
SCIENCE CHINA
Information Sciences

January 2017, Vol. 60 019101:1–019101:3

doi: 10.1007/s11432-015-0994-0

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

. LETTER .

Attribute-based non-interactive key exchange

Fei TANG1*, Rui ZHANG2* & Hongda LI2*

1College of Computer Science and Technology, Chongqing University of Posts and Telecommunications,

Chongqing 400065, China;
2State Key Laboratory of Information Security, Institute of Information Engineering of

Chinese Academy of Sciences, Beijing 100093, China

Received December 9, 2015; accepted February 3, 2016; published online May 16, 2016

Citation Tang F, Zhang R, Li H D. Attribute-based non-interactive key exchange. Sci China Inf Sci, 2017,

60(1): 019101, doi: 10.1007/s11432-015-0994-0

Dear editor,

In this work, we study the notion of attribute-
based non-interactive key-exchange (ABNIKE).
As a natural extension of the notions of
non-interactive key-exchange (NIKE) [1, 2] and
identity-based non-interactive key-exchange (IB-
NIKE) [3, 4], ABNIKE allows users to non-
interactively agree on a common shared key.
Learning from attribute-based encryption [5],
we divide ABNIKE into two forms: key-policy
ABNIKE (KP-ABNIKE) and shared-key-policy
ABNIKE (SP-ABNIKE). Intuitively, in a KP-
ABNIKE scheme, a user who is associated with
a policy function f has a secret key skf . The
shared key Kx will be established according to an
attribute set x. A user can non-interactively gen-
erate Kx if and only if x satisfies f , i.e., f(x) = 1.
On the contrary, in an SP-ABNIKE scheme, a
user’s secret key is associated with an attribute
set x, while a shared key is associated with a pol-
icy function f . In this work, we first give a formal
definition of ABNIKE. We then define the secu-
rity model for ABNIKE in the dishonest key reg-
istration (DKR) setting. Next, by using differing-
input obfuscation (diO) [6,7], we construct an AB-
NIKE scheme. Finally, we show that the notion
of ABNIKE implies IBNIKE and two- or more-
party ABNIKE, which have been realized in pre-

vious work.
Preliminaries. We now present some defini-

tions that will be used for our construction.
Differing-input obfuscation. The definition of

diO with auxiliary input follows that of Ananth et
al. [6], which is equivalent to that given by Boyle
et al. [7]. First, we define the notion of differing-
input circuits family.

Definition 1. A circuit family C with a sampler
(C0, C1, aux) ← Samp(1λ) that samples C0, C1 ∈
C is said to be a differing-input family, if for all
PPT adversaries A, we have

Pr[C0(x) 6= C1(x) : (C0, C1, aux)←
Samp(1λ), x← A(1λ, C0, C1, aux)] = negl(λ).

We now define the notion of diO for a differing-
input circuits family.

Definition 2. A uniform PPT machine diO is
called a differing-input obfuscator for a differing-
input circuits family C = {Cλ} if it satisfies the
following properties:

• Correctness. For all security parameters
λ ∈ N, all C ∈ Cλ, and all inputs x, we have
Pr[C′(x) = C(x) : C′ ← diO(λ,C)] = 1.
• Polynomial slowdown. There exists a univer-

sal polynomial poly such that for any circuit C ∈
Cλ we have |C′| 6 poly(|C|), where C′ = diO(C).
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• Differing-inputs. For any (not necessarily uni-
form) PPT distinguisher D, all security parame-
ters λ ∈ N, and (C0, C1, aux) ← Samp(1λ), we
have

|Pr[D(diO(λ,C0), aux) = 1]

−Pr[D(diO(λ,C1), aux) = 1]| = negl(λ).

Punctured pseudorandom functions. In punc-
tured PRF [8], one can derive a punctured key KS

with respect to a subset S ⊆ D from the secret
key K. This punctured key enables the evaluation
of the PRF in the subset D\S of the domain and
nowhere else.

Definition 3. A punctured PRF consists of a
triple of algorithms, F = (PRF.Key,PRF.Pun, F ),
and a pair of computable functions, n(·) and m(·),
satisfying the following conditions:

• Functionality preserved under puncturing:
for any PPT adversaryA that outputs a set S ⊆ D

where D = {0, 1}n(λ) is the domain of the punc-
tured PRF, if x ∈ D\S then

Pr[F (K,x) = F (KS , x) : K ← PRF.Key(1λ),

KS ← PRF.Pun(K,S)] = 1.

• Pseudorandom at punctured points: for any
PPT adversary (A1,A2) such that A1(1

λ) out-
puts a set S ⊆ D and a state τ , consider an ex-
periment where K ← PRF.Key(1λ) and KS ←
PRF.Pun(K,S):

Pr[A2(τ,KS , S, F (K,S)) = 1]

−Pr[A2(τ,KS , S, Um(λ)·|S|) = 1] = negl(λ),

where S = {x1, . . . , xk}, F (K,S) is the concate-
nation of the elements of S in lexicographic order,
i.e., F (K,x1)|| · · · ||F (K,xk), and Uℓ denotes the
uniform distribution over ℓ bits.

Digital signatures. A signature scheme S

consists of the following three PPT algorithms:
Sig.Key takes as input a security parameter λ

and outputs a signing-verification key pair (sk, vk);
Sig.Sign takes as inputs the signing key sk and a
message m, and outputs a signature σ; Sig.Vrfy
takes as inputs the verification key vk and a pur-
ported signature σ on a message m, and outputs
1 if it is valid or 0 otherwise.

For correctness, it is required that for any
(sk, vk) ← Sig.Key(1λ) and for any message m,
Pr[Sig.Vrfy(vk,m, Sig.Sign(sk,m)) = 1] = 1.

Definition 4. We say that a signature scheme
S = (Sig.Key, Sig.Sign, Sig.Vrfy) is EU-CMA se-
cure [9] if, for any PPT adversary A with oracle
access to Sig.Sign, the probability that, on input of
a uniformly chosen verification key vk, A outputs

a pair (m∗, σ∗) such that Sig.Vrfy(vk,m∗, σ∗) = 1
where m∗ was not queried to Sig.Sign oracle, is
negligible, where the probability is over vk and
the randomness of the Sig.Sign oracle.

Definitions. Let A be the universe of possible
attributes. A claimed policy over A is a Boolean
function f ∈ F, where F is the space of all possi-
ble policy functions. We say that an attribute set
x ⊆ A satisfies a policy function f if f(x) = 1.

Inspired by the classification of attribute-based
encryption [5], we divide ABNIKE into two flavors,
KP-ABNIKE and SP-ABNIKE. For simplicity, we
give the definition of KP-ABNIKE. The notion of
SP-ABNIKE can be easily obtained by interchang-
ing the function f and attribute set x.

• AB.Setup(1λ): The setup algorithm takes as
input the security parameter λ. It outputs the
public parameters pp and the master key msk.
• AB.KeyGen(msk, f): The key generation al-

gorithm takes as input the master key msk and a
policy function f . It outputs a secret key skf .
• AB.SharedKey(pp, skf , f, x): Each user can

non-interactively generate a common shared key
Kx ∈ SHK only if f(x) = 1, with respect to an
attribute set x using the public parameters pp, his
secret key skf and function f , where SHK is the
share key space.

For correctness, it is required that for all
λ, f0, f1, x, and all (pp,msk) ← AB.Setup(1λ),
skf0 ← AB.KeyGen(msk, f0), and skf1 ←
AB.KeyGen(msk, f1), if f0(x) = f1(x) = 1, then
we have

AB.SharedKey(pp, skf0 , f0, x) =
AB.SharedKey(pp, skf1 , f1, x) = Kx.

Construction. We now construct an AB-
NIKE scheme. Our ABNIKE scheme follows the
punctured program technique (with diO instead
of iO) devised by Sahai and Waters [8]. To gen-
erate the secret key for f , we choose a signature
scheme S = (Sig.Key, Sig.Sign, Sig.Vrfy) to sign
on f and set the resulting signature as the secret
key. In addition, we also choose a punctured PRF
F = (PRF.Key,PRF.Pun, F ). For simplicity, we
assume that the Sig.Sign and F algorithms will
take inputs with appropriate length.

The following is a KP-ABNIKE scheme. By us-
ing universal circuits, we can easily construct an
SP-ABNIKE scheme.

• AB.Setup(1λ): The setup algorithm takes
as input a security parameter λ and does the
following. It first runs the Sig.Key(1λ) and
PRF.Key(1λ) algorithms to produce a signing-
verification key pair (sk, vk) and a PRF key K, re-
spectively. It then builds an obfuscated program
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diO(P), where the program P contains two con-
stant values, vk and K. Then, any user can run
this program on inputs an attribute set x, his pol-
icy function f and secret key skf . Formally, the
program P is defined below.
(1) Given inputs (x, f, skf ), the program first

checks that f(x)
?
= 1 and Sig.Vrfy(vk, f, skf )

?
= 1

holds or not.
(2) If any checks fail, then it outputs ⊥; else, it

outputs Kx ← F (K,x).
The public parameters pp consist of the descrip-
tions of the attribute universe A, the space of pol-
icy functions F, the shared key space SHK, and
the obfuscated program diO(P). The master key
is msk = sk.
• AB.KeyGen(msk, f): To generate the secret

key for a function f ∈ F, the key generation algo-
rithm runs the signing algorithm of the signature
scheme skf ← Sig.Sign(sk, f) and outputs skf .
• AB.SharedKey(pp, skf , f, x): Each user runs

the obfuscated program diO(P) on the inputs
(x, f, skf ) and outputs the result.

Conclusion. In this work, we define the notion
of attribute-based non-interactive key-exchange.
In addition, by using differing-input obfuscation,
we give a concrete construction of such crypto-
graphic primitive. Due to space limitations, the
security of our construction and further analysis
are available in the supporting information.
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