) 6 α

Num(Z)
∑

k=1

Num(Pk), 0 < α < 1. (4)

If Eq. (4) is not satisfied, we use GK algorithm to continue assigning switches in R to B, which is a

set of alternative controllers (lines 24–38). We model each controller in B as a knapsack. The capacity of

each knapsack is equal to the processing capacity of its corresponding controller. We consider the switch

as to be objects that have to be added to the knapsack, and model the weight of a switch as ai and bi.

Each iteration activates a single controller. This controller is chosen such that the distance between the

migrated switch and the alternative controller is the minimum. If Eq. (4) is satisfied or no switch can be

chosen, the switch-reassignment algorithm stops.

For most current reassignment algorithms, the number of chosen switches and that of alternative

controllers determine the reassignment cost. The switch-reassignment algorithm used by Flow Stealer

limits the number of switches to be migrated and the number of target controllers by choosing marked

switches and adjacent controllers. This algorithm not only can avoid reassigning the switches served by

non-overloaded threads, but also can reduce the computing cost.

When migrating switches, Flow Stealer utilizes the four-phase switch-migration protocol proposed by

ElastiCon [7]. To ensure that the migrated switches are served in time, the target controller assigns the

newly created switch connection to a thread with a lower load.
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4 Flow Stealer architecture

4.1 Flow Stealer overview

Flow Stealer uses a flat control plane, in which each controller manages a network region independently.

The global network view and workload information are shared among controllers. A Transmission Control

Protocol (TCP) connection is created between any two controllers, and information synchronization is

realized using the Publish/Scribe mechanism.

We built a prototype of Flow Stealer in Java by extending a Floodlight controller. The Flow Stealer

architecture is shown in Figure 4. In Flow Stealer, each controller has a unique main thread with two

responsibilities. First, it listens for and accepts requests for creating new connections, then it gains a

thread number from the idle thread queue, and assigns the newly created switch connection to an idle

thread. If the idle thread queue is empty, the main thread assigns the switch connections by round robin.

Second, during the execution of flow stealing, the main thread is in charge of notifying threads to insert

flow events into the global event queue and sending flow events to the stealer.

Each thread in a controller has a unique epoll instance and is bound to a CPU core. Different switch

connections are registered to disparate epoll instances to realize concurrent asynchronous network I/O.

Each thread listens to the read- or write-ready events from its switch connections. As shown in Figure 5,

when receiving write-ready events, the thread sends messages out directly; when receiving read-ready

events, the thread pushes the events into its event queue preferentially. When there are no read- or

write-ready events to receive, and the size of the event queue is larger than a threshold K (in this
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paper K = 100), the thread will handle the read-ready events in the event queue. If the thread’s event

queue is empty, it chooses a victim thread randomly and attempts to acquire read-ready events from the

victim thread’s event queue. If the event stealing succeeds, the thread will handle the events immediately;

otherwise, the thread will continue by stealing another thread until it obtains read- or write-ready events.

Every thread detects its workload periodically, if a thread is idle, it will put its thread number into the

idle thread queue.

LoadBalancer is a special SDN application running on the controller, which contains a global event

queue and three components: Load Detection, Flow stealing, and Switch Reassignment. The Load

Detection component is responsible for load calculation and synchronizing results with other controllers.

It decides whether to execute flow stealing or switch reassignment according to the controller’s workload.

During the detection period, if a controller is idle, its flow-stealing component will choose another

controller and execute the flow-stealing method to resolve load imbalances caused by frequent traffic

fluctuation or burst traffic. At the end of a detection period, if the controller’s workload remains high

during the period, the Switch Reassignment component will use the switch-reassignment algorithm to

migrate one part of the switches to other controllers to reduce the overloaded controller’s workload. The

execution of the LoadBalancer application has no impact on other applications’ execution.

4.2 Load calculation

As mentioned in Subsection 4.1, workloads among threads in a controller can be balanced by stealing read-

ready events from overloaded threads. On this basis, the system calculates the workload of a controller

according to the status of the controller’s threads. According to the execution of a thread shown in

Figure 5, when a thread is idle, it steals events from other threads. Therefore, the corresponding CPU

core remains busy, with the result that the workload of a thread cannot be expressed by CPU utilization

of each thread. Alternatively, we can use the success rate of stealing to indicate the workload of a

controller, since unsuccessful stealing often indicates that the victim thread is also idle. Therefore, the

more frequently stealing fails, the higher the number of idle threads in a controller, and the lower is the

workload of the controller, and vice versa. Flow Stealer divides a detection period into M equivalent

time intervals. The Load Detection component calculates the controller’s workload during an interval by

counting the stealing results, as shown in (5).

U(Qm) = 1−

∑N

j=1 unsuccess stealj
∑N

j=1 total stealj
. (5)

In (5), Qm is the m-th interval of the detection period H , U(Qm) is the controller’s workload during



Song P, et al. Sci China Inf Sci March 2017 Vol. 60 032202:10

Qm, unsuccess stealj is the failure count of the j-th thread, total stealj is the steal count of the j-th

thread, and N is the number of threads in the controller. Developers can adjust the frequency of flow

stealing by setting Qm.

At the end of Qm, if U(Qm) < β, the controller executes flow stealing (the default value of β is 0.5), and

the remaining computing resource Uremain in the steal request equals 1 − U(Qm). The victim controller

computes Sendvictim, the number of stolen flow events according to (6).

Sendvictim =

{

Uremain · HandleMax, Arrivevictim > HandleMax,

Uremain·Arrivevictim
2 , Arrivevictim < HandleMax.

(6)

In (6), Arrivevictim is the number of arriving events in an interval, and Handlemax is the maximum

number of events handled by a controller during an interval. Eq. (6) guarantees that the victim controller

provides an appropriate number of flows for the stealer controller.

At the end of a detection period H , the Load Detection component computes the average load U(H) for

H according to U(Qm), the workload stolen by other controllers VICTIM(Qm) and the workload stolen

from other controllers STEAL(Qm), as shown in (7). If U(H) > 0.8, switch reassignment is triggered to

balance the load.

U(H) =

∑M

m=1(U(Qm) + VICTIM(Qm)− STEAL(Qm))

M
. (7)

Flow Stealer calculates the average load of a thread during a detection period H according to (8).

U(Threadi) =
NConni

NSteali +NConni

. (8)

In (8), Threadi is the i-th thread in a controller (1 6 i 6 N). NConni
is the number of events coming

from the connections served by Threadi in H , and NSteali is the number of events stolen from other

threads in H . In the switch reassignment, if U(Threadi) > θ (the default value of θ is 0.8), then Threadi
is marked as an overloaded thread.

5 Evaluation

5.1 Methodology

To evaluate the load-balancing effect of Flow Stealer, we first test the load-balancing effect and overhead

of flow stealing. Then, we test the execution time of the switch-reassignment algorithm.

All of the experiments are executed on a quad-way server equipped with four six-core Intel Xeon

processors and 32 GB memory, in which 24 threads can be executed simultaneously. Flow Stealer also

runs on this server. Our experimental testbed uses Mininet3) to emulate a network of Open vSwitches4)

that are software-based virtual Openflow switches. We run Mininet on a PC machine that is connected

to the server via a Huawei switch equipped with two 10 Gb/s ports. In our experiments, we simulate

network traffic using a method similar to that used in ElastiCon [7], which modifies Open vSwitch to

inject Packet In messages to the controller without transmitting packets on the data plane. We use the

4-phases switch-migration protocol proposed by ElastiCon to realize the switch-migration process in all

of the experiments.

5.2 Flow-stealing test results

In the test of flow stealing, controllers run the Routing application that handles Packet in events by

using Dijkstra algorithm and returns Flow mod messages after calculation, while Mininet computes the

control-plane throughput by counting the number of received Flow mod messages.

3) Mininet. Version 2.2.1. http://mininet.org/.
4) Open vSwitch. Version 2.4.1. http://www.openvswitch.org/.
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5.2.1 Rebalancing under different burst-traffic duration times

To verify the advantage of flow stealing, we first test the load-balancing effect of both flow stealing and

switch migration in the situation of burst traffic. In this experiment, controllers A and B manage a

network containing 20 switches assigned to controllers randomly. Qm is set at 1 s.

We use Mininet to simulate burst traffic with different duration times. Prior to the burst traffic, both

controllers have the same low workload. When burst traffic arrives, the network generates 10000 Packet in

messages per second, and the flow arrival rate is distributed across all the switches in the network using

a Pareto distribution. At that time, controller A is overloaded, while controller B still maintains the

same workload as it had before the burst traffic. After the burst traffic, the flow arrival rate of each

switch recovers its initial value. We compare the effect of flow stealing with that of switch migration

under different burst-traffic duration times. In the test, flow stealing and switch migration are triggered

at the same time. In switch migration, we only migrate pre-specified switches and do not execute any

reassignment algorithms. The results are as shown in Figures 6 and 7.

Figure 6 shows changes of workload on controllers A and B during the test. In Figure 6, t1 and

t2 indicate the start and end times of burst traffic, respectively, while Duration(t1, t2) represents the

duration time of burst traffic, which is set at 5 s, 10 s, 15 s and ∞, respectively, in our test. In Figure 6,

the dashed line indicates the maximum throughput of the controller. Without LB indicates that no load

balancing occurs between controllers.

From Figure 6, we observe that the advantage of flow stealing is more evident when the duration is

shorter, as in Figure 6(a), in which the duration is 5 s, because after detecting burst traffic, the flows of

controller A are transferred to controller B immediately via flow stealing. By contrast, the workload of A

decreases slowly on the switch-migration approach, since that switch requires a much longer time, when

controller A is overloaded, as shown in Figure 1. With increasing Duration(t1, t2), the load-balancing

effect of switch migration gradually becomes close to that of flow stealing. As shown in Figure 6(c),

switch migration and flow stealing have a similar balancing effect after 15 s of burst traffic.

In Figure 6(d), we set t2 as ∞, which means that the burst traffic remains stable once it occurs, or

more accurately, that the traffic at this time is not “burst” but “stable”. We set the detection period H

at 20 s. As shown in Figure 6(d), after this detection period, switch migration occurs in the flow stealing,

because controller A detects that U(H) is greater than 0.8. The switch migration finishes immediately,

because flow stealing and switch migration are executed concurrently, and the workload of A is lower.

Figure 7 shows the average throughput of control plane during the test, from which we can observe that

the throughput under flow stealing is larger, since more flow events are handled by idle controller B

during the test.

5.2.2 Rebalancing under Pareto distribution

We also evaluate the benefit of flow stealing in the case in which multiple hotspots appear randomly and

are following a Pareto distribution. In the test, controllers A and B manage a fat-tree network containing

20 switches, with each controller initially assigned 10 switches randomly. The network generates 10000

Packet in messages per second, and the flow arrival rate is distributed across all of the switches in the

network according to the Pareto distribution. We repeat the traffic pattern with five different seeds.

Figure 8 shows the control plane throughput with and without flow stealing (FS).

From Figure 8, we can observe that throughput improvement varies widely depending on the seeds. If

the distribution generated with a seed is more skewed, then flow stealing can achieve better throughput

(Seeds 2 and 4). However, if the Pareto distribution distributes traffic across the switches on average,

the performance improvement of flow stealing is not significant (Seeds 3 and 5).

Table 1 shows detailed information regarding the Pareto distribution test. From the table, we can see

that the stealer can adjust the number of stolen flows based on its workload. In the case in which the

distribution is highly skewed, as in Seeds 2 and 4, more flow events are transferred to the stealer.
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Figure 6 (Color online) Workloads of controllers A and B under burst traffic. (a) Duration(t1, t2) = 5 s; (b) Duration(t1,

t2) = 10 s; (c) Duration(t1, t2) = 15 s; (d) Duration(t1, t2) =∞.

5.2.3 Scalability of flow stealing

We test the throughput of control plane with different stealing frequencies and stolen workloads. In this

experiment, each controller manages five switches with different flow arrival rates. We manually adjust

the number of Packet in messages sent by switches to overload half of the controllers. The results are

shown in Figure 9.
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Figure 8 (Color online) Throughput improvement brought about flow stealing under Pareto distribution.

Table 1 Detailed information regarding flow stealing under a Pareto-distributed traffic pattern

Seed
Flow arrive rate of

controller A (flows/s)

Flow arrive rate of

controller B (flows/s)
Stealer

Remain resource

proportion of stealer (%)

Stolen workload

(flows/s)

1 7688 2312 B 53 2688

2 9029 971 B 80 4029

3 2446 7554 A 51 2554

4 9608 392 B 91 4608

5 1174 8826 A 76 3826

In Figure 9, Qm is the time interval between steals; therefore, the bigger the Qm, the more frequently

the idle controller sends a stealing request. “Without FS” means “without flow stealing”. FS-i% is the

percentage of workload to steal in overloaded controllers.

As Figure 9 shows, flow stealing can improve the throughput of control plane. As the number of

controllers increases, the throughput improvement is more significant, since in such cases, more resources

of idle controllers are used to steal and handle more flow events from overloaded controllers. Another

conclusion is that stealing more flows can improve the throughput more significantly.

In Figure 9(a), when the number of controllers is 2, the throughputs of FS-20% and FS-60% are

improved approximately 7% and 29%, respectively, compared to the throughput of “Without FS”. When
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Figure 9 (Color online) Throughput under different stealing frequencies and stolen workload. (a) Length of Qm is 1 s;

(b) length of Qm is 0.5 s.

Table 2 Average overhead of flow stealing

Stolen flows per second

1000 2000 3000

Average communication delay (ms) 11.3 30.8 49.9

Number of additional messages exchanged between controllers 13 22 29

Average number of additional flows handled by stealer (flows/s) 846 1732 2474

the number of controllers is 8, the throughputs of FS-20% and FS-60% are improved approximately 16%

and 42%, respectively.

Comparing Figure 9(a) and (b), we can see that higher stealing frequency brings about larger through-

put when controllers steal the same workload every time. For example, when there are eight controllers

in the control plane, the throughput of FS-20% is improved approximately 16% in Figure 9(a), while the

throughput of FS-20% is improved approximately 31% in Figure 9(b).

5.2.4 Overhead of flow stealing

In flow stealing, there is overhead resulting from queue operation and transmission delay. We test the

average overhead of flow stealing when stealing different numbers of flows. In this experiment, two

controllers manage different numbers of switches with the same flow arrival rate (1000 flows/s), with one

controller overloaded and the other idle. Each test lasts 10 s, and Qm is set as 0.5 s. The results are

shown in Table 2.

From Table 2, we observe that the average communication delay of flow stealing is quite low, and it

increases gradually with the increasing number of stolen flows, since the number of additional messages

exchanged between controllers increases when more flows are stolen.

As the network scales up, more controllers will be used to manage more switches, and burst traffic will

occur frequently with higher flow arrival rate. In this situation, more overloaded controllers need to be

stolen, and flow stealing happens more frequently among controllers, which results in the growth of SDN

control-plane overhead. However, the time cost of flow stealing is quite low, meanwhile, higher stealing

frequency brings about larger throughput when controllers steal the same workload every time (as shown

in Subsection 5.2.3).

If the flow arrival rate is high when burst traffic occurs, idle controllers need to steal more flow events

from the overloaded controllers, which results in a less growth of flow stealing time cost. Nevertheless,

stealing more flows can also bring about a higher control-plane throughput according to the test results

in Subsection 5.2.3.

As mentioned in Section 2, the switch-migration overhead increases dramatically when the flow arrival

rate is high. If the load imbalance among controllers lasts for a long time, Flow Stealer still uses switch

migration to adjust load distribution. In this situation, flow stealing and switch migration are executed
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Figure 10 (Color online) Calculation time of switch-reassignment algorithm.

concurrently, which brings about a low switch-migration overhead (as shown in Subsection 5.2.1).

5.3 Switch reassignment test results

We test the overhead of the switch-reassignment algorithm proposed in this paper. In this experiment, we

use three controllers to manage a network with 0–5000 switches in a random topology. The flow arrival

rate of each switch and the distance between a switch and a controller are also set randomly. In the

beginning, each controller manages a similar number of switches. During the test, one of the controllers is

overloaded, while the others have lower loads. We test the calculation time of the algorithm with different

network scales. In addition, since α in (4) can affect the number of migrated switches in the switch-

reassignment algorithm, we set α at different values to observe the effect of α on the calculation time.

As shown in Figure 10, the calculation time of the switch-reassignment algorithm grows along with

the number of switches. Under the same network scale, a smaller α results in a longer calculation time.

Furthermore, the calculation time grows more quickly when α is smaller, primarily because a smaller α

causes more switches to be migrated, generally implying a longer calculation time.

6 Related work

Researchers have proposed a series of load-balancing approaches for distributed SDN controllers. Elasti-

Con [7] is an elastic distributed controller architecture in which the controller pool is dynamically grown

or shrunk according to traffic conditions. It also involves a Load Adaptation algorithm to detect and

adjust workload among controllers periodically. Pratyaastha [8] is also an elastically distributed con-

troller architecture. Differently from ElastiCon, it considers the memory resource allocation during the

switch assignment to minimize the cost of accessing the network status. BalanceFlow [10] uses a central-

ized super controller to partition all switch pairs in a network dynamically for the sake of realizing load

balancing. To solve the problem of BalanceFlow, DALB [9] proposes a new load-balancing method in

which every controller in the control plane makes decisions independently, and load balancing is realized

by negotiation among controllers. Bari et al. [11] synthesize the costs of statistics collection, flow setup,

synchronization, and switch reassignment to adjust the mapping between switches and controllers using

the GK and simulated annealing algorithms.

All of the above solutions use switch migration to balance workloads among controllers, that is, to

adjust the map between controllers and switches dynamically. In contrast, this paper uses flow stealing,

a lightweight load-balancing method, to balance workloads among controllers. Furthermore, our Flow

Stealer incorporates both flow stealing and switch migration to adapt to burst traffic as well as long-term

traffic change.
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In task scheduling for multi- or many-core processors, researchers have proposed the work-stealing

algorithm [14] in which an idle processor can steal tasks from other processors to balance loads. Compared

to traditional thread-migration-based task scheduling approaches, work stealing reduces the frequency

of thread migration and has lower cost. Currently, work stealing has been used in runtime systems of

programming language extensions to achieve fine-grained parallelism, e.g., Cilk [16] and TBB [17].

7 Conclusion

Distributed SDN controllers are generally used in large-scale data center networks to provide higher

throughput and scalability. Statically assigning switches to controllers can easily cause load imbalance

among controllers owing to dynamic traffic changes. However, current load-balancing approaches for

distributed SDN controllers generally use switch migration to balance workloads among controllers, but

this is not suitable for burst traffic owing to its overhead and longer detection periods.

This paper proposes Flow Stealer, a lightweight load-balancing approach for distributed SDN con-

trollers. To improve load-balancing efficiency under burst traffic, Flow Stealer uses the flow-stealing

method, in which idle controllers share workloads with overloaded controllers temporarily by stealing

flow events from them. Experimental results show that Flow Stealer can balance the workloads among

controllers more efficiently than other approaches.
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