
SCIENCE CHINA
Information Sciences

January 2017, Vol. 60 019103:1–019103:3

doi: 10.1007/s11432-015-0163-7

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

. LETTER .

Identifying superword level parallelism with

extended directed dependence graph reachability

Jie ZHAO1,2* & Rongcai ZHAO1

1National Digital Switching System Engineering & Technological Research Center, Zhengzhou 450001, China;
2Computer Science Department, École Normale Supérieure, Paris 75005, France

Received March 19, 2016; accepted June 3, 2016; published online October 13, 2016

Citation Zhao J, Zhao R C. Identifying superword level parallelism with extended directed dependence graph

reachability. Sci China Inf Sci, 2017, 60(1): 019103, doi: 10.1007/s11432-015-0163-7

Dear editor,

The increasing trend of multimedia applications’
proliferation brings about multimedia extensions’
wide use among existing microprocessors of main-
stream manufacturers, e.g., Intel’s MMX, AMD’s
3DNow!, IBM’s VMX/Altivec, etc. However, the
implementation details behind these multimedia
extensions vary from one architecture to another;
hence, it generally comes in form of SIMD (single
instruction multiple data) instructions, providing
a mechanism to accelerate the performance of var-
ious application programs.

SLP (superword level parallelism) [1] is a widely
used method to exploit SIMD vectorization. The
principle of this technique is identifying isomorphic
statements first, and then packing them together
as a superword statement for concurrent execu-
tion. An isomorphic statement pair refers to such
a statement pair that all their operations are in
the same order and all the operands in the corre-
sponding positions have the same data type.

The principle behind the recognition process
is to determine the dependence information of
the analyzed loops. Existing methods first con-
struct adg (array dependence graph) according to
the compiler’s dependence testing techniques, and
then construct sdg (statement dependence graph)
based on adg. They need to determine whether

statements can be vectorized by checking depen-
dences between each statement pair, which re-
quires the compiler to go back and forth between
the adg and sdg. During the process, the compiler
has to figure out both the source array reference
node and the sink statement node carrying the
same dependence, which makes itself error-prone.

To address this problem, we propose an edg (ex-
tended dependence graph) reachability based SLP
recognition approach. We first extend adg and sdg
to construct edg, which includes both dependences
between each array pair and those of each state-
ment pair. A compiler only needs to traverse edg
when determining the SLP vectorization possibil-
ity. Besides, the dependence information can be
figured out by only traversing the first read refer-
ence in edg, which simplifies the implementation
and makes the process easy to use. We implement
the method in Open64-5.0 compiler and the eval-
uation results show that the performance of our
generated codes outperforms that of existing com-
mercial compilers and the state of the art.

We implemente the SLP algorithm in Open64-
5.0 compiler and performed an experiment on 100
representative programs covering 317 loops from
the gcc-vect benchmarks. As a result, only 113
out of 317 loops can be identified as SLP vector-
izable by the compiler. Among the remaining 204

*Corresponding author (email: zjbc2005@163.com)

The authors declare that they have no conflict of interest.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-015-0163-7&domain=pdf
https://doi.org/10.1007/s11432-015-0163-7
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-015-0163-7


Zhao J, et al. Sci China Inf Sci January 2017 Vol. 60 019103:2

−

−

temp

temp

Figure 1 Observation on the SLP vectorization of Open64-5.0. (a) Code example; (b) array dependence graph;
(c) statement dependence graph; (d) code after node splitting; (e) extended dependence graph.

loops recognized as unvectorziable by the SLP al-
gorithm, existing commercial vectorizing compil-
ers can vectorize 24% while 76% are really unvec-
torizable loops.

The SLP vectorization of a loop is determined
by checking the parallelism of its enclosed basic
blocks, whose recognition relies on the adg and
sdg. The drawback of this method is that it does
not take all kinds of dependence information into
account. For example, Figure 1(b) and (c) are the
adg and sdg of the example shown in Figure 1(a).
Vectorizing compilers have to traverse the graphs
of Figure 1(b) and (c) alternately as well as search-
ing the array reference nodes and statement nodes
carrying dependences iteratively. It does not dis-
cuss the dependence types here, which may also
exert an important influence on the vectorization.
To simplify the complicated analysis process, we
first apply node splitting [2] to eliminate anti-
dependences and then construct its edg as shown
in Figure 1(e).

The SLP vectorizable recognition phase based
on edg is the following. For read reference nodes r1
and r2 in Figure 2, there only exists one reachable
path from r1 to r2. To be more specific, the path
is (r1, w1, r2). Similarly, the only reachable path
from r2 to r1 is (r2, r3, w1, r1). The level of de-
pendences and dependence distances are stored in
dependence edges e1 and e2. r1 and r2 are mutu-
ally reachable implies there is a dependence cycle
between the two statements. When both the paths
pass through and only pass through one write ref-
erence node w1, it implies that the dependence de-
riving from S1 to S2 is true while the other from
S2 to S1 is an anti-dependence. The compiler can
easily figure out whether a dependence is forward
or backward by determining the relation between
statement execution sequence and dependence di-
rection. Hence we say that all the information can
be obtained from edg. Compared with existing ap-
proaches, only the first read reference node of each
statement needs to be analyzed, which simplifies
the analysis process.

SLP vectorization analysis. For illustration
purposes, we number the read reference nodes in
an edg as (u1, . . . , um, v1, . . . , vn), which means

that there are m and n read reference nodes in
the sentences of the interest. Arbitrary read ref-
erence node can be the candidate to determin-
ing dependence between statements. This is be-
cause it is manifest that ui can reach w1 while v j

is also reachable to w2 for any ui (16i6m) and
v j(16j6n) according to the construction of edg.

In terms of SIMD vectorization, a dependence is
invalid if its dependence distance is not less than
the vectorization factor, which has been proved
in [3], so we can eliminate redundant dependence
edges before visiting edg. After that, we turn to
determine dependence information with the reach-
ability of nodes from edg and therefore have the
following theorems. Please refer to the supple-
mentary materials for the proof details of these
theorems.

Theorem 1. For any nodes ui(16i6m) and
v j(16j6n), if ui is reachable to v j but v j can-
not reach ui, then S1 and S2 are SLP vectorizable
but S1 must be executed before S2.

Theorem 2. For any nodes ui(16i6m) and
v j(16j6n), if ui and v j are mutually reachable
and none of the paths deriving from S1 to S2 passes
through w2, then S1 and S2 are SLP vectorizable
but node splitting has to be applied to S2.

Theorem 3. For any nodes ui(16i6m) and
v j(16j6n), if w1 appears before w1 on each loop
path from ui passing through v j , then S1 and S2
are not SLP vectorizable.

Theorem 4. For any nodes ui(16i6m) and
v j(16j6n), if w1 appears after w2 on each loop
path from ui passing through v j , then S1 and S2
are SLP vectorizable but node splitting has to be
applied to S2.

Theorem 5. For any nodes ui(16i6m) and
v j(16j6n), if neither ui is reachable to v j nor v j

can reach ui, then S1 and S2 are SLP vectorizable.

The above theorems are applicable to the case
that the source and sink of a dependence belong
to different statements, which we define as nor-
mal case. We also need to consider self-dependent
case. As a matter of fact, a self-dependent case
can be transformed into a normal case after node
splitting, and is thus amenable to these theorems.



Zhao J, et al. Sci China Inf Sci January 2017 Vol. 60 019103:3

For self-dependent cases, we have the following
theorems.

Theorem 6. For any given read reference node
ui(16i6m) and a write reference node w1, if there
is a dependence edge from w1 to ui, then S1 is not
SLP vectorizable.

Theorem 7. For any given read reference node
ui(16i6m) and a write reference node w1, if there
is no dependence edge from w1 to ui, then S1 is
SLP vectorizable.

Evaluations. To verify our technique, we im-
plemente the algorithm in Open64-5.0. We con-
duct the experiment on 15 micro-kernel programs
to compare the results. As a result, the Open64
compiler can recognize 13 more programs as vec-
torizable after applying our method. GCC 4.9 and
Intel ICC14.0 can only vectorize 7 out of those pro-
grams.

We also experiment on 100 programs covering
317 loops extracted from the gcc-vect benchmarks.
Our method can recognize 51.10% of the tested
loops, while the vectorizable loop numbers of GCC
4.9 and ICC 14.0 are 41.64% and 55.52%. Our
method performs better for sophisticated depen-
dences cases, but falls behind ICC 14.0 in cases
like while loops, array of structures, reduction op-
erations, etc. This is due to the natural drawback
of the intermediate representation of Open64 com-
piler rather than our method.

To illustrate how our technique exerts influ-
ence on practical applications, we experiment on
18 applications with our methods, ICC14.0, Path-
Scale 5.0.0 and the state-of-the-art recognition al-
gorithm [4]. The test suite is composed of a micro-
kernel FFT program, a large-scale application
OpenCFD and numerous benchmarks from the
SPEC2006 benchmark suites and NAS Parallel
Benchmarks.

Among the applications we used in the experi-
ment, hmmer and libquantum suffer from declines
by 7.6% and 12.1% when compared to ICC14.0.
The reason is our technique is restricted to some
cases as described above. Liu et al’s algorithm per-
forms best for poverty and calculix, as they applies
an instruction scheduling scheme to exploit full po-
tential of the data layout of the program. Our

method falls behind their work by 2.4% and 1.4%
for these benchmarks. Our method outperforms
other compilers and methods for all the remaining
applications. Please refer to the supplementary
materials for complete experimental results.

Conclusion. We proposed a novel approach
to recognize SLP vectorization in this letter. This
method is able to simplify the recognition process
and efficiently determine all the dependence infor-
mation relevant to SLP vectorization. The exper-
imental results show that our approach prevails
over the GCC4.9 compiler and is comparable with
ICC14.0 and outperforms the state-of-the-art on
practical applications. Our next research plan is
to further improve the performance in those cases
that we fall behind ICC 14.0.

Acknowledgements This work was supported by

HEGAOJI Major Project of China (Grant No.

2009ZX01036-001-001-2) and Open Project Program

of the State Key Laboratory of Mathematical En-

gineering and Advanced Computing (Grant No.

2013A11).

Supporting information The supporting infor-

mation is available online at info.scichina.com and link.

springer.com. The supporting materials are published

as submitted, without typesetting or editing. The re-

sponsibility for scientific accuracy and content remains

entirely with the authors.

References

1 Larsen S, Amarasinghe S. Exploiting superword level
parallelism with multimedia instruction sets. In:
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation.
New York: ACM, 2000. 145–156

2 Padua D A, Wolfe M J. Advanced compiler optimiza-
tions for supercomputers. Commun ACM, 1986, 29:
1184–1201

3 Bulic P, Gustin V. D-test: an extension to Banerjee
test for a fast dependence analysis in a multimedia vec-
torizing compiler. In: Proceedings of the 18th Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS). Washington: IEEE Computer Society, 2004.
535–546

4 Liu J, Zhang Y, Jang O, et al. A compiler framework
for extracting superword level parallelism. In: Pro-
ceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation.
New York: ACM, 2012. 347–358

info.scichina.com
link.springer.com
link.springer.com

