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Abstract The piecewise planar model (PPM) is an effective means of approximating a complex scene by using

planar patches to give a complete interpretation of the spatial points reconstructed from projected 2D images.

The traditional piecewise planar stereo methods suffer from either a very restricted number of directions for plane

detection or heavy reliance on the segmentation accuracy of superpixels. To address these issues, we propose a

new multi-view piecewise planar stereo method in this paper. Our method formulates the problem of complete

scene reconstruction as a multi-level energy minimization problem. To detect planes along principal directions,

a novel energy formulation with pair-wise potentials is used to assign an optimal plane for each superpixel

in an iterative manner, where reliable scene priors and geometric constraints are incorporated to enhance the

modeling efficacy and inference efficiency. To detect non-principal-direction planes, we adopt a multi-direction

plane sweeping with a restricted search space method to generate reliable candidate planes. To handle the

multi-surface straddling problem of a single superpixel, a superpixel sub-segmenting scheme is proposed and a

robust Pn Potts model-like higher-order potential is introduced to refine the resulting depth map. Our method

is a natural integration of pixel- and superpixel-level multi-view stereos under a unified energy minimization

framework. Experimental results for standard data sets and our own data sets show that our proposed method

can satisfactorily handle many challenging factors (e.g., slanted surfaces and poorly textured regions) and can

obtain accurate piecewise planar depth maps.
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1 Introduction

The piecewise planar model (PPM) is a widely used technique for reconstructing urban scenes, where

the higher-order planarity prior significantly helps to overcome several challenging difficulties that tradi-

tional pixel-level stereos appear powerless to resolve, e.g., poorly textured regions, slanted surfaces, and

inevitable occlusions. Although many excellent algorithms have been proposed in recent years, a method

for automatically reconstructing a complex structured scene with completeness and accuracy remains

remote.
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Most existing PPM methods in the literature tend to fit spatial planes along a quite restricted number

of directions, or “principal directions” (e.g., the three mutually orthogonal directions in the Manhattan-

world model), and hence, only geometrically simplistic models can be achieved, which are inadequate

for modeling complex scene structures. Indeed, when a man-made scene is approximated by planar

patches, the majority of the component planes are found in general to lie in the principal directions.

However, the use of planes only along principal directions can rarely give a satisfactory approximation,

and hence, in practice planes with non-principal directions must also be detected. In addition, a common

practice in PPM is to assign a plane to each superpixel. Since image segmentation is a low-level process

and largely based on color-homogeneity, it is inevitable that either a superpixel corresponds to several

spatial planes or a spatial plane corresponds to multiple superpixels; hence, a mechanism that further

sub-segments superpixel or merges them is required. To address these problems, we propose a new

multi-view stereo method to reconstruct a more accurate piecewise planar depth map by incorporating

scene priors and across-view photo and geometrical consistencies under a multi-level energy minimization

framework, including plane-, superpixel-, and sub-superpixel-level. By virtue of such strong constraints

and the power of the plane potential expression and inference, our method can efficiently detect both

principal and non-principal direction planes and can also effectively handle the multi-plane straddling

problem of superpixels.

The remainder of this paper is organized as follows. In Section 2, we introduce related work, followed

by an overview of our method in Section 3. In Section 4, we outline two important preprocessing steps.

In Section 5, we elaborate our two-stage plane inference method. In Section 6, the plane-level depth map

refinement is discussed in detail. Section 7 presents our experimental results for various challenging data

sets, followed by some concluding remarks in Section 8.

2 Related work

Urban scenes exhibit strong structural regularities, including poorly textured regions and multi-plane

structures. The presence of such structures frequently makes it difficult for the traditional pixel-level

stereo methods to obtain a complete reconstruction. In order to solve this problem, the piecewise planar

assumption is usually assumed to yield a higher level reconstruction.

Most existing piecewise planar stereo methods [1–4] start from a set of candidate planes generated from

reconstructed sparse or quasi-dense data (e.g., spatial points and lines), and then, use global optimization

methods (e.g., Graph Cuts [5]) to infer the depth- or disparity-based planes in poorly textured regions,

where the reconstructed points are either few or of very low quality. In these methods, image over-

segmentation is usually adopted, because pixels of similar appearance are more likely to belong to the

same plane, and then, the space patch associated with an image segment (i.e., a superpixel) is modeled

as a plane.

In fact, such methods frequently heavily depend on the candidate planes used, as the initial omission

of a real plane is irreversible in the subsequent optimization. To address this problem, in some studies

adopted more complex segmentation schemes or similar were adopted means. For example, Bleyer et

al. [6] proposed a Patch Match-based stereo method to reconstruct slanted surfaces and large untextured

regions, in which various plane propagation steps are deployed to avoid the omission of real planes, yielding

better results. In addition, for two-view reconstruction, some pixel- or region-matching measurements

could still remain ambiguous because of fewer observations, and therefore, such methods are not effective

for complex scenes.

In contrast, multi-view piecewise planar stereo could be more effective for completely reconstructing

complex scenes, because of the availability of more observations and constraints. However, the traditional

exhaustive plane sweeping methods [7], which directly determine the optimal planes associated with

superpixels, usually lead to high computational complexity and low reliability as a result of the large

size of the search space, and hence, are not practical in most cases. To solve this problem, current

methods tend to align the sweeping directions to several specific scene directions. Among these methods
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is Furukawa’s [8], which performs the reconstruction of textureless regions of a scene by assuming the

Manhattan-world model based on initial 3D-oriented points obtained from PMVS [9]. The method first

obtains a set of candidate planes along three orthogonal scene directions, and then, assigns each pixel

an optimal plane by pixel-wise plane labeling under the MRF framework. As a result, the method is

not suitable for complex scenes with more than three scene directions. Mičuš́ık et al. [10, 11] restricted

scene directions through vanishing points and performed a superpixel-based dense reconstruction of urban

scenes. However, the method can erroneously suppress a slanted plane, the normal vector of which is

not consistent with the predefined main directions. Gallup et al. [12] extended the traditional plane

sweeping method to account for non-fronto-parallel surfaces and performed multiple plane sweepings,

where the sweeping directions were aligned to the expected surface normals of the scene. Clearly, such a

method is not robust to complex scenes, because only a few sweeping directions are involved. Gallup et

al. [13] also performed a piecewise planar reconstruction by incorporating high level semantic information

obtained by pre-segmenting images into planar and non-planar regions through a color- and texture-based

classification model. However, although such a preprocessing step does implicitly enhance the reliability

of the piecewise planar assumption, it also causes the entire method to be heavily dependent on the

accuracy of planar and non-planar segmentation, a difficult problem in itself.

Instead of restricting scene directions, Sinha et al. [14] first used sparse spatial points and line segments

to generate candidate planes, and then, recovered a piecewise planar depth map by solving a multi-label

MRF optimization problem. However, this method may incur a higher computational load in order to

discover candidate planes of small size in the scene by almost exhaustive plane fitting. Even so, some

real planes may still be missed because of the nature of sparse initial spatial points and line segments.

Similarly, the method of Kim et al. [15] may also miss real planes, in particular for very slanted planes,

since the candidate plane sampling along camera rays via only three corners of each superpixel could be

unreliable because of the segmentation inaccuracy of the superpixel. In contrast to the above methods,

that of Chauve et al. [16] first extracted all possible planes from unstructured spatial points using a

region growing approach, and then, formulated the problem of piecewise planar reconstruction as a

labeling problem of 3D space into empty or occupied regions. In fact, this method may not be robust

to the noisy spatial points, as region growing can easily be entrapped in erroneous solutions. Kowdle et

al. [17] proposed a piecewise planar layer-based multi-view stereo method under an energy minimization

framework that combines stereo and appearance cues. This method is related to ours; however, it focuses

largely on object segmentation according to the resulting piece-wise planar depth map and is not suitable

for large-scale complex scenes. Recently, Bodis-Szomoru et al. [18] proposed a piecewise planar modeling

method based on sparse spatial points and superpixels to generate an approximate model of the scene.

In fact, although such a method is fast, it may be unreliable for plane inference, because an insufficient

number of candidate planes is generated by sparser spatial points. To address this problem, this method

assumes that each superpixel is sufficiently large to contain an adequate number of spatial points for

plane fitting. However, such a pre-processing stage may be problematic, since a spatial patch with larger

depth changes corresponding to a superpixel of large size cannot be reasonably modeled by a single plane.

3 Overview and contributions

This study focused mainly on energy-based multi-view piecewise planar stereo. Given multiple calibrated

images, our goal was to recover complete piecewise planar depth maps instead of incomplete or simplistic

ones reconstructed by traditional pixel-level or piecewise planar stereos. As a whole, our proposed method

is a natural combination of pixel- and superpixel-level multi-view stereo and is particularly concentrated

on the generation of an adequate candidate plane set and assigning an optimal plane for each space patch

of the scene under the energy minimization framework. As shown in Figure 1, our method comprises

three main components: preprocessing, plane inference, and depth map refinement. Each component is

elaborated in the subsequent sections.

The main contributions of our work can be summarized as follows:
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Figure 1 Flowchart of proposed method.

(1) We propose a robust candidate plane generation method for the complete reconstruction of urban

scenes that includes energy-based plane optimization and plane sweeping along multiple directions, rather

than merely along three orthogonal scene directions (i.e., the Manhattan-world model) as is common in

the state-of-the-art algorithms [8, 11]. This allows one to recover smaller planar scene structures and

obtain more accurate reconstruction results.

(2) We propose a novel and robust multi-level energy-based multi-view piecewise planar stereo method

for complex scenes, which incorporates a variety of constraints and priors, such as photo-consistency,

occlusion penalty, and geometric relations between spatial planes.

(3) We propose an effective plane-level depth map refinement method for which a new higher-order

potential is designed to relax the hard constraint that all the pixels within a superpixel must have the

same plane label, in order to generate more accurate reconstruction results.

4 Preprocessing

In this section, two important preprocessing steps are introduced: semantic constraint and piecewise

planar prior.

4.1 Semantic constraint

In order to speed up the reconstruction process and reduce possible unnecessary interference by unrelated

regions, such as sky and ground, we first adopt a rapid region-based semantic segmentation method [19]

to extract the building regions in the current image. In fact, such a semantic segmentation also enhances

the reliability of the piecewise planar assumption, because it effectively excludes those regions where

the assumption is violated. Note that, for complex scenes, the semantic segmentation could also lead

to inaccuracies (e.g., a small part of the sky regions is erroneously taken as a building region and vice

versa) in the building region segmentation of some images. In practice, since most building regions can

be correctly segmented, these inaccuracies were frequently considered negligible in this study.

4.2 Piecewise planar prior

In addition, we also use the piecewise planar priors that pixels of similar appearance are more likely

to belong to the same plane and over-segment the building regions into a set of superpixels using the

mean-shift image segmentation algorithm [20]. Note that a superpixel of larger size may not be modeled

as a plane, since the corresponding spatial patch may straddle two or more planes. Therefore, in this

study, we adopted smaller spatial and range parameters values (e.g., 3, 2) in the mean-shift algorithm

to segment the current image. Clearly, considering the efficiency, these parameters values can also be
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Figure 2 Robust two-stage plane inference (R1 = R∗

1 ∪R2, R∗

1 ∩R2 = ∅. The set of superpixels with assigned optimal

planes is shaded gray).

slightly increased to reduce the number of superpixels, in particular for the segmentation of high resolution

images.

5 Robust two-stage plane inference

Urban scenes contain many regularities (e.g., piecewise planarity) and usually have a restricted number

of scene directions. In general, initial spatial points (or depth values) distribute mainly along several

specific scene directions. Further, if a superpixel contains at least three reconstructed spatial points, the

corresponding spatial plane can be fitted using RANSAC-like [21] methods and its normal is more likely

to be consistent with these scene directions. For the convenience of description, here, we call these scene

directions “principal directions”; our two-stage plane inference is outlined in Figure 2.

Given a reference image Ir and its k neighboring images (i.e., the images sharing a sufficient number

of common visible spatial points){Ni} (i = 1, . . . , k), let us denote the set of all the over-segmented

superpixels of building regions in Ir by R, the set of superpixels that can be successfully modeled as

planes by R0 ⊂ R and the corresponding plane set by H0, and the remaining superpixels by R1 ⊂ R.

Then, the goal of two-stage plane inference is to assign an optimal plane to each superpixel s ∈ R.

Note that a plane in H0 obtained by RANSAC-style methods could be false because of the fitting of

some unreliable spatial points and needs to be eliminated to enhance the reliability of the plane inference

(see Subsection 5.3). Moreover, in order to obtain a complete depth map, each superpixel in R1 also

needs to be assigned an optimal plane along either the principal or non-principal directions. As shown

in Figure 2, in this study, the problem was solved by performing robust two-stage plane inference along

the principal and non-principal directions, respectively.

In the next sections, we first introduce the robust superpixel-based energy formulation and two candi-

date plane generation methods for the two-stage plane inference, and then, describe the overall process

of the plane inference.

5.1 Superpixel-based energy formulation

For the problem of plane inference, the energy function in our energy formulation is defined on the set

of superpixels R; the associated label set L is the indices of the candidate planes. Let fs ∈ L denote the

current label assigned to superpixel s ∈ R. Now, our goal is to find the optimal solution f such that the

energy function E (f) defined in (1) is minimized:

E (f) =
∑

s∈R

Edata (s, fs) + λsmo ·
∑

t∈N(s)

Esmooth (fs, ft) , (1)
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where λsmo is the weight of the smoothness term and N(s) denotes all the neighboring superpixels of the

superpixel s.

Next, we elaborate the data term Edata (s, fs) and pair-wise smoothness term Esmooth (fs, ft).

5.1.1 Data term

The data term is comprised of three components: the photo-consistency measure Epho (s, fs), geometric

constraint Egeo (s, fs) and plane prior. First, we define the basic data term consisting of Epho (s, fs) and

Egeo (s, fs) as

E′
data (s, fs) = κ · Epho (s, fs) + (1− κ) · Egeo (s, fs) , (2)

where the constant κ is used to adjust the weight of the geometric constraints against the photo-

consistency measure.

(1) Photo-consistency measure

Let Dr and {Di} (i = 1, . . . , k) respectively denote the initial depth maps corresponding to image Ir

and {Ni} (i = 1, . . . , k). For a superpixel s ∈ R, if the cost of a single pixel p ∈ s with respect to a

neighboring image Ni and a plane H is Cs (p,H,Ni), then Epho (s, fs) is simply the sum of all such costs

over all the neighboring images and over all the pixels belonging to s. Therefore, we first give a definition

of the cost, Cs (p,H,Ni).

Given p ∈ s, let P denote the intersection point of its back-projection ray with the plane Hs corre-

sponding to the label fs, M the set of the pixels with the reconstructed depth value in depth map Di,

and M the set of pixels without depth value. In addition, let H(p) denote the projection point of P in

neighboring image Ni induced by the plane Hs and d(H(p)) the depth value of P with associated image

Ni.

Then the cost Cs (p,H,Ni) is defined as

Cs (p,Hs, Ni) =















min (‖Ir (p)−Ni (Hs(p))‖ , δ),

λocc,

λerr,

Hs (p) ∈ M,

Di (Hs (p)) 6 d (Hs (p)),

Di (Hs (p)) > d (Hs (p)),

(3)

where ‖Ir (p)−Ni (Hs(p))‖ denotes the absolute difference of the normalized color (i.e., the value is

between 0 and 1) at p ∈ Ir and Hs (p) ∈ Ni, and the parameter δ (set to 0.5 in this paper) is a truncation

threshold to address the robustness concern related to occlusion regions. The constants λocc and λerr are

respectively the occlusion penalty and the free-space violation penalty.

In (3), the first case is meant that if Hs(p) is in regionM , plane Hs is more likely to be a real plane, and

the photo-consistency cost is measured by the dissimilarity of color distribution. The second case means

that if P is occluded by a reliable spatial point (i.e., the spatial point has been verified as a reliable one

in the reconstruction process) with depth value Di(Hs(p)), a penalty constant λocc is assigned. The third

case indicates that if P occludes a reliable spatial point with depth value Di(Hs(p)), a larger penalty is

needed, because a reliable spatial point is unlikely to be occluded. In this case, λerr should be larger than

λocc.

Thus, the photo-consistency measure Epho (s, fs) is simply defined as

Epho (s, fs) =
1

k · |s|

k
∑

i=1

∑

p∈s

Cs (p,Hs, Ni) . (4)

Here, the label fs is the index of the plane Hs and |s| is the number of pixels in superpixel s.

(2) Geometric constraint

In practice, if we have obtained some spatial points, the projections of which are within superpixel

s, the optimal plane associated with superpixel s can be reliably determined from the known candidate

planes. Clearly, the candidate plane that is closer to these spatial points is more likely to be the real
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plane associated with superpixel s; then, we formulate the geometric constraints as

Egeo (s, fs) =

{

λdis, |Ps| = 0,
1

1+e−d(Ps,Hs) , |Ps| > 0,
(5)

where Ps is the set of known spatial points, d(Ps, Hs) the average distance of points in Ps to the plane

Hs, and λdis the distance penalty.

In fact, for superpixel s, the optimal plane is usually more likely to be the plane with the highest prior,

unless the corresponding local evidence (e.g., the photo-consistency cost) strongly disagrees. Here, the

plane prior p(Hs) is defined as the ratio of the number of the spatial points belonging to the plane Hs to

the total number of the spatial points belonging to all the planes along this scene direction. Note that,

at the initial stage, each superpixel defines its own plane; the corresponding plane prior is simply set

to 1.

Then, as in the method presented in [12], the data term with the plane prior is

Edata (s, fs) ∝ E′
data (s, fs)− 2σ2 log (p(Hs)) , (6)

where the scalar σ is set empirically.

Note that, in the process of the two-stage plane inference, p(Hs) in (6) is automatically updated

within each iteration, since more planes are reliably determined along either the principal or non-principal

directions. That is, p(Hs) becomes increasingly important to the geometric constraints and the photo-

consistency measure. In practice, this usually allows the plane inference process to converge faster.

5.1.2 Smoothness term

The pair-wise smoothness term we used is defined as

Esmooth (fs, ft) = ωst · δ (fs 6= ft) , (7)

where δ (x) is the indicator function that equals 1 if x is true, and 0 otherwise, and ωst is a discrepancy

penalty for neighboring superpixels s and t.

According to the piecewise planar assumption, the smoothness term should encourage neighboring

superpixels to take the same plane label or the parameters of the planes should vary smoothly between

similar colored regions. Therefore, ωst should be adjusted adaptively according to the color dissimilarity

and the length of the boundary between neighboring superpixels; it is defined as

ωst = bst · (1− ‖c (s)− c (t)‖) · ‖n (s)− n (t)‖ , (8)

where c(s) is the mean color normalized to a range of 0–1 of superpixel s, n(s) is the unit normal vector

of the plane Hs corresponding to the label fs, ‖·‖ could be any error measure, and bst is the length of

the shared boundary between superpixels s and t, divided by the shorter superpixel circumference.

Clearly, if the color difference between two superpixels is smaller and the boundary between them is

longer, the corresponding smoothness constraint should be stronger.

5.2 Candidate plane generation

In this section, we focus on the generation of suitable candidate planes for the two-stage plane inference

first by energy-based plane optimization and then by multi-direction plane sweeping. Note that our plane

sweeping method is based on the resultant depth map of the first-stage plane inference, and hence, its

search range is much reduced, despite its inherently exhaustive search nature.
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5.2.1 Energy-based plane optimization for principal-direction planes

In fact, not only does H0 usually contain some outliers, but also a large proportion of these are nearly

co-planar because of image over-segmentation. Hence, it is desirable to fuse slightly different planes into a

globally optimal one under a certain criterion. In addition, as shown in Figure 2, the principal directions

also need first to be determined from H0 to facilitate the subsequent plane inference. In other words, a

small number of optimal planes that best explain the initial structures of the scene needs to be selected

from H0 to act as the label set to perform the first-stage plane inference for superpixels in R1.

Conceptually speaking, this problem can also be solved by applying existing multi-model fitting meth-

ods, such as PEaRL [22, 23] or RCMSA [24] directly over initial spatial points or depth maps. However,

such methods usually tend to miss many real planes, since they are primarily concerned with fitting

sparse spatial points.

Inspired by the PEaRL algorithm, here, we formulate the problem of extracting principal-direction

planes as a plane labeling problem under an energy minimization framework. Since our method is an

improvement on PEaRL, we first summarize the main steps of PEaRL as follows.

(1) Propose: randomly sample data points (e.g., spatial points) to generate initial candidate models

(e.g., planes).

(2) Expand: perform model optimization based on initial or pruned candidate models via α-expansion

[5] for a predefined energy function. If the energy does not decrease, then stop.

(3) Re-estimate: prune candidate models and obtain a new set of models; then go to Step (2).

In practice, the standard PEaRL algorithm may be problematic for the following reasons.

(1) The spatial coherence assumption, i.e., neighboring data points correspond approximately to the

same model, is not always valid, because the neighbors computed by Delaunay triangulations are not al-

ways true spatial neighbors, which usually leads to erroneous results caused by the smoothness constraints

in the energy function.

(2) In PEaRL, a larger set of model proposals usually leads to better solutions, since it is more likely

to contain good model proposals. However, randomly sampling data points to generate model proposals

frequently incur a higher computational load and could also miss some likely models if the number of

sampling is small.

(3) Outliers in the model proposals at each iteration may reduce the reliability of the next “Expand”

and “Re-estimate” step.

In this study, the above three points were addressed by formulating the plane labeling problem directly

over the set of superpixels R0. Specifically, let L denote the label set that is originally constructed by

the indices of H0 and pruned in the “Re-estimate” step. Currently, our goal is to assign each superpixel

s ∈ R0 a label fs ∈ L such that the energy function E(f) defined in (9) is minimized:

E (f) =
∑

s∈R0

Edata (s, fs) + λsmo ·
∑

t∈N(s)

Esmooth (fs, ft) + λlab ·
∑

L∈L

Elabel (f) . (9)

Here, λsmo and λlab are respectively the weight of the smoothness term and label term.

In (9), the data term Edata (s, fs) encodes the geometric errors caused by assigning label fs to a

superpixel s and is defined as

Edata (s, fs) = d (Ps, Hs) , (10)

where d(Ps, Hs) is defined in (5).

The smoothness term Esmooth (fs, ft) is the same as that in (7).

The label term Elabel(f) is used to penalize the number of labels in the solution f in order to obtain

a small number of planes that can best explain the scene structure. It is defined as

Elabel (f) = e−λ0·|L| · δL (f) , (11)

where |L| is the number of superpixels assigned to label L after the “Expand” step and the model

complexity penalty λ0 is a constant and selected empirically. The indicator function δL (·) is defined on
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label subset L ∈ L as

δL (f) =

{

1, ∃s : fs = L,

0, otherwise.
(12)

As compared to the standard PEaRL algorithm, our improved energy formulation has the following

three advantages:

(1) A reliable spatial neighborhood system and adaptive smoothness constraints can be constructed

effectively, which helps to enhance the reliability of the plane optimization;

(2) The planes in H0 are more reliable, since a superpixel with homogenous color distribution is more

likely to be associated with a real plane;

(3) The number of plane proposals is not excessively large, which helps to enhance the computational

efficiency of the “Expand” and “Re-estimate” steps.

In general, after the current “Expand” step, correct labels (i.e., planes) can frequently find more

spatially coherent inliers (i.e., superpixels 1)), while erroneous labels obtain fewer or no inliers. In

addition, the erroneous labels can be effectively detected and further assigned to the optimal inliers

in the process of the two-stage plane inference (see Subsection 5.3).

5.2.2 Multi-direction plane sweeping for non-principal-direction planes

After the plane inference along the principal directions, many superpixels in R1 can be assigned a reliable

plane, as shown in Figure 2. These superpixels are denoted by R∗
1 ⊆ R1 and the remaining superpixels by

R2 ⊆ R1. Evidently, the plane corresponding to superpixel s ∈ R2 needs to be further inferred. However,

the planes along non-principal directions cannot easily be determined because of various uncertainties, and

therefore, we resort to a plane sweeping approach to generate candidate planes for the second-stage plane

inference. Conventional multi-view plane-sweep-based stereo methods sweep planes either exhaustively

over all the possible scene directions or only along several specific directions. Clearly, exhaustive sweeping

would lead to a larger number of candidate planes, and hence higher computational complexity. However,

very constrained sweeping is not suitable for complex scenes. In this study, the exhaustive plane sweeping

could be effectively simplified, because the solution space of the plane inference problem for superpixels

in R2 has been dramatically reduced by the known planes corresponding to superpixels in R0 ∪R∗
1.

In practice, for a candidate plane Hs of superpixel s ∈ R2 in the reference image, the plane Hs could be

considered unreliable if the photo-consistency measure Epho (s, fs) is too large. Therefore, we sample the

hemisphere of all visible surface normals and compute the Epho (s, fs) value of each plane along each scene

direction. Finally, the most probable K (set to 10 in this paper) planes with smaller Epho (s, fs) values

are selected from those planes for each superpixel s, and all such selected planes for all the superpixels

in R2 are used to constitute the label set for the second-stage plane inference.

5.3 The plane inference process

Our two-stage plane inference is performed first along the principal directions and then along the non-

principal directions. In each stage, in order to enhance the robustness of the plane inference, those

superpixels that are assigned to unreliable planes are detected in time and further inferred. Therefore,

an iterative manner is adopted.

In each iteration, for a superpixel s, the percentage ρ of the number of pixels with reliable depth values

to the total number of pixels is first computed after eliminating the outliers of the current depth map

based on the depth consistency measure [25]. Then, if the percentage ρ is smaller than a predefined

threshold ϑ, the corresponding plane assigned to s is considered unreliable and is updated in the next

iteration. Similarly to that for the reference image, the plane inference is also performed over its multiple

neighboring images (e.g., left and right neighboring images) in order to detect unreliable planes.

Moreover, at each stage, the iterative process should stop when no superpixel is updated. To achieve

this, we store those superpixels that are not assigned reliable planes at stage 1 to r1, and those at

1) A spatial plane can be associated to a number of superpixels in the reference image. If this plane is the real plane

corresponding to a superpixel, the superpixel is called an inlier of this plane, and otherwise an outlier.
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stage 2 to r2. Accordingly, the number of such superpixels during the ith iteration is
∣

∣ri1
∣

∣ or
∣

∣ri2
∣

∣, and

then, the corresponding plane inference stops if
∣

∣ri1
∣

∣ or
∣

∣ri2
∣

∣ no longer change at two successive iterations.

In addition, we also store the set of the optimal planes produced in the two-stage plane inference to Hdmo,

which is used in the subsequent plane-level depth map refinement.

The process of the plane inference is summarized in Algorithm 1.

Algorithm 1 Robust two-stage plane inference

Input: initial depth map D0;

Output: updated depth map D and reliable plane set Hdmo;

Initialization: r1 = φ, r2 = φ, and D = D0;

% of the plane inference along principal directions

1: Generate candidate plane set along principal scene directions (see Subsubsection 5.2.1);

2: While r1 = φ or
∣

∣

∣
ri+1
1

∣

∣

∣
−

∣

∣ri
1

∣

∣ > 0

3: Solve (1) using Graph Cuts;

4: Update D, detect unreliable planes, and add the corresponding superpixels to r1;

5: Update the priors of all candidate planes;

6: Endwhile

7: Save all the reliable planes to Hdmo.

% of the plane inference along non-principal directions

8: Generate candidate plane set along non-principal scene directions (see Subsubsection 5.2.2);

9: While r2 = φ or
∣

∣

∣
ri+1
2

∣

∣

∣
−

∣

∣ri
2

∣

∣ > 0

10: Solve (1) using Graph Cuts;

11: Update D, detect unreliable planes, and add the corresponding superpixels to r1;

12: Update the priors of all candidate planes;

13: Endwhile

14: Save all the reliable planes to Hdmo.

In fact, at the first stage, since most of the initial planes are distributed along principal directions and

the plane priors are incorporated into the energy function, more planes associated with superpixels in

R1 can be reliably determined. Then, the corresponding constraints produced by the planes along the

principal directions become tighter, and thus, the performance of the exhaustive plane sweeping and the

plane inference along non-principal directions at the second stage is fast. Moreover, all the superpixels

with ρ > ϑ are considered as constants in iterations. Hence, Algorithm 1 can always converge rapidly.

6 Plane-level depth map refinement

After the two-stage plane inference, each superpixel of R is usually assigned a relatively reliable plane.

Unfortunately, in complex scenes, some over-segmented superpixels could straddle two or more planes with

larger depth changes and cannot be reasonably modeled by single planes. Therefore, the planes associated

with such superpixels could be unreliable, and usually have a smaller ρ value (see Subsection 5.3). To

address this issue, an effective plane-level depth map refinement process is performed via incorporation

of the robust Pn Potts potentials.

More specifically, for superpixel s, if the ρ value is small, the associated plane is regarded as unreliable,

and then, the pixels in s are classified into two sets, one with reliable depth values denoted as s0 and

the second without depth values denoted as s0. Then, we consider s0 belongs to a plane, but s0 is

further segmented according to their color similarity by an affinity propagation (AP) algorithm [26].

Further, we eliminate small sub-superpixels by merging them with other sub-superpixels according to

the color similarity, since a larger sub-superpixel usually has a better distinctiveness than a smaller

one. In fact, such a merging process also reduces the number of variables in the higher-order potential,

which helps to speed up the subsequent energy minimization. Here, let {si} (i = 0, 1, . . . ,m) denote

the set of partitioned sub-superpixels. Clearly, the more reliable plane for sub-superpixel si should be

further inferred such that the reconstructed depth values of pixels belonging to si also satisfy the depth

consistency measurement [25]. In this work, we adopt the robust Pn Potts model [27] to solve this
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problem. The robust higher-order potential is defined as

Ehigher(s) =

{

ρ
Q
·G (s), if ρ 6 Q,

G (s), otherwise,
(13)

where Q is the truncation parameter, which controls the rigidity of the higher order potential, and G(s)

is a quality measurement of superpixel s, as

G (s) = α · exp

(

−

∑

si∈s (c (si)− µ)
2

β ·m

)

, (14)

where µ =
∑

si∈s c (si)
/

m, c (si) is the average color of sub-superpixel si, and the scalars α, β adjust the

magnitude and sharpness of G(s).

Obviously, the smaller the color difference between si ∈ s and sj ∈ s, the greater is the chance of s

being a true superpixel, and the planes Hsi and Hsj are more likely to be the same one, which should

impose a larger penalty on superpixel s. Otherwise, a smaller penalty should be imposed to encourage

the difference of Hsi from Hsj or Hs. On the other hand, the smaller ρ is, the lower is the reliability of the

superpixel, and the robust Pn Potts model imposes a smaller penalty on it such that each sub-superpixel

si is encouraged to take a plane other than Hs. Given ρ, if the truncation parameter Q is larger, the

penalty is relatively small, and then, sub-superpixel si is more likely to be assigned to a plane other than

Hs.

Finally, let Rdmo denote the union set of all the good quality superpixels with ρ > ϑ and all the

sub-superpixels. Then, our energy function is formulated over Rdmo by incorporating the higher-order

potentials Ehigher(s) into the pair-wise energy function defined in (1) as

E (f) =
∑

s∈Rdmo

Edata (s, fs) + λsmo ·
∑

t∈N(s)

Esmooth (fs, ft)+λhig ·
∑

s∈Rdmo

Ehigher(s), (15)

where λhig is the weight of the higher-order term.

According to the method in [27], the robust Pn Potts model can be transformed to a pair-wise energy

by incorporating a small number of additional auxiliary nodes, and minimized by α-expansion. Note that

all the superpixels with ρ > ϑ and sub-superpixels with reliable depth values are considered as constants

in this step, and the current label set is the indices of planes associated with Hdmo obtained by the

previous two-stage plane inference. Moreover, we found empirically that a single minimization for (15)

is sufficient, and no iterations as in the two-stage plane inference are needed.

7 Experimental results

To evaluate the performance of our method, we conducted experiments on several data sets of scenes in

which planar structures dominate: (1) the Oxford VGG data set 2): the Valbonne images (768×512), the

Wadham images (1024×768), and the Merton images (1024×768); (2) our own data sets: the Tsinghua

physics building (TPB) images (819×546), the life science building (LSB) images (1092×728), and the

CITY images (1224×1848).

In addition, we note that, for all our experiments, only the images to the left and right of the reference

image were taken as its neighboring images for its depth map reconstruction, i.e., k=2 in (4). Clearly,

more neighboring images could enhance the reliability of the whole algorithm, but would also incur a

higher computational load. Figure 3 shows two sample images of each data set.

In order to quantitatively evaluate our method, we assessed the depth consistency, as in [25]. Specif-

ically, let Dr and {Di} (i = 1, . . . , k) denote the depth map corresponding respectively to the reference

image Ir and its neighboring images {Ni} (i = 1, . . . , k). Given m ∈ Dr and its corresponding spatial

point Xm, let d (Xm, Di) denote the depth value of Xm in Di, and λ (Xm, Di) the depth value computed

2) http://www.robots.ox.ac.uk/ vgg/data/data-mview.html.
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(a) (b) (c) (d) (e) (f)

Figure 3 Two sample images of the data sets (the images in the first row are the reference images). (a) Valbonne; (b)

Wadham; (c) Merton; (d) TPB; (e) LSB; (f) CITY.

by Xm under the camera parameters of Di. Then, Xm is considered reliable with respect to Di if the

difference between d (Xm, Di) and λ (Xm, Di) is smaller than a predefined threshold ε. This reliability

should be reinforced by considering N (set to 2 in this study) neighboring depth maps. Therefore, we

defined the reconstruction accuracy T as

T =
1

|A|

∑

m∈A

δ

(

k
∑

i=1

δ

(

‖λ (Xm, Di)− d (Xm, Di)‖

d (Xm, Di)
< ε

)

> N

)

, (16)

where A denotes the set of pixels in building regions.

Moreover, we also used the number of main scene planes to evaluate the corresponding reconstruction

accuracy.

All the experiments were conducted on a desktop PC with Intel Core2Duo 3.2 GHz CPU and 16 GB

RAM, and each algorithm in all experiments was implemented in parallel C++.

7.1 Parameter settings

In all the experiments, we adopted the same parameter setting. The proposed method seemed not

sensitive to parameters settings and most of the parameters were fixed. Specifically, our results showed

that our method is effective with the following settings: κ=0.5, λocc=2, λerr=5, λdis=2, σ=5, λ0=50,

ϑ=0.6, λsmo=0.6, λlab=0.2, λhig=0.2, α=5, and β=15. Next, we give some explanations for the parameter

setting.

In practice, κ can be set according to the number of initial spatial points to adjust the weight of the

geometric constraints against the photo-consistency measure. κ=0.5 means the two parts are equally

important for computing the data term. In addition, the free-space violation λerr should be larger than

the occlusion penalty λocc as discussed in Subsection 5.1, and thus, they were set to 5 and 2, respectively,

with respect to the color dissimilarity measure. Similarly, in (5), the distance penalty should be larger

than the maximum of the average distance (i.e., 1), and thus, was set to 2. Moreover, σ and λ0 were

respectively set to 5 and 50 empirically according to the characteristics and complexity of the scene

structure. The threshold ϑ was used to detect outliers (e.g., unreliable planes) in the process of the

two-stage plane inference. A larger ϑ helps to filter out more outliers to achieve better results in the next

iterations, and also leads to a higher computational load. Here, we set it to 0.6.

In addition, a larger value of λsmo could enhance the smoothness of neighboring planes, but give rise

to the risk of some similar neighboring planes being combined into a single one. Likewise, a larger value

of λlab also helps to reduce the plane number in the process of extracting principal-direction planes.

However, too large a value of λsmo and λlab could lead to the loss of scene details and an insufficient

number of candidate planes. Our results show that the proposed method performed well for all the

datasets in our experiments when λsmo=0.6 and λlab=0.2. As for the remaining parameters in the high-

order energy term, although they could be estimated through learning from training data, here we simply

determined them in an enumerating manner that traverses all possible settings in the predefined range,

i.e., λhig ∈ [0, 1], α ∈ [1, 20], β ∈ [1, 20] and the ratio Q/ρ ∈ [1, 10]. Finally, we took the parameter

settings with the best reconstruction accuracy T as the optimal ones. Further, our results showed that
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(a) (b) (c)

(d) (e) (f)

Figure 4 Reconstruction process of our method for Valbonne data set. (a) Initial sparse spatial points; (b) superpixels

with initial noisy planes and textured noisy planes; (c) candidate planes along principal directions (different gray denotes

different plane); (d) final plane reconstruction; (e) textured reconstruction; (f) top view of the textured reconstruction.

these parameter settings are almost similar for all the datasets, and therefore, they were fixed for all the

datasets. As an example, we report some experiments on the setting of Q which appears relatively more

important for the improvement of the final reconstruction accuracy. Note that the enumerating process

is faster when performed only in the stage of the depth map refinement.

7.2 Results and analysis

The objective of the first experiment was to demonstrate the entire process of the proposed method

on the Valbonne data set. As shown in Figure 4, the structure of the scene is relatively simple (e.g.,

scene planes distribute mainly along two orthogonal scene directions); however, it is frequently difficult

to obtain better results, including for slanted surfaces (e.g., the tower) and some details. As shown

in Figure 4(b), according to the piecewise planar assumption, the superpixel consisting of pixels with

homogenous color can be modeled as a spatial plane by fitting spatial points that are just projected

into it. However, these fitted planes are independent of each other and usually contain a large number of

redundant (nearly co-planar) ones or outliers because of computational errors or model degeneracy. Next,

as shown in Figure 4(c), these planes are globally optimized using the proposed energy-based method (see

Subsubsection 5.2.1) and thus consistently distributed along two orthogonal scene directions. Further,

as shown in Figure 4(d), in the process of the first-stage plane inference, more planes along principal

directions can be obtained, and thus, construct stronger constraints to generate a more reliable candidate

plane by plane sweeping within a much reduced search range. Finally, the second-stage plane inference

and the depth map refinement are reliably performed to recover the complete scene structures. Note that

the texture for each plane was mapped from the corresponding superpixels. To a certain extent, visual

inspection also shows that the proposed method can reconstruct a satisfactory 3D model with better

accuracy.

We now present some details of plane-level depth map refinement. In Figure 5(a), the left hand parts are

the close-ups of the white rectangle shown in Figure 4(c) and the right hand parts are the corresponding

planes after plane-level depth map refinement. Clearly, at the stage of plane-level depth map refinement,

some erroneous superpixels are further sub-segmented and the resulting sub-superpixels are assigned the

correct planes. Moreover, the statistical results for the reconstruction accuracy with varying values of the

ratio Q/ρ are shown in Figure 6(a). They show that a smaller Q value tends to assign the same plane to

all the sub-superpixels of a superpixel, but a too large Q value could lead to some false planes for these

sub-superpixels because of the smaller penalty. In our experiments, Q was set to 3ρ.

As shown in Figure 5(b) and (c), we also conducted similar experiments using the method proposed

in [11], hereafter, Method A, and the method proposed in [18], hereafter Method B. Method A is a
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(a) (b) (c)

Figure 5 Details of the plane-level depth map refinement and the reconstruction results using other methods. (a) The

close-up of the white rectangle shown in Figure 4(c); the right hand parts are the results after plane-level depth map

refinement by our method; (b) and (c) the reconstruction results produced by Method A and Method B.

(a) (b)

Ratio Q/ εThreshold    (%)ρ

Figure 6 Reconstruction accuracy with different parameters and threshold values. (a) Reconstruction accuracy with

different ratio Q/ρ on the Valbonne data set; (b) reconstruction accuracy with different threshold ε values on all data sets.

Table 1 Reconstruction accuracy (ε=0.02) and running time on Valbonne data set

Our method Method A Method B

Planes 1st stage 2nd stage 3rd stage Time (s) Planes Accuracy Time (s) Planes Accuracy Time (s)

7 0.5292 0.8228 0.8485 31.4 6 0.6223 201.8 7 0.5094 25.7

multi-view superpixel stereo method designed under the MRF framework incorporating boundary shape,

photometric, and geometric constraints. In our experiments, the method performed well, since the scene

has fewer principal directions pre-determined by detecting vanishing points. However, the recovered

boundaries may be inaccurate because of the inaccuracy of the over-segmented superpixels. For this

reason, the method fails to recover also some other details (e.g., the walls) reliably. Method B also

adopts a superpixel-based MRF framework to reconstruct an approximate model of the scene. However,

as discussed in Section 2, the method fails to achieve satisfactory results in comparison with that proposed

in Method A and our method because of the unreliable assumption that each over-segmented superpixel

is sufficiently large to contain an adequate number of spatial points for plane fitting. As shown in

Figure 5(c), more superpixels (e.g., larger superpixels straddling two scene planes and some superpixels

without initial spatial points) are assigned to erroneous planes at the intersection of two orthogonal scene

planes. Note that, for the sake of convenient comparison, as for our method, Figure 5(b) and (c) show

only the results for building regions obtained by these two methods. In fact, the unrelated regions (e.g.,

sky and ground) frequently greatly affect the reliability and efficiency of these methods.

Table 1 summarizes the reconstruction accuracy and the running time for the different methods. In

Table 1, the reconstruction accuracy at three stages corresponds to the results of the initial noisy planes

reconstruction, two-stage plane inference, and depth map refinement in our method.

Some statistical results for the reconstruction accuracy with different depth thresholds ε are shown

in Figure 6(b). The results show that the reconstruction accuracy increases as ε increases, but tends to

reach a plateau when ε is larger than 0.02, that is, the overall reconstruction accuracy is stable.
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(a) (b) (c)

(d) (e) (f)

Figure 7 Reconstruction results for Wadham data set. (a) Candidate planes along principal directions; (b) shows the

close-up of the white rectangle, the right hand parts are the results after plane-level depth map refinement by our method.

(c) final plane reconstruction; (d) textured reconstruction; (e) top view of the textured reconstruction; (f) the reconstruction

results produced by Method A.

Table 2 Quantitative comparisons (ε=0.02) on Wadham data set

Method Planes Accuracy Time (s)

Ours 16 0.8251 46.2

Method A 4 0.5681 338.4

(a) (b) (c) (d)

Figure 8 Reconstruction results for Merton data set. (a) Final plane reconstruction; (b) textured reconstruction; (c) top

view of the textured reconstruction; (d) the reconstruction results produced by Method B.

In the second experiment, we validated the feasibility of our method on the Wadham data set used in

Method A. The results are very satisfactory within expectation. In particular for some slanted surfaces

(e.g., roofs) and some details (e.g., windows), our method also performed well. In fact, this scene is

relatively simple, as is the Valbonne scene, but cannot be represented by only three orthogonal scene

directions, and thus, Method A inevitably produces erroneous results (e.g., roofs). In addition, the

recovered boundaries are still inaccurate in some regions (e.g., regions in the white rectangle shown in

Figure 7(a)). As shown in Figure 7(b), these problems are resolved better by our method.

Table 2 shows the reconstruction accuracy and the running time of Method A and our method. It can

be seen clearly that our method outperforms Method A in terms of both accuracy and computational

efficiency.

In the third experiment, we further validated the feasibility of our method on the Merton data set

used in Method B. As compared to the first two scenes, the Merton scene is slightly complex, because

it contains more scene planes. As a result, our method still reliably generates better results. Here, the

plane sweeping within a much reduced search range plays an important role in recovering some small

planes (e.g., small scene planes in the white rectangle). In fact, as shown in Figure 8, it significantly

helps to reconstruct poorly textured regions and very slanted surfaces.

In this experiment, Method B could also obtain good results, since initial spatial points distribute

relatively evenly among superpixels and thus generate more reliable candidate planes. However, the
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Table 3 Quantitative comparisons (ε=0.02) on Merton data set

Method Planes Accuracy Time (s)

Ours 16 0.8503 42.1

Method B 24 0.6109 35.1

(a) (b) (c) (d) (e)

Figure 9 Reconstruction results for our own data set. (a) Final plane reconstruction; (b) textured reconstruction; (c) the

top view of the textured reconstruction; (d) method A; (e) method B.

Table 4 Reconstruction accuracy (ε=0.02) and running time on our own data set

Data set
Our method Method A Method B

Planes Accuracy Time (s) Planes Accuracy Time (s) Planes Accuracy Time (s)

TPB 11 0.8513 34.1 5 0.3465 226.3 8 0.5213 29.6

LSB 12 0.8137 43.8 6 0.4933 318.8 8 0.4889 40.3

CITY 6 0.7961 57.4 4 0.6100 601.6 6 0.4122 49.5

recovered boundaries seem to be inaccurate because of the inaccuracy of the over-segmented superpixels.

Table 3 shows the reconstruction accuracy and the running time of Method B and our method. Clearly,

our method is comparable with Method B, and its accuracy is higher.

The last experiment was performed using our own data sets, and all the methods were applied only in

the building regions for the convenience of further comparison. These three scenes are more complex and

the corresponding images also contain more negative factors, such as perspective distortion, illumination

variance, poorly textured regions, and very slanted surfaces. Because of this, traditional pixel-level

methods [9] frequently fail to recover the complete structures of these scenes. For the PPM methods,

as shown in Figure 9 and Table 4, Method A performs well for the scenes with few orthogonal scene

directions (e.g., CITY), but results in larger errors for other scenes (e.g., TPB). Conversely, Method

B seems to be robust to the number of the scene directions (e.g., TPB), but fails in regions lacking

spatial points, and its accuracy is lower because larger superpixels were used. In contrast, our method

still performs well, in particular for some slanted surfaces and small planes (e.g., the wall in the white

rectangle), and the reconstructed results are also satisfactory. To some extent, the existing problems in

Method A and Method B could be reliably solved by virtue of the robust two-stage plane optimization

and inference. Moreover, in Table 4, we can see that our method is a little slower, but has higher accuracy

than Method B.

Figure 10 also shows the results corresponding to multiple images. It can be seen clearly that the

structures of scenes can be recovered completely. The results of the experiment demonstrate that a

satisfactory scene model can be obtained by integrating each result corresponding to a single image with

better accuracy.
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(a) (b) (c)

Figure 10 Reconstruction results of three neighboring images. (a) TPB; (b) LSB; (c) CITY.

Table 5 Numerical results

Data set
Initialization Planes Time

PTS SP PSP (%) INI PP FIN PI1 (s) PI2 (s) PR (s)

Valbonne 405 1385 61.1 1002 5 7 14.3 12.8 0.66

Wadham 5048 3460 69.8 2919 12 16 22.4 19.2 1.65

Merton 4982 6109 62.5 5091 14 20 25.7 21.0 2.03

LSB 1669 4254 46.2 3321 8 12 18.2 13.9 0.91

TPB 1150 3719 38.9 2673 6 11 27.6 14.4 1.45

CITY 3622 4511 51.0 2923 5 6 34.3 19.1 1.98

Table 5 shows some numerical results. Here, PTS stands for the number of initial spatial points, SP

and PSP respectively stand for the number of superpixels and the percentage of superpixels with initial

spatial points. INI and PP respectively stand for the number of initial planes and the number of principal

scene planes obtained by energy-based plane optimization, and FIN is the number of planes after the

two-state plane inference and plane-level depth map refinement. We provide the approximate running

time costs for the two-stage (PI1 and PI2) plane inference and plane-level refinement (PR) in seconds for

piecewise planar depth map construction of the current image.

In Table 5, we can see that the proposed method is generally stable and its performance is better

because of the effective multi-level superpixel-based energy formulation.

In summary, as compared to the state-of-the-art piecewise planar stereo methods, our proposed method

can efficiently and effectively recover more complete structures of a scene containing poorly textured

regions and very slanted surfaces, and is more robust to complex scenes with more negative factors (e.g.,

illumination variance and various scene structures)

8 Conclusion

We proposed an automatic multi-view piecewise planar stereo method under an energy minimization

framework for the complete reconstruction of urban scenes. Our method can effectively handle the

many difficulties (e.g., textureless regions and slanted surfaces) encountered in standard pixel-level stereo

methods. In addition, unlike other piecewise planar stereo methods that recover only a simplistic 3D

model, our method generates a better result and is more robust to complex scenes because it incorporates

more scene priors and performs a robust two-stage plane inference and an effective plane-level depth map

refinement. The limitations of our method include the following. (1) The performance is influenced

by the number of initial spatial points. In general, spatial points that are too sparse frequently fail to

construct stronger constraints for the plane inference and optimization. (2) The reconstruction accuracy

is limited by the nature of the PPM assumption. In practice, the first limitation could be overcome by

densifying the initial spatial points using point propagation methods. To resolve the second limitation, a

pixel-level based post-processing step could be used to enrich our reconstructed piecewise planar scene.

Finally, by incorporating more semantic priors into the energy optimization framework, the accuracy of

the plane inference and refinement could also be increased.
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