
SCIENCE CHINA
Information Sciences

February 2017, Vol. 60 022304:1–022304:13

doi: 10.1007/s11432-015-1057-7

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

. RESEARCH PAPER .

A tool for tracing network data plane via
SDN/OpenFlow

Yangyang WANG1,3, Jun BI1,2,3* & Keyao ZHANG1,2

1Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing 100084, China;
2Department of Computer Science, Tsinghua University, Beijing 100084, China;

3Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing 100084, China

Received December 30, 2015; accepted April 25, 2016; published online November 9, 2016

Abstract SDN provides an approach to create desired network forwarding plane by programming applications.

For a large-scale SDN network comprised of multiple domains and running multiple controller applications, it

is difficult to measure and diagnose the problems of flow tables in data plane. Tracing the forwarding path of

SDN is one of effective way for data plane state measurement. Previously proposed methods for debugging SDN

were applied to a single administrative domain. There is less effort to trace the flow entries of the data plane

in large-scale multi-domain SDN networks. In this paper, we propose a method of software defined data plane

tracing in large-scale multi-domain SDN networks. Our method can trace forwarding paths, and get the matched

flow entries and other customized trace information. We present the designs compatible with OpenFlow 1.0 and

1.3 switches. The performance and deployment effect are evaluated by simulation test and analysis. It shows

that our method has better performance than traditional IP traceroute, and its deployment at about 20% of AS

nodes can enable 70% of AS paths to be traceable.
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1 Introduction

In today’s IP infrastructure, Internet Control Message Protocol (ICMP) is widely used for network data

plane measurement and troubleshooting in large IP networks and the Internet. By ping and traceroute

tools, we can perceive end-to-end forwarding paths performance to diagnose where routing problems

possibly happen. Also, network researchers and operators use traceroute to discover the IP interfaces

and topology of a network [1]. However, these diagnoses and measurements usually are error-prone and

limited [2–4] because of the closed IP protocol stack in network devices. We have to do some inference

measurements in constrained situations before protocol innovations are widely deployed on practical

networks.

In recent years, software defined networking (SDN) [5] emerges, and OpenFlow is a standard instance

[6]. SDN breaks the closure of today’s network architecture. It decouples the control plane and data
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Figure 1 (Color online) An example of forwarding state conflict in SDN networks.

plane of networks, and improves network programmability. The flexibility and programmability of SDN

has been applied to local networks, such as campus networks, data centers, and wide-area networks [7],

to support innovations in networking applications, such as routing optimization [8], and new network

architectures [9,10]. When a small SDN network is comprised of a few of switches, controller applications

and simple forwarding rules, we can find the causes of problems in networks by manually checking flow

tables using ping or other proposed SDN debugging tools used in a single administrative SDN network.

But for a large-scale SDN network, such as the networks of large Internet service providers (ISPs), or an

inter-domain SDN network composed of multiple SDN domains, it is difficult to locate the problems of

data plane in a large-scale and dynamic environment.

Tracing forwarding plane with traceroute-like tools is an effective way for troubleshooting in large-

scale networks. Moreover, the open paradigm of SDN can conquer the traceroute limitations against

traditional IP protocol stack. Thus, applying SDN-based data plane tracing mechanism to SDN networks

and the Internet has the following demands and benefits.

(1) Network state visibility of multi-domain SDN networks. For a small SDN network, it

is easier to test network performance, or detect failure problems by manually checking network states.

Some researches have developed tools and systems for automatical test and troubleshooting. But they

are mostly applied to the SDN networks in a single administrative domain. In the case of networks

that are running multiple controller applications and across multiple domains, it will take higher cost to

record and manage the state of data plane by delegating data plane tracing to control plane. Moreover,

an operator of one SDN domain may have no permission to obtain the forwarding plane states of other

administrative domains. Traceroute-like tools for SDN networks can provide visibility of the data plane

in large multi-domain SDN networks.

(2) Network state visibility in real time. An SDN network may run multiple SDN applications

on controllers. When a packet is being forwarded, it may match a flow entry generated by other appli-

cations at the same time, which causes the conflict of forwarding states. Figure 1 presents an example.

This example shows a multi-domain SDN network. There are multiple applications (APPs) running on

SDN controllers. Each application computes its own routing paths for different policy routing or traffic

engineering requirements. A packet from tracer to destination will take the path (SDN domain 1→SDN

domain 3) as the expected forwarding path generated by the same APP (represented by the second block

on the left on the controllers of SDN domain 1 and 3). But, the packet actually matches the flow entry

installed by the other APP (represented by the first block on the left on the controllers of SDN domain 1,

2 and 3) on the router R at a certain moment. As a result, the actual forwarding path is switched to the

SDN domain 2 at the router R. It is necessary for network troubleshooting to trace the actual matched

flow entries in real time.



Wang Y Y, et al. Sci China Inf Sci February 2017 Vol. 60 022304:3

(3) User-defined rich trace information and control. The functionality of traceroute is restricted

to the implementation of IP and ICMP protocol. The traditional traceroute can only obtain the IP

addresses of routers’ incoming interfaces along forwarding paths. For other network information, for

example, the AS number where a router belongs, it needs additional measurement and inference from

other data sources [11, 12]. SDN provides an open approach to innovate network functionality. Network

operators can define rich trace information, such as the identifications (IDs) of the switches and ports

along a forwarding path, the AS number and name of the ISP where a switch is located. SDN can also

apply fine-grained control over the flow entries that can be traced.

To get the above benefits, in this paper, we propose a software defined traceroute mechanism, named

sTrace. It aims to provide flexible data path tracing mechanism to improve data plane visibility for

large SDN networks. It can trace SDN forwarding paths and the matched flow entries at each hop in

real time, and return rich trace information, including switch and port IDs, matched flow entries, AS

numbers, and other user-defined information as required. We present the design based on OpenFlow 1.3

and 1.0 standards. Because sTrace does not rely on priori knowledge of the entire network topology, it

can adapt to dynamic topology, and can be deployed incrementally by ISPs.

2 Background and related work

The commonly used tool for detecting IP forwarding hops is traceroute. It makes use of existing

mechanism defined by ICMP. The working process of traceroute is well known [13]. One host sends out

UDP packets with a large and unused port number to a destination. The immediate routers will decrease

the IP TTL field by 1 and forward packets to the next hop to the destination. If the TTL value reaches

zero, the immediate router will discard this UDP packet and return ICMP Time Exceeded error message

to the probe host. By sending IP packets of increasing TTL value from 1, the probe host will receive

returned ICMP error messages from the sequence of router interfaces starting from first hop to the

destination. When probe packets reach the destination, ICMP port unreachable messages will be returned.

However, traceroute just provides a basic path tracing approach in IP layer. For SDN networks,

we expect to extend the basic traceroute function to provide flexible path tracing mechanism with rich

trace information, including not only IP addresses of interfaces. Some researches have made efforts for

SDN data plane measurement and debugging. The study ndb [14] proposes a debugging tool for SDN

networks. Inspired by the software debugger tool gdb, the goal of ndb is to support gdb-like debugger

actions such as breakpoint, backtrace, single-step to examine network events related to a network error.

The key mechanism of ndb is to create and collect postcards. A postcard contains a truncated copy of

original packet’s header, the matched flow entry, switch ID, and output port. A collector of ndb stores

postcards and constructs backtrace for breakpoint-marked packets. The design of ndb provides more

information than traceroute for a purpose of powerful debugger tool. When ndb deals with debugging,

it needs to modify each flow entry to create postcards for each packet, and store these postcards. This

will take much cost in memory and packet processing. It is suitable for a small SDN networks with an

administrative domain.

The work [15] proposes a SDN traceroute tool that probes actual packet forwarding path without chang-

ing the flow entries being measured. The probe packets will visit each switch on the path to destination.

Its method has two steps. First step is to collect network topology and assign a color value for each switch

to distinguish neighboring siwtch. And then, it installs proper flow entries to switches to trigger PACKET IN

messages to the controller, where the controller deals with these PACKET IN messages to obtain the

in-port and out-port information of probe packets traversing a switch. This method does not determine

the matched table entries in data plane. And, it needs to know beforehand the entire network topology

for color assignment, which make it not suitable in the environment of large and dynamic networks.

Some other previous researches also provide approaches to debugging and troubleshooting network

errors. NetSight [16] stores the packet historical records by modifying flow table entries in the SDN. The

work OFf [17] has some similar features for tracing network state, but OFf can trace controller program
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Figure 2 (Color online) The conceptual model of software defined traceroute.

states that induce observed network behavior. OFRewind [18] allows recording and playing back of SDN

control plane traffic. Monocle [19] provides a rule-level data plane monitoring method. It creates a proxy

between an SDN controller and switches, which collects global flow tables of each switch and automatically

generates test packets and observes the actual behaviors of this network treating these test packets. The

work [20] designs a test framework FlowTest to integrate other test tools and plans for testing stateful

data plane. The work NICE [21] focuses on automating the testing of controller applications by model

checking with symbolic execution of event handlers. It does not measure the forwarding plane.

Some researches are focused on validate correctness of SDN control. For example, FlowChecker [22]

creates a tool to identify the misconfiguration within a single flow table. The work [23] presents a system

for testing SDN control policy violation by simulation-based causal inference. HSA [24] proposes methods

to check network configurations and identify network errors such as reachability failures and forwarding

loops by analysis of packet header space. NetPlumber [25] and VeriFlow [26] are to verify correctness

properties violation on the system by real-time analysis over flow rules and header fields. Libra [27]

collects the states of SDN data plane to verify the forwarding correctness in a large networks. Using

MapReduce, Libra has a higher performance. However, frequent state updates may cause computation

cost and affect the correctness of results.

In summary, these previous studies mostly focus on the test and troubleshooting in a single adminis-

trative SDN domain. There is little effort to measure data plane in a large multi-domain SDN networks.

Our work aims to provide data path tracing mechanism to improve data plane visibility for large SDN

networks.

3 Design

In this section, we introduce our sTrace mechanism. Firstly, we propose an ideal design for traceroute-like

functions in SDN. And then, We propose the function implementations for sTrace using OpenFlow 1.3

and 1.0. After that, we discuss possible support for reverse traceroute function with SDN and incremental

deployment on the Internet.

3.1 Concept model and design architecture

The concept model in Figure 2 describes a concept of traceoute-like process. To enable data plane to

be traceable, network operators need to install Trace applications on their SDN controllers. The Trace

controller will modify the flow entries to be installed, or install additional entries to the data plane to

enable tracing functions. In data plane, when an OpenFlow switch that supports ideal traceroute model

receives a packet, it looks up the flow table for a matched entry. The actions of matching entry may

decrease the TTL value by 1, and determine whether the TTL value is zero. If the TTL value is not zero,

this packet will be forwarded to next SDN switch. If the TTL value reaches zero, this packet will be issued

to a controller through a PACKET IN message, with associated extra information of the matched flow entry,

and the switch ID, input port, timestamp when the switch receives this packet. When the traceroute
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Figure 3 (Color online) The sTrace process using OpenFlow 1.3 switches.

application on the controller receives this message, it could return a user-defined trace information to

the probe host that originally issues this test packet. That trace information may include not only the

matched flow entry, switch id, etc., as well as other network operation information such as domain AS

number, which can be defined as required.

The design architecture of sTrace is similar to the above conceptual model. The traceroute-like function

of sTrace is driven by two modules: a sTrace server on SDN controllers, and a prober running on a host.

The sTrace controller provides traceroute-like support in SDN networks. Similar to ndb, the sTrace

controller monitors flow entry modification FLOW MOD messages, and installs new entries or modifies some

required actions such as decreasing TTL value, etc., to enable data plane tracing functionality. The

sTrace controller also processes PACKET IN messages, and returns rich and user-defined trace information.

It can control traceable flow entries by SDN scheme. The sTrace prober is used to issue test packets,

receive and parse the returned trace information. We will present the details of design for OpenFlow 1.3

and OpenFlow 1.0 in the following sections.

Different from the conceptual model, in our design, we use the IP type of service (ToS) field to identify

test traffic and TTL value to control test range. Traditional IP layer uses TTL-based method to trace

forwarding path. The TTL field of IP header is designed to avoid forwarding loop. TTL-based tracing

methods return trace information when the TTL value reaches zero. It has two problems when using

TTL-based approach in SDN networks: (1) It has to send packets with specific TTL values for measuring

each hop. This way will produce lots of test traffic. (2) When a test packet does not match an entry in a

flow table, it will trigger a PACKET INmessage to request the controller to install missing flow entries. This

test behavior will change the original settings in data plane. It is difficult for the controller to distinguish

test traffic with product traffic based only on TTL values. If the controller can identify test traffic, it

could control (i.e. enable/disable) the reaction to the missing flow entry of test packets. For example,

the controller can inform the prober of flow entry miss, and disable missing flow entry installation for

test packets. To identify test traffic, we set the ToS field in IP header with an unused particular value,

such as bits 00011000 according to RFC 2474 [28]. And the TTL field is used to control test range of

hops. By this way, we can trace a range of hops with a single test packet.

3.2 Design for OpenFlow 1.3

OpenFlow 1.3 switches support multi-level flow tables and TTL decrement in data plane. To identify

test packets, we set the IP ToS field of test packets with a particular value (such as ToS bits 00011000).

The basic process of sTrace with OpenFlow 1.3 switches is shown in Figure 3. In Figure 3, S1 and
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S2 represent OpenFlow switches. The sTrace server on the controller maintains a mapping between an

increasing index number and a flow entry. For a flow entry modification (i.e., FLOW MOD) message M ,

sTrace controller will extract and keep a record of the original flow entry f that is to be installed to the

switch, and assign f an index number i, and then update i with i + 1. After that, sTrace will modify f

into a new traceable flow entry f ′ and install it to flow table 1. It moves each of the original actions of f

to an action set O using the instruction Write-Actions. And then, it appends f with a list of actions of

setting the metadata to i and the original output port of f , and sets an instruction Goto-Table(2). By

this way, we get a new flow entry f ′ from f . In flow table 2, sTrace will install a flow entry g that uses a

particular ToS value to match test packets (such as ToS=00011000). And g has a list of actions that set

source MAC address to the metadata, decrease TTL, and output packets to the controller, and append

an instruction Clear-Actions to clear all the original actions in the action set O. Installing flow entries f ′

and g corresponds to the Step 1) “install traceable flow entries” in the Figure 3. The sTrace controller

also installs a table-miss flow entry in flow table 2 for non-test traffic. It has no match fields (all fields

omitted) and has the lowest priority (0).

After the installation of traceable flow entries, the prober may issue test/non-test packets, as Step 2)

shown in Figure 3. (1) If a test packet does not match any flow entry in flow table 1, it will trigger

a PACKET IN message to the controller. When the sTrace controller receives the packet and finds it is

a test packet based on ToS value, it will discard this packet, and return a “flow entry missed” trace

information to the prober. The controller does not install a flow entry to the switch. This way can avoid

the unnecessary missed flow entry installation for test packets. (2) If a test packet matches the flow entry

f ′ in flow table 1, f ′ will append this packet with an action set O containing the original actions of the

flow entry f , and a metadata containing the index number i and the original output port of f . Then,

the instruction Goto-Table(2) forwards the test packet to flow table 2. In flow table 2, the test packet

will match the flow entry g with ToS field (i.e. “match ToS” in Figure 3). And then, the flow entry g

will apply its actions to the test packet. It will set the source MAC address field of the test packet to

the metadata, decrease TTL, and then trigger a PACKET IN output to the controller, as Step 3a) shown

in Figure 3. The action set O will be cleared by the instruction Clear-Actions of flow entry g. When the

sTrace controller receives the test packet, it can extract the index number of matched flow entry and its

out-port from the metadata in the source MAC address field, and locate the matched flow entry in the

mapping table. It can also get switch and in-port IDs from the PACKET IN message. Based on these data

and other user-defined information such as AS number, the sTrace controller creates trace information

and returns it to the prober. And then, the sTrace controller will discard the packet if this test packet has

a zero TTL. Otherwise, the controller forwards the packet of non-zero TTL value to the switch out-port

through PACKET OUT message. Note that, the TTL field is used as a control over the range of test hops.

At each hop in a test range, test packets will trigger PACKET IN messages to the controller. (3) For a

packet of non-test traffic, it does not match the ToS value of test packet, and falls into the table-miss

entry. This entry has no actions, and the original actions in the action set O appended to the packet will

be executed, which forward this packet to the next switch, as Step 3b) shown in Figure 3.

In the design for OpenFlow 1.3 switches, we install a modified flow entry f ′ for each original flow entry

f in flow table 1, and two additional flow entry in flow table 2. It introduces few extra flow entries.

3.3 Design for OpenFlow 1.0

OpenFlow 1.0 does not support multi-level flow tables and TTL value change in data plane. Therefore,

TTL decrement has to resort to sTrace controllers. We also use the IP ToS field of particular value (such

as ToS bits 00011000) to identify a test packet. The process of OpenFlow 1.0 design is similar to that of

OpenFlow 1.3. The basic process of OpenFlow 1.0 design is shown in Figure 4. Different from OpenFlow

1.3 installing only a modified flow entry f ′ for an original flow entry f , the design for OpenFlow 1.0 needs

to install both the original flow entry f and a new flow entry f ′, which will double the number of flow

entries in data plane.

For a flow entry modification i.e., FLOW MODmessageM , sTrace controller will extract and keep a record
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Figure 4 (Color online) The sTrace process using OpenFlow 1.0 switches.

of the original flow entry f to be installed to a switch, assign it an index number i and update i with

i+1. After that, the sTrace controller will install the original flow entry f and a new flow entry f ′ to the

switch, i.e. the Step 1 as shown in Figure 4. In Figure 4, S1 and S2 represent OpenFlow switches. The

match fields of f ′ include all match fields of f , and an additional ToS field (ToS=00011000) to match

test packets. The actions of f ′ will set source MAC address to the flow entry index number i and the

output port of f , and output packets to the controller. The non-test packets will match flow entry f

and go to the next switch as Step 3b) shown in Figure 4. The test packet matching the flow entry f ′

will be modified in source MAC address and forwarded to the controller through PACKET IN message, as

Step 3a) shown in Figure 4. The sTrace controller could get in-port and switch IDs from the PACKET IN

message, and the index number and out-port of the matched flow entry from the source MAC address

of the test packet. Based on these data and other user-defined information, the sTrace controller creates

trace information and returns it to the prober. And then, the sTrace controller decreases the TTL value.

If the TTL is not zero, the packet will be sent to the switch out-port through PACKET OUT message.

Otherwise, the sTrace controller discards the packet of zero TTL value. This way controls the hop range

of test by TTL values. For a test packet that does not match any flow entry in the flow table, it will

trigger a PACKET IN message to the controller. And the controller will discard this packet, and return a

“flow entry missed” trace information to the prober.

3.4 Operation on hybrid networks

In fact, a large SDN networks composed of multiple SDN domains would use many different switches of

various implementations of OpenFlow. sTrace will work on a hybrid network environment. The least

support for data plane functions is based on OpenFlow 1.0. This situation needs to insert a new flow

entry to support traceroute-like functions for each original flow entry, which will double the memory cost

of flow entries in data plane. The feature of multi-level flow tables in higher version of OpenFlow can save

more flow entries than single-level flow tables. In the situation of hybrid SDN devices, we could prefer to

deploy traceroute test flow entries in the switches supporting multi-level flow tables to save data plane

entries. For the switches supporting only single-level flow tables, we can adaptively install the necessary

test flow entries for the test traffic with ToS tag.

3.5 Reverse traceroute

In many cases, we hope to discover what forwarding path it will take from a remote end host to local
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host. This is called reverse traceroute [29]. If we have a probe at remote side, it is easy to get the reverse

forwarding path. But there is no probe in most cases at remote side. Although the effort on reverse

traceroute has been done with IP options, it is constrained by many conditions on the Internet. SDN’s

programmability may provide potential approach for reverse traceroute. For example, we can set the IP

ToS field to a particular value k as a tag identifying a test packet for preparing reverse traceroute. For

a test packet of ToS tag k from a source host h to a destination d, when the packet’s TTL value reaches

zero, or this packet arrives at the last hop on the forwarding path, the immediate sTrace controller will

issue a test packet p from d to h in terms of the reverse trace tag value k, and change the tag to a

reverse trace tag k + 1 in this newly issued test packet p. In the process of forwarding the packet p to h,

the immediate controllers take a process similar to traceroute. The difference from forward traceroute is

that the sTrace controllers will check this reverse trace tag k + 1, and return a trace information to the

destination host h, not to the source host d.

4 Evaluation

4.1 Performance of sTrace

Because of lack of the real environment of multi-domain SDN networks, we evaluate the performance

cost sTrace process by simulation. We installed a Floodlight controller on a host, and created a SDN

network using Open vSwitch (OVS) software OpenFlow switches in Mininet. We implemented a simple

function prototype of sTrace server on Floodlight controller for OpenFlow 1.0 and OpenFlow 1.3. Our

simulation has two hosts (host1 and host2), and a linear topology of ten OVS OpenFlow switches between

the two hosts, shown in Figure 5. sTrace will install proper test flow entries to OpenFlow 1.3 and 1.0

OVS switches for traceroute from host1 to host2. And then, we use ping to issue test packet from host1

to host2. Each test packet will be processed in the way of traceroute, such as decreasing TTL value,

setting source MAC address field, etc., as described in Section 3. We calculate the latency time between

sending out a test packet and receiving a returned trace information of the last hop switch. The result is

a average time over 500 times of tests. For comparison, we simulate the normal packet forwarding with

general ICMP packets that do not trigger traceroute process. We also change the number of switches

from 2 to 10 with a step interval 2.

The results are shown in Figure 6. In Figure 6, the case “OF1.0 normal” uses a single-level flow table

in each switch, and just forwards packets without tracing operations. The host1 sends out a general

ICMP request packet to the destination host2, and then gets an ICMP reply from host2. The curve

of “OF1.0 normal” shows the round trip time values of different number of immediate switch hops.

Similar to “OF1.0 normal”, the curve “OF1.3 normal” also represents the general ICMP request/reply

round trip time values. But it uses multi-level flow table on each switch. The TTL of a test packet is

decreased by 1 at each switch hop. We can see that the two test cases have almost the same values.

This indicates the multi-level flow table introduces little processing cost. “OF1.0 trace” and “OF1.3
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Figure 6 (Color online) A comparison of round trip time of normal packet forwarding and sTrace test packet processing.

trace” respectively mean using one test packet in tracing the entire forwarding path for OpenFlow 1.0

and 1.3 switches. In the case of “OF1.3 trace”, for each test, host1 sends out an ICMP request test

packet that sets a particular ToS filed value and sets the TTL value as the number of switch hops (i.e.,

2,4, . . . ,10). At each switch hop, the test packet will be processed by the flow entry actions, including

decreasing TTL, described in Section 3, and then triggers a PACKET IN message to the controller. After

that, the controller processes the PACKET IN message, returns trace information to host1 and directs the

test packet to the correct nexthop by OpenFlow PACKET OUT action. When the TTL value reaches zero,

i.e., the trace arrives at the last switch hop, the controller will return the final reply of trace information.

We compute the time between host1 sending out a test packet and receiving the final relay as a round trip

time. The curve ‘OF1.3 trace” shows the resulting average round trip time of testing different number

of hops. The case “OF1.0 trace” has the same testing process to “OF1.3 trace”. We can see that their

results have a notable increasing RTT value because the test packet goes back and forth many times

between switches and the controller along the path from host1 and host2. (There is a notable difference

between “OF1.3 trace” and “OF1.0 trace” when there are 6 switch hops. This difference is caused

by the accidental jitters in the system of testing environment). The result of “OF1.3 IP traceroute”

uses OpenFlow 1.3 to simulate the traditional IP traceroute where only the last switch hop triggers a

PACKET IN message when the TTL of a test packet reaches zero. It shows a less average round trip time

as expected.

In the following, we analyze the cost to trace a path with n switch hops between host1 and host2.

We denote host1 as hop(0), and host2 as hop(n+ 1), and the immediate switches are referred as hop(1),

hop(2), . . . , hop(n). We use P (x) to denote the time cost processing test packet on switch or host x.

For example, POF1.3(i) means the time cost of processing test packet on OpenFlow 1.3 switch hop(i),

(i = 1, 2, . . . , n). To simplify the following formalization, we assume P (i) of each switch hop(i) is almost

equal and denoted as P . The P (host2) means the time cost of ICMP reply on host2. Similarly, we use

L(i) to denote the propagation time cost on the link between hop(i− 1) and hop(i), (i = 1, 2, . . . , n+1),

and use H(i) to denote the propagation time cost between the switch hop(i) and the controller. And we

assume L(i) ≃ L and H(i) ≃ H for each L(i) and H(i). In this way, the round trip time TOF1.3(n) of

“OF1.3 normal” traversing n switches can be approximately calculated as

TOF1.3(n) = 2

n+1∑

i=1

Li + 2

n∑

i=1

POF1.3(si) + P (host2) ≃ 2(n+ 1)L+ 2nPOF1.3 + P (host2). (1)

In the above formula, OF1.3 is a short representation of OF1.3 normal. Similarly, the round trip time
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TOF1.0(n) of “OF1.0 normal” with n switches can be approximately calculated as

TOF1.0(n) = 2

n+1∑

i=1

Li + 2

n∑

i=1

POF1.0(si) + P (host2) ≃ 2(n+ 1)L+ 2nPOF1.0 + P (host2). (2)

From the results shown in Figure 6, we can see that TOF1.3 and TOF1.0 are very little. It means the time

cost L, P and P (host2) are also little.

The round trip time TOF1.3t(n) and TOF1.0t(n) of “OF1.3 trace” and “OF1.0 trace” with n switches

can be approximately calculated as

TOF1.3t(n) =

n∑

i=1

(2Li + 2POF1.3t(si) + 2Hi + POF1.3t(controller))

≃ 2nL+ 2nPOF1.3t + 2nH + nPOF1.3t(controller), (3)

TOF1.0t(n) =

n∑

i=1

(2Li + 2POF1.0t(si) + 2Hi + POF1.0t(controller))

≃ 2nL+ 2nPOF1.0t + 2nH + nPOF1.0t(controller). (4)

Here, POF1.3t(controller) represents the process cost on the controller which runs OpenFlow 1.3 protocol

and directs test packets to the next switch or creates an ICMP reply packet and returns it to host1. The

POF1.0t(controller) has the similar meaning.

The round trip time Tipt(n) of “OF1.3 IP traceroute” with n switches can be approximately calcu-

lated as

Tipt(n) =
n∑

i=1

(2Li + 2POF1.3(si)) + 2Hn + POF1.3(controller)

≃ 2nL+ 2nPOF1.3 + 2H + POF1.3(controller). (5)

From the comparison between Tipt(n) and TOF1.3(n), we can see that the difference of “OF1.3 IP

traceroute” and “OF1.3 normal” in Figure 6 is mainly caused by 2H + POF1.3(controller), which

include the communication delay between the switch and the controller, and the process cost on the

controller which creates an ICMP reply packet and returns it to host1. We also can find that TOF1.3t(n)

grows up with n because of the item 2nH .

To trace every hop along a path with n switch hop, the case “OF1.3 trace” in Figure 6 only issue one

test packet that will traverse each switch hop of the path, and the time cost is TOF1.3t(n). But the case

“IP traceroute” in Figure 6 needs to issue n test packets with different TTL values. Its time cost for

testing the entire path is the sum of the time cost of each test packet, i.e.
∑n

k=1 Tipt(k). It is larger than

TOF1.3t(n). This implies sTrace has a better performance than traditional IP traceroute.

Actually, the above formulation is simplified and approximate. For example, the P (controller) may

have different process cost. The controller directs test packets to the next switch at the immediate switch

hop, while it constructs and returns an ICMP reply at the last hop. The cost of the latter is more than

that of the former. For this reason, TOF1.3t(2) is larger than the difference TOF1.3t(4)− TOF1.3t(2). The

P (controller) of TOF1.3t(2) contains the cost of the controller creating ICMP reply packets at the hop(2),

but the P (controller) of TOF1.3t(4) − TOF1.3t(2) contains only the cost of the controller directing test

packet to next switch at the immediate switch hop(2) and hop(3).

4.2 Deployment effect on the Internet

We evaluate the deployment effect by Internet AS topology. The approach is to analyze the parts of AS

path that can be traceable when more and more ASes deploy SDN-based traceroute-like mechanism. We

define the following metrics used in the evaluation. Suppose that a given set of AS nodes that deploy

sTrace is denoted as A, and a given set of AS paths is denoted as P . For a path p ∈ P , its traceable

part can be evaluated by t(p)/len(p), where t(p) is the number of AS nodes in path p that are also in
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Decreasing order

Increasing order

Random

Figure 7 (Color online) The impact of AS deploying SDN-based traceroute on AS path traceability.

the set A (i.e., the ASes deploying sTrace). The len(p) is the total number of AS nodes in path p. The

total traceable parts can be averaged over all paths, and defined as (
∑

p∈P t(p)/len(p))/N , where N is

the total number of paths in P .

The BGP AS paths used in the evaluation are collected from the public BGP data [30], including

RouteViews, PCH and RIPE RIS. The AS topology is collected from CAIDA [31]. Firstly, we rank AS

nodes based on AS cone size [31]. The AS nodes with small AS cone usually are the customer networks

connected to the Internet, while the AS nodes with large AS cone are the provider networks located in

the transit core of the Internet. We take three deployment strategies: 1) deployment in increasing order

of AS cone size, from edge customer networks to transit core; 2) deployment in decreasing order of AS

cone size, from transit core to edge customer networks; 3) random selection that selects AS nodes in

random order. The results are shown in Figure 7. We can see that the deployment strategy from core to

edge (i.e, in decreasing order) can make most number of AS paths (more than 70% of total AS paths)

traceable with only a small number of AS nodes (about 20% of total AS nodes) deploying sTrace. The

random strategy shows a linear growth with the number of deployed AS nodes.

5 Discussion

5.1 Depolyment on the Internet

The tool sTrace can be used to trace the data plane of large-scale SDN networks. However, before SDN

networks are widely adopted on the Internet, it can also be deployed on the Internet locally to improve

the traceability of the Internet data plane. This is another aim of this tool. An ISP can deploy SDN

switches or routers in its networks, and install the desired test flow entries according to IP routing tables

by sTrace controllers. This can create a traceable plane in one ISP or between multiple ISPs. Also, we

can deploy sTrace at Internet eXchange Points (IXPs) or SDXs [32], such that we can trace the IXPs

connectivity and traffic policy on the Internet. In the case that a routing path contains some domains

which may still be traditional IP networks without SDN, sTrace can trace only the domains that support

SDN along the path. To work out the whole path in this case, we can combine traditional Traceroute

tool with sTrace.

5.2 Scalability and limitations

A sTrace controller just enables the function of tracing the SDN domain under its control. In a multi-
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domain SDN network, there are several SDN controllers. These sTrace controllers do not need to exchange

measurement information and cooperate with each other. Because each sTrace controller ensures the

local controlled domain can be traceable, the paths across the multi-domain SDN network can be traced

completely if every SDN domain deploys sTrace. This feature will benefit the scalability and incremental

deployment of sTrace. The sTrace has also limitations on capability. The sTrace mechanism for OpenFlow

1.0 switches will install an extra flow entry for each original entry to be traced. This will lead to table

expansion. But OpenFlow standard is developing, and OpenFlow 1.3 will get adopted widely. The sTrace

for OpenFlow 1.3 switches only modifies the original entries to be measured and installs two more extra

flow table entry. It will not take much flow table space. This may improve its scalability. The design of

sTrace is suited to trace single-level flow rules. It sets a tag in the source MAC address field to record

the index of a matched flow entry. The MAC address field has limited space, which cannot store many

index tags. Therefore, sTrace cannot trace a pipeline of flow entries of multi-level flow tables. Solution

to trace a pipeline rule is in our future work.

6 Conclusion

In this paper, we propose a software defined traceroute-like tool named sTrace. It can trace the matched

flow entries in multi-domain SDN networks in real time, and return rich user-defined trace information

to tracers. We present the implementation based on OpenFlow 1.0 and 1.3 specifications. By simulation

with Mininet and Open vSwitch, we find that the processing cost in data plane for traceroute packet is

very little, and the overhead become growing when processing probe packet on controllers. We analyze

the performance of sTrace by formalization. It shows sTrace has a better performance than traditional

IP traceroute. We also evaluate the effect of incremental deployment of sTrace on the Internet with

different deployment strategies. The results show that deployment at about 20% of AS nodes can enable

70% of AS paths to be traceable. In summary, sTrace provides a mechanism of tracing the data plane

states in large-scale multi-domain SDN networks. In future work, we will enhance the capability and real

deployment of tracing SDN networks.
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