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Appendix A Preliminaries

First we give some relevant basic definitions and problems depictions. the notations can be seen in the table A1.

Given two integers n,m(m > n) and a matrix Zn×mq , two types of m-dimensional q-ary lattices are defined as following:

Λ(A) = {y ∈ Zm : y = Atx mod q,x ∈ Zn}

Λ⊥(A) = {y ∈ Zm : Ay = 0 mod q}

The first q-ary lattice is generated by the rows of A; the second contains all vectors that are orthogonal modulo q to the

rows of A.

The lattice problems SIS problem and ISIS problem in l2 norm are defined as following:

Definition 1 (SISq,n,m,β). The SIS is defined as follows: given integers n,m, q(m > n log q), a real β and a matrix

A ∈ Zn×mq , the goal is to find an integer vector s ∈ Zm \ {0} satisfying As = 0 mod q and ‖ s ‖6 β.

It is well-known that the SIS problem is equivalent to finding some short nonzero vector in Λ⊥(A). The SIS problem is,

in essence, to solve a system of diophantine equations, where it is easy to find many solutions that satisfy the equations,

but it is hard to find a small solution. Also, the ISIS which is a variant of the SIS problem is defined as follows:

Definition 2 (ISISq,n,m,β). The ISIS is as follows: given integers n,m, q(m > n log q), a real β and a matrix A ∈ Zn×mq ,

u ∈ Znq \ {0}, the goal is to find an integer vector s ∈ Zm \ {0} satisfying As = u mod q with ‖ s ‖6 β.

The ISIS problem is equivalent to the problem of decoding an arbitrary integer point s ∈ Zm to within β on the

lattice Λ⊥(A). For some appropriate parameters, the SIS/ISIS instances are guaranteed to have a solution. The following

proposition states that SIS and ISIS are as hard as the worst-case problems in lattices.

Lemma 1. Given m and β = poln(n), as well as any prime q > β
√
ω(n logn), the problems SISq,n,m,β and ISISq,n,m,β

in the average case are as hard as approximating SIV Pγ and GapSV Pγ in the worst case to within certain γ = β ·O(
√
n).

Definition 3 (CBi-ISIS problem and DBi-ISIS problem ). Given the parameters n,m, q and m > n log q as in ISIS

problem, a matrix A ∈ Zm×mq with rank equals to n. For any vectors x ∈ Z with ‖ x ‖6 β, and y ∈ Z with ‖ y ‖6 β,

there exists two vector sets {v1, · · · ,vn} which is linear independent with rows vectors of A, and {u1, · · · ,un} which is

linear independent with column vectors of A, such that < vi,x >= 0 mod q and < ui,y >= 0 mod q(1 6 i 6 n). The

CBi-ISIS problem and the DBi-ISIS problem are defined as follows:

• Computational Bi-ISIS (CBi-ISIS) problem: given Ax + e1 and ytA + et2, the goal is to compute ytAx mod q.

• Decisional Bi-ISIS (DBi-ISIS) problem: the goal is to distinguish between the two distributions (A,Ax+e1,ytA+

et2,y
tAx) and (A,Ax + e1,ytA + et2, z), where z ∈ Zq are chosen uniformly at random.

where e1 =
∑
i∈S

ui mod q by using {u1, · · · ,un}, where S ⊆ {1, · · · , n} is a random subset, et2 =
∑
i∈S′

vti mod q by

using {v1, · · · ,vn} , where S′ ⊆ {1, · · · , n} is a random subset.
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Table A1 Notations:

Z is the ring of integers Zq is the finite field module q

Zm×m
q is the space of m×m-dimensional matrices in Zq ‖ · ‖ is the l2 Euclidean norm

capital bold letter is a matrix such as A 0 : is a zeros matrix or zeros vector

lowercase bold letter is a column vector such as x < x,y > is an inner product of x,y

xt is the transposition of x rank(·) is the rank in Zm×m
q

Appendix B The Details of Our Attack

The security of WANG et al.’s key exchange protocol is based on the hardness assumption of CBi-ISIS problem and DBi-

ISIS problem, the definitions of CBi-ISIS problem and DBi-ISIS problem is depicted in definition 3. Our attack core idea

is based on attacking the CBi-ISIS problem.

Appendix B.1 The Main Notations of Our Attack

Some elements are used in our method, for giving a clear description our attack, firstly we give some notations. We let

∆⊥(A) = {t ∈ Zmq : At = 0 mod q},∆⊥(At) = {s ∈ Zmq : Ats = 0 mod q}

∆⊥(V) = {t ∈ Zmq : Vt = 0 mod q},∆⊥(U
t
) = {s ∈ Zmq : U

t
s = 0 mod q},

where V =


vt1
...

vtn

 ∈ Zn×mq ,U =
(

u1 · · · un

)
∈ Zm×nq , v1, · · · ,vn and u1, · · · ,un are column vectors which are same

with Step 2 in the key exchange protocol of WANG et al.

∆⊥(A),∆⊥(At),∆⊥(V) and ∆⊥(U
t
) are four vectors space, they are generated by A, At, V and U

t
respectively.

For convenience, we denote the perturbation vector
∑
i∈S

ui and
∑
i∈S′

vti as

e1 =
∑
i∈S

ui = U
t
z1, e

t
2 =

∑
i∈S′

vti = zt2V

where z1 and z2 are vectors in {0, 1}n, because S ⊆ {1, · · · , n} and S′ ⊆ {1, · · · , n} are random subsets, and z1 is known

by Alice, z2 is known by Bob.

Appendix B.2 The Details of Our Attack

Definition 4 (Permutation Matrix). A permutation matrix is a square binary matrix that has exactly one entry 1 in

each row and each column and 0s elsewhere, usually denote it as P.

Each permutation matrix represents a specific permutation of m elements, and a permutation matrix can produce that

permutation in the rows or columns of the other matrix when permutation matrix is used to multiply another matrix.

The permutation matrix has some properties: (i)det(P) = ±1, (ii) P−1 = Pt.

Lemma 2. [1] Any n-by-n matrix over a field can be written as

A = PLU

where P is a permutation matrix, L is a lower triangular invertible matrix and U is an upper triangular matrix.

The PLU decomposition is an extension of the Gaussian elimination algorithm, and it can use to the case of not

necessarily invertible matrices. When A is an invertible matrix, the U is invertible. When A is a non-invertible matrix

with rank(A) = k, the U is a non-invertible matrix with (k+1)th to n-th are zeros.

Theorem 1. For parameters m > n, a matrix A ∈ Zm×mq with rank(A)=n, by PLU decomposition the A can written

as:

A = PLU = Ut
1Lt1Pt1,

where P,L,U is the PLU decomposition of A. P1,L1,U1 is the PLU decomposition of At, P,P1 is a permutation matrix,

L,L1 is a lower triangular invertible matrix, U,U1 is an upper triangular singular matrix with (n+ 1)-th to m-th rows are

zeros.

Proof. From the lamma 2, the PLU decomposition of A is A = PLU, and the PLU decomposition of At is At = P1L1U1,

where P,P1 is a permutation matrix, L,L1 is a lower triangular invertible matrix, U,U1 is an upper triangular singular

matrix with (n+ 1)-th to m-th rows are zeros. Then we can obtain A = PLU = Ut
1Lt1Pt1 directly.

Lemma 3 (rank+nullity theorem). [2] If T is a linear transformation from a finite-dimensional vector space V to a

finite-dimensional vector space W , then dim(V ) = rank(T ) + nullity(T ), where rank(T ) = dim(im(T )) and nullity(T ) =

dim(ker(T )), where im(T ) is the image space of T, ker(T ) = {α : Tα = 0, α ∈ V }.
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Theorem 2. Given a m-dimension vectors space Zm×mq and A ∈ Zm×mq whit rank(A) = n, then

dim(∆⊥(A)) = dim(∆⊥(At)) = m− n.

Proof. Because dim(Zm×mq ) = m, from the rank+nubillity theorem 3, we know that dim(Zm×mq ) = rank(A)+nullity(A),

where nullity(A) = dim(∆⊥(A)) or nullity(A) = dim(∆⊥(At)), thus dim(∆⊥(A)) = dim(∆⊥(At)) = m− n.

Corollary 1. Given a m-dimension vectors space Zm×mq , V ∈ Zn×mq and U ∈ Zm×nq with rank(V) = rank(U) = n,

then dim(∆⊥(V)) = dim(∆⊥(U
t
)) = m− n.

The Corollary can be proofed similarly with proposition 2.

Theorem 3. Given U ∈ Zm×nq , whose columns are linear independent with column vectors of A, if Tt ∈ Zm×(m−n)
q is

one basis of ∆⊥(At), thus rank(TU) = n.

Proof. From the condition of U ∈ Zm×nq are linear independent with column vectors of A, then rank(

(
At

U
t

)
) = 2n.

We know that

dim(∆⊥(At) ∩∆⊥(U
t
)) = m− 2n. (B1)

And because U ∈ Zm×nq and Tt ∈ Zm×(m−n)
q , then U

t
Tt ∈ Zn×(m−n), we have rank(U

t
Tt) 6 n.

Assume rank(U
t
Tt) < n, we can assume that rank(U

t
Tt) = n−1 and denote U

t
Tt = S, then there exists an invertible

matrix P ∈ Z(m−n)×(m−n)
q to make sure

UTtP = SP = S′

such that from the n-th to the (m − n)-th columns of S′ are zeros. Because TtP is column full rank, which means that

it is still a basis of ∆⊥(At), and the n-th to the (m − n)-th columns of TtP still belong to the basis of ∆⊥(U). Then

dim(∆⊥(At) ∩∆⊥(U)) > (m− n)− (n− 1) = m− 2n+ 1, which contradicts the equation B1, thus the assumption does

not establish. Hence we conclude that rank(TU) = n.

Similar with the proposition 3, we have the following corollary.

Corollary 2. Given V ∈ Zn×mq are linear independent with row vectors of A, thus if T ∈ Zm×(m−n)
q is one basis of

∆⊥(A), thus rank(VT) = n.

From Kerchkhoff’s principle, the attacker may intercept Alice’s public key b1 = Ax + e1 and Bob’s public key bt2 =

ytA + et2. Let n,m, q be the parameters as in the key exchange protocol of WANG et al. The analysis procedure can be

seen as follows:

(i) For b1 = Ax + e1, firstly we find T1 ∈ Z(m−n)×m
q satisfying T1A = 0 mod q with rank(T1) = m− n, which means

that Tt1 is one basis of space ∆⊥(At) = {y ∈ Zmq : Aty = 0 mod q}. If X satisfy XA = 0 mod q, then

XA = 0 mod q

XUt
1Lt1Pt1 = 0 mod q

XUt
1 = 0(Lt1Pt1)−1 = 0 mod q

Then because the (n + 1)-th to m-th columns in Ut
1 are zeros we can get a T1 ∈ Z(m−n)×m satisfying T1Ut

1 =

V(Lt1)−1, which means that T1 ∈ Z(m−n)×m is obtained to satisfy T1A = 0 mod q. Next we left multiply b1 with

T1,

T1b1 = T1(Ax + e1) = T1Ax + T1e1 = 0x + T1e1 = T1e1 = T1Uz1 mod q (B2)

Because from proposition 3 we know rank(T1U
t
) = n and T1b1 ∈ Zm×1 is known, from the equation B2, we can

obtain the z1 ∈ {0, 1}n, then

Ax = b1 −Uz1 mod q

(ii) For bt2 = ytA + et2, similarly, we find firstly T2 ∈ Zm×(m−n) satisfying AT2 = 0 mod q with rank(T2) = m − n,

which means that T2 is a basis of space ∆⊥(A) = {y ∈ Zmq : Ay = 0 mod q}. If AX = 0 mod q, then

AX = 0 mod q

PLUX = 0 mod q

UX = (PL)−10 = 0 mod q

Then because the (n + 1)-th to m-th rows in U are zeros we can get a T2 ∈ Zm×m×(m−n) satisfying UT2 = 0

mod q, which means that AT2 = 0 mod q. Next we right multiply bt2 with T2,

bt2T2 = (ytA + et2)T2 = ytAT2 + et2T2 = yt0 + zt2VT2 = zt2VT2 mod q (B3)

Because from the corollary 2 we know rank(VT2) = n and bt2T2 ∈ Z1×(m−n) is known, from the equation B3, we

can obtain the z2 ∈ {0, 1}n, then we can compute ytA through

ytA = bt2 − zt2V

(iii) For the obtained Ax and ytA, we denote

Ax = k1 mod q,ytA = kt2 mod q.
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Table C1 Recovering the Shared Key by Attack Algorithm

n m q design security time result

128 3854 10007 2128 27842.891801 seconds. Success

80 3240 6421 280 8201.055194 seconds Success

64 1536 4099 264 1638.645816 seconds. Success

From the PLU decomposition of A = PLU with rank(U) = n, then

PLUx = k1 mod q,ytPLU = k2 mod q.

Thus the Ux = (PL)−1k1 mod q can be obtained.

Besides, for ytPLU = kt2 mod q, we can find y′ satisfying y′tU = kt2 = ytPLU mod q. y′tU = kt2 must have

solution because ytPL is a trivial solution. Essentially, the y′t is the first n components of ytPL, it is determined

by the form of the U in proposition 1.

From the above, we can compute the share key through

y′t(PL)−1k1 mod q,

because

y′t(PL)−1k1 = y′tUx = (y′tU)x = kt2x = ytPLUx = ytAx mod q. (B4)

Appendix B.3 Correctness

The correctness of algorithm 2 can be seen from the above analysis (i) (ii) (iii), especially the equations B2, B3, B4.

Appendix B.4 Computational Complexity

We need O( 4m3

3
) multiplications to compute the T1, T2 based on the PLU factorization at average, O(4n3) multiplications

to compute z1, z2, O(2mn) multiplications to compute k1, k2, O(m2) multiplications to compute (PL)−1. O(n2/2)

multiplications to compute y′. O(m2) multiplications to compute y′t(PL)−1k1 mod q. So the shared key algorithm can

be done after O( 4m3

3
) multiplications to compute the shared key. The basic operation is multiplication in the finite field

Zq .

Appendix C Experimental Results

We implemented the attack on a platform which is an Intel Dual-Core2, CPU 2.6Ghz, Windows 7 operating system with

4G storage memory, we use the MATLAB version 7.9 to implement it. The scheme we attack is the experiment in [3],

q = n2, m = 4n logn they suggested, the parameters n = 64, m = 1536, q = 4099 is a suggested parameter in their

experiment. The result is as same as the theoretical analysis, the key can be correctly recovered. In the experiment, the

most time-consuming operation in the attack algorithm is PLU decomposition, however the PLU operations can also be

implemented in polynomial time. The experiment results can be seen in table C1.

We tested 10 random instances for every (n,m, q), experimental results showed that the attack performed less slowly than

the theoretical results indicated, one reason was that the experiment platform was not taken into account by theoretical

analysis. If we adopted other platform with object oriented language, the attack time must be more quickly.
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