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Appendix A Introduction

Non-interactive key exchange (NIKE) [11] is an important cryptographic primitive which allows two or more users in

network environments to non-interactively agree on a common shared key. Identity-based non-interactive key exchange

(IBNIKE) [9,21] is an extension of the notion of NIKE in the identity-based setting. In an identity-based cryptosystem [20],

each user can be identified by some unique identity id, e.g., email address. Any authorized user obtains a secret key, skid,

from a trusted key generator center (KGC). IBNIKE has an advantage that, with respect to the traditional NIKE in the

PKI setting, it reduces communication costs to check the validity of the public keys.

In our increasingly complex network environments, it is often convenient for the users to communicate with the others

using attributes that, rather than an unique identity, describe their roles or responsibilities. The notion of attribute-based

cryptography [22] was introduced for such environments. The first attempt of attribute-based cryptosystem is encryption,

that is attribute-based encryption (ABE). According to Goyal et al.’s idea in [18], the notion of ABE is divided into two

forms: key-policy ABE (KP-ABE) and ciphertext-policy ABE (CP-ABE). In a KP-ABE system, the secret key of a user is

associated with an access policy function (denoted by f) defined over a set of attributes while the ciphertext is associated

with a set of attributes (denoted by x). A ciphertext can be decrypted by a user only if the attribute set x with the

ciphertext satisfies the policy f which associates to his secret key, that is f(x) = 1. A CP-ABE is a complementary form

of the KP-ABE, wherein the secret key is associated with an attribute set x, while a ciphertext is associated with a policy

function f . A ciphertext can be decrypted by a user who has skx only if f(x) = 1.

Naturally, we want to know that whether we can realize NIKE in the attribute-based setting, that is attribute-based

non-interactive key exchange (ABNIKE). Learning from ABE, we divide the notion of ABNIKE into two forms: key-policy

ABNIKE (KP-ABNIKE) and shared-key-policy ABNIKE (SP-ABNIKE). Intuitively, in a KP-ABNIKE scheme, a user who

is associated with a policy function f has a secret key skf from the KGC. The shared key Kx will be established according

to an attribute set x. A user can non-interactively generate a shared key Kx if and only if the attribute set x with the

shared key satisfies the policy f associated the user’s secret key, i.e., f(x) = 1. On the contrary, in an SP-ABNIKE scheme,

a user’s secret key is associated with an attribute set x, while a shared key is associated with a policy function f . A shared

key Kf can be generated by a user who has skx only if f(x) = 1.

To consider the applications of the ABNIKE, we can see the following scenario which has been mentioned in some

previous works, e.g., [15]. In an internet forum where the members are organized into user groups based on their skills or

privileges. It is a natural requirement that the members of a group should be able to establish secure communication channel

with the others members belonging to some particular groups. Here, we may notice that ABE actually can be applied to

such scenario. However, the application of ABE in this scenario has a drawback that each message to shared should to be

encrypted separately. Someone may say that encrypting a shared key directly by using ABE. Such implementation also

has a problem that the sender who is not a member of the particular groups knows the encrypted shared key. Therefore,

ABNIKE is a preferable choice in such application scenario.

There are many NIKE and IBNIKE schemes have been proposed in literatures. The classic Diffie-Hellman NIKE scheme

solves the two-party case n = 2. Joux [19] made use of bilinear maps to construct the first three-party NIKE scheme.

By using multilinear maps [5, 16], Boneh and Silverberg [5] gave an NIKE scheme for general n. Recently, Boneh and

Zhandry [8] gave a general NIKE scheme by using indistinguishability obfuscation [17] (iO, see [17] for details). IBNIKE

is an extension of NIKE. In IBNIKE schemes, each user has a secret key skid for an unique identity id. Then, in order
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to build a common shared key KI on behalf of n users I = (id1, . . . , idn), each party idi ∈ I only needs to take as input

his/her secret key skidi and the set of identities I to compute it. The SOK IBNIKE [9, 21] scheme solves the case n = 2.

Recently, Freire et al. [13] and Boneh et al. [8] devised an IBNIKE scheme for general n by using multilinear maps and iO,

respectively.

In addition, in the past several years, a handful of attribute-based (interactive) key exchange schemes were proposed.

However, as far as we know, most of them were considered only for two- or three-party setting, for example, schemes

in [2,6, 14,24–28] consider two-party ABKE,1) scheme in [3] considers three-party ABKE. Such two- or three-party ABKE

schemes do not capture the intuitive (or natural) concept described above. In other words, as a natural extension of the

standard KE and identity-based KE, the notion of ABKE should capture the intuition that the shared key is on behalf of

some attribute set x (resp. policy f) rather than two or three users. Actually, the intuitive concept of ABNIKE implies the

notion of two- or three-party ABNIKE. The only exceptions are [15] and [7]. In [15], Gorantla, Boyd, and Nieto designed

an attribute-based authenticated key exchange scheme based on encapsulation policy attribute-based key encapsulation

mechanism. However, as said by [7], the schemes in [15] are interactive, analyzed in the generic group model, and only

apply to policies represented as polynomial size formulas. In [7], Boneh and Waters introduced the notion of policy-based

key distribution which is a particular case of the SP-ABNIKE. Furthermore, they gave a concrete realization based on

constrained pseudorandom function for circuit predicates.

In this work, we study the notion of ABNIKE. Our main works are as follows:

1. First of all, we present formal definitions for ABNIKE based on the notions of NIKE and IBNIKE. Our definitions

capture the intuitive concept described above. In addition, we define security model for ABNIKE in the dishonest key

registration (DKR) setting which is a rather strong model, that is, m-CKS-heavy for ABNIKE. In the m-CKS-heavy

model, challenger chooses a random bit b and answers register honest user, register corrupt user, extract,

reveal, and test queries for adversary until it outputs a bit b′. The adversary succeeds if b′ = b. Our security model

for ABNIKE is extended from the model of m-CKS-heavy for NIKE [12] and IBNIKE [8].

2. Next, by using a powerful tool, differing-input obfuscation (diO) [1, 4], we give a concrete realization of ABNIKE.

The main technique for our construction is the utilization of punctured program technique [23].

3. Finally, we show that our ABNIKE notion implies IBNIKE and two- or more-party ABNIKE which have been realized

by some previous works.

Appendix B Security models

Cash, Kiltz, and Shoup [10] introduced a security notion for NIKE in the public key setting, namely CKS model. The CKS

model allows an adversary to obtain honestly generated public keys, and also register dishonestly generated public keys for

which the adversary need not know the corresponding secret keys. This dishonest key registration (DKR) setting describes

a real-world situation that the certificate authority is not assumed to check that a public key has not been previously

registered to another user.

However, the CKS model missed some possible attacks, such as the adversary to “corrupt” honestly generated public

keys to learn the corresponding secret keys and obtain the shared key between honest parties in the system. To fix

up this problem, Freire, Hofheinz, Kiltz, and Paterson [12] augmented the original CKS model with the “missing” queries,

introducing the m-CKS-heavy model in the public key setting. In the m-CKS-heavy model, the challenger chooses a random

bit b and answers register honest user, register corrupt user, extract, reveal, and test queries for the adversary

until it outputs a bit b′. The adversary is said that wins the game if b′ = b.

The m-CKS-heavy is defined for two-party NIKE schemes. Then Boneh and Zhandry [8] extended the m-CKS-heavy

model into the multi-party NIKE and identity-based multi-party NIKE settings. In addition, Boneh et al. [8] defined two

weaker notions called semi-static and static security. In the semi-static security model, the adversary is required that to

commit to a set Ŝ of users at the beginning of the game. The adversary then must only makes test queries on a subsets

S∗ ⊆ Ŝ, and can only make register corrupt and extract queries on users i 6∈ Ŝ. The static security model is a more weaker

notion in which the adversary only can make a single test query on a set S∗, and it must commit to S∗ before seeing the

public parameters.

Based on the security models, i.e., m-CKS-heavy, for NIKE [12] and IBNIKE [8], we now define security models for

ABNIKE. For consistency, we define m-CKS-heavy model for KP-ABNIKE for circuits which is played by a challenger C
and an adversary A. In the beginning, C takes as input a security parameter λ to run the AB.Setup algorithm and gives A
the public parameter pp. The challenger C takes a random bit b and answers oracle queries for A until A outputs a bit b′.

The challenger answers the following types of queries made by A:

• Register honest user: Adversary A submits a function f ∈ F. Challenger C runs AB.KeyGen algorithm to generate

a secret key skf and records the tuple (honest, f, skf ).

• Register corrupt user: Adversary A submits a function f ∈ F. Challenger C records the tuple (corrupt, f,⊥). A
can make multiple “Register corrupt user” queries for a same f during the experiment, in which case C only uses the most

recent record.

• Extract queries: Adversary A submits a function f ∈ F that was registered as an honest user. Challenger C searches

for a tuple (honest, f, skf ) containing f and returns skf to A.

1) Scheme in [2] is called fuzzy secret handshake protocol which supports only a single threshold gate. Schemes in [6,14]

are called predicate-based key exchange protocols which actually are a variant of KP-ABNIKE.
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• Reveal queries: Adversary A submits an attribute set x ⊆ A. Challenger C runs AB.SharedKey algorithm and returns

the result Kx to A.

• Test queries: Adversary A submits an attribute set x ⊆ A. If b = 0, C runs AB.SharedKey algorithm and returns the

result Kx to A. If b = 1, C chooses a random key from SHK, records it for later, and returns it to A. To keep consistent, C
returns the same random key for the same x every time A queries for its shared key.

The adversary’s queries may be made adaptively and arbitrary polynomial in number. To avoid trivial attacks, no query

to the Reveal oracle is allowed on any attribute set x chosen for Test queries, and no Extract query is allowed on any f

such that f(x) = 1 where x is involved in Test queries. In addition, we require that no policy function registered as corrupt

can later be subject of a Register honest user query, and vice versa.

The advantage of a PPT adversary A (taken over the random coins of the challenger and adversary) in the above game

is defined as

Advm−CKS−heavyA,ABNIKE = |Pr[b′ = b]− 1/2|.

Definition 1. We say that a KP-ABNIKE scheme is secure if all PPT adversaries have at most negligible advantage in

the above m-CKS-heavy game.

We adapt Boneh and Zhandry’s [8] semi-static security notion to the KP-ABNIKE setting.

Definition 2. We say that a KP-ABNIKE scheme is semi-statically secure if for any PPT adversary A satisfying the

following properties, Advm−CKS−heavyA,ABNIKE is negligible:

• A commits to a set X∗ ⊆ A of attributes before seeing the public parameters.

• Each query f to Extract oracle must be satisfy the property f(x) = 0 for all x ⊆ X∗.
• Each query x to Reveal oracle must have x * X∗.

• Each query x∗ to Test oracle must be on a subset x∗ ⊆ X∗.
We also adapt Boneh and Zhandry’s [8] static security notion to the KP-ABNIKE setting.

Definition 3. We say that a KP-ABNIKE scheme is statically secure if for any PPT adversary A satisfying the following

properties, Advm−CKS−heavyA,ABNIKE is negligible:

• A commits to an attribute set x∗ ⊆ A before seeing the public parameters.

• Each query f to Extract oracle must be satisfy f(x∗) = 0.

• The attribute set x∗ cannot be taken as input to the Reveal oracle.

• A makes only a single query to Test oracle on the attribute set x∗.

Appendix C Security of the KP-ABNIKE scheme

We now prove the static security of our KP-ABNIKE scheme (in the main work).

Theorem 1. If diO is a differing-input obfuscator, F is a punctured PRF, and S is a secure signature scheme, then our

construction is a statically secure KP-ABNIKE scheme.

Proof. We describe the proof as a sequence of the following hybrid games.

• G0 : This game corresponds to the honest execution of the static m-CKS-heavy game where the adversary initially

submits a challenging attribute set x∗ ⊆ A. The challenger first runs Sig.Key(1λ) and PRF.Key(1λ) algorithms to generate

(sk, vk) and K. Then it builds an obfuscated program diO(P) and sets the public parameters pp and master key msk = sk.

The adversary is given pp and then makes the following queries:

• Register honest user: A submits a function f ∈ F. Challenger C runs Sig.Sign(sk, f) → skf and records the tuple

(honest, f, skf ).

• Register corrupt user: A submits a function f ∈ F where f was not and will not be registered as honest. Challenger

C records the tuple (corrupt, f,⊥).

• Extract queries: A submits a function f ∈ F, where f(x∗) = 0, that was registered as an honest user. Challenger C
searches for a tuple (honest, f, skf ) containing f and returns skf to A.

• Reveal queries: A submits an attribute set x ⊆ A and x 6= x∗. Challenger C computes Kx = F (K,x) and returns it

to A.

• Test queries: If b = 0, C computes Kx∗ = F (K,x∗) and returns it to A. If b = 1, C chooses a random key from SHK
and returns it to A.

• G1 : The adversary A initially gives a challenging attribute set x∗ ⊆ A to the challenger C. In addition, C receives a

verification key vk with respect to the signature scheme S from the signature scheme challenger. C first runs PRF.Key(1λ)

algorithm to generate K. Then it builds an obfuscated program diO(P∗), where P∗ is defined below and has the same size

as P by appropriate padding.

Shared key generation program P∗

Constants: verification key vk, punctured PRF key Kx∗ , set x∗

Inputs: attribute set x, function f , and secret key skf

1. Check that f(x)
?
= 1 and Sig.Vrfy(vk, f, skf )

?
= 1.

2. If any checks fail, output ⊥; else,

(a) if x = x∗: it outputs ⊥;
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(b) if x 6= x∗: it outputs Kx ← F (Kx∗ , x).

Finally, C sets the public parameters pp and answers the following queries:

• Register honest user: A submits a function f ∈ F. If f(x∗) = 0, C makes a signing query on f to the signature

scheme challenger and it will receive a signature skf . It then records the tuple (honest, f, skf ). If f(x∗) = 1, then C directly

records the tuple (honest, f, ∅). Note that in the static security model, the adversary A cannot make query to the Extract

oracle for functions f which satisfy f(x∗) = 1, and hence the tuple (honest, f, ∅) will not affect C’s capability to answer A’s

queries.

• Register corrupt user: It is same as that in G0.

• Extract queries: It is same as that in G0.

• Reveal queries: It is same as that in G0.

• Test queries: It is same as that in G0.

• G2 : This game is identical to the game G1, except that instead of setting the challenge shared key as Kx∗ ← F (K,x∗),

it is chosen uniformly at random from SHK, which is independent of F .

We now need to argue that each of these hybrid games are computationally indistinguishable.

Lemma 1. If diO is a secure differing-input obfuscation and S is a secure signature scheme, then the games G0 and G1
are computational indistinguishable.

Proof. First of all, we argue that P and P∗ form a differing-inputs circuit family. We note that the only difference

between circuits P and P∗ is on the challenge point x∗ ⊆ A, hence the input, that can cause P and P∗ output two different

values, can only be the form (x∗, f, skf ), where f(x∗) = 1 and Sig.Vrfy(vk, f, skf ) = 1. Given a such input circuit P outputs

F (K,x∗) but P∗ outputs ⊥. Given any other inputs P and P∗ will output the same values. If P and P∗ cannot form a

differing-inputs circuit family which means that there exists a sample algorithm can sample (C0 = P, C1 = P∗, aux = x∗)

and an adversary can find out the differing-input (x∗, f, skf ), such that f(x∗) = 1 and Sig.Vrfy(vk, f, skf ) = 1. The

validation of Sig.Vrfy(vk, f, skf ) = 1 means that skf is a valid signature for f , where f(x∗) = 1. Here f was not queried to

the Extract oracle and thus f was not taken as input to the signing oracle by C. Based on this analysis, C can make use of

(f, skf ) as the forgery with respect to the signature scheme S. Therefore, the security of the signature scheme shows that

P and P∗ form a differing-inputs function family. Hence, according to the security of diO, the obfuscations diO(P) and

diO(P∗) are indistinguishable. This in turn shows that G0 is indistinguishable from G1. 2

Lemma 2. If F is a secure punctured PRF, then the advantages of any PPT adversary in games G1 and G2 must be

negligibly close.

Proof. We show that if there is a PPT adversary A with different advantages in games G1 and G2, then we can construct

a pair of attackers (A1,A2) to break the pseudorandomness property of the punctured PRF F. A1(1λ) simply invokes the

adversary to obtain the challenge x∗. It then sets and gives τ = (x∗, OSignsk , vk,Kx∗ ) to A2, where OSignsk denotes the

signing oracle with respect to the signature scheme S. A2 obtains τ from A1 and a value z∗ from the PRF challenger,

where z∗ = F (K,x∗) or a random t. Note that (1) given τ , algorithm A2 can answer the adversary A’s Extract and Reveal

queries because OSignsk and Kx∗ in τ ; and (2) this yields either the value z∗ computed in G1 (when z∗ = F (K,x∗)) or G2
(when z∗ = t). Finally, A2 outputs 1 if the adversary succeeds. In conclusion, any adversary with different advantages in

games G1 and G2 leads an attacker on the pseudorandomness of the punctured PRF F. 2

Finally, in the last game G2, any PPT adversary obviously cannot win the game with non-negligible advantage because

the real shared key is replaced by a random value. This completes the proof of Theorem 1. 2

Appendix D Semi-statically secure KP-ABNIKE

Before giving the semi-statically secure KP-ABNIKE scheme, we first show that why the KP-ABNIKE with punctured PRF

is hard to be semi-statically secure. In the model of semi-static security described in Definition 3, the adversary A commits

to an attribute set X∗ ⊆ A before seeing the public parameters. Then A can make Test queries for arbitrary polynomial

times on inputs x∗ ⊆ X∗. From the proof of Lemma 1, we know that we need to puncture all possible subsets x∗ ⊆ X∗

that the adversary may challenge on. Therefore, if the set X∗ is oversize, then we may not be able to efficiently puncture

its all subsets x∗.

To circumvent the above problem, we make use of the notion of constrained PRF for circuit predicates [7,8]. Informally,

constrained PRFs for circuits support constraining to sets S accepted by a polynomial size circuit C. That is to say, given

a constrained key KC , if C(x) = 1 then it can compute F (KC , x) = F (K,x); Else, it remains pseudorandomness for x

which satisfies C(x) = 0. The constrained PRF for circuits can be realized from indistinguishability obfuscation [8] and

multilinear maps [7].

The formal definition of constrained PRF for circuits is defined below.

Definition 4. A family of constrained PRFs for circuits consist of a triple of algorithms FC = (PRF.Key,PRF.Pun, F ),

and a pair of computable functions n(·) and m(·), satisfying the following conditions:

• Functionality preserved under puncturing: For any PPT adversary A such that it outputs a circuit C, then for all x

which satisfies C(x) = 1, have:

Pr[F (K,x) = F (KC , x) : K ← PRF.Key(1λ),KC ← PRF.Pun(K,C)] = 1.

• Pseudorandom at punctured points: For any PPT adversary (A1,A2) such that A1(1λ) outputs a circuit C and state

τ , consider an experiment where K ← PRF.Key(1λ) and KC ← PRF.Pun(K,C). Then we have:
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Pr[A2(τ,KC , C, F (K,x)|C(x)=0) = 1]− Pr[A2(τ,KC , C, Um(λ)) = 1] = negl(λ),

where U` denotes the uniform distribution over ` bits.

We now prove that, if the PRF in the KP-ABNIKE construction is a constrained PRF for circuits, then it is semi-statically

secure.

Theorem 2. If diO is a differing-input obfuscator, FC is a constrained PRF for circuits, and S is a secure signature

scheme, then the KP-ABNIKE construction is semi-statically secure.

Proof. We describe the proof as a sequence of the following hybrid games.

• G0 : This game corresponds to the honest execution of the semi-static m-CKS-heavy game where the adversary initially

submits a set X∗ ⊆ A. The challenger first runs Sig.Key(1λ) and PRF.Key(1λ) algorithms to generate (sk, vk) and K. Then

it builds an obfuscated program diO(P) and sets the public parameters pp and master key msk = sk. The adversary is

given pp and then makes the following queries:

• Register honest user: A submits a function f ∈ F. Challenger C runs Sig.Sign(sk, f) → skf and records the tuple

(honest, f, skf ).

• Register corrupt user: A submits a function f ∈ F where f was not and will not be registered as honest. Challenger

C records the tuple (corrupt, f,⊥).

• Extract queries: A submits a function f ∈ F that was registered as an honest user. Challenger C searches for a tuple

(honest, f, skf ) containing f and returns skf to A.

• Reveal queries: A submits an attribute set x ⊆ A but x * X∗. Challenger C computes Kx = F (K,x) and returns it

to A.

• Test queries: A submits an attribute set x∗ ⊆ X∗. If b = 0, C computes Kx∗ = F (K,x∗) and returns it to A. If

b = 1, C chooses a random key from SHK, records it for later, and returns it to A.

• G1 : The adversary A initially commits an attribute set x∗ ⊆ A. C receives a verification key vk with respect to the

signature scheme S from the signature scheme challenger. C then runs PRF.Key(1λ) algorithm to generate K. Next, C
needs to constrain the PRF so that it can only be evaluated at points x̂ where x̂ is not contained in X∗. Formally, it

constructs a circuit C that takes as input x̂ and accepts only if there is some attribute a ∈ x̂ that is not contained in X∗.

C then constructs the constrained PRF for circuits C, i.e., FC . Then it builds an obfuscated program diO(P∗), where P∗
is defined below and has the same size as P by appropriate padding.

Shared key generation program P∗

Constants: verification key vk, punctured PRF key KC , circuit C

Inputs: attribute set x, function f , and secret key skf

1. Check that f(x)
?
= 1 and Sig.Vrfy(vk, f, skf )

?
= 1.

2. If any checks fail, output ⊥; else,

(a) if C(x) = 0: it outputs ⊥;

(b) if C(x) = 1: it outputs Kx ← F (KC , x).

Finally, C sets the public parameters pp and answers the following queries:

• Register honest user: A submits a function f ∈ F. C makes a signing query on f to the signature scheme challenger

and it will receive a signature skf . It then records the tuple (honest, f, skf ).

• Register corrupt user: It is same as that in G0.

• Extract queries: It is same as that in G0.

• Reveal queries: It is same as that in G0.

• Test queries: It is same as that in G0.

In the end of the game, we change the conditions that the adversary A succeeds as follows: (1)b′ = b; (2) all f queried to

Register honest user and Extract oracles satisfy f(x∗) = 0 for all x∗ queried to Test oracle.

• G2 : This game is identical to the game G1, except that instead of setting all challenge shared keys as Kx∗ ← F (K,x∗),

they are chosen uniformly at random from SHK, which are independent of F .

We need to argue that each of these hybrid games are computationally indistinguishable.

Lemma 3. If diO is a secure differing-input obfuscation and S is a secure signature scheme, then the games G0 and G1
are computational indistinguishable.

Proof. First of all, we argue that P and P∗ form a differing-inputs circuit family. We note that the only difference between

circuits P and P∗ is on the points x where C(x) = 0, hence the input, that can cause P and P∗ output two different values,

can only be the form (x, f, skf ), where C(x) = 0, f(x) = 1, and Sig.Vrfy(vk, f, skf ) = 1. Given a such input circuit P outputs

F (K,x) but P∗ outputs ⊥. Given any other inputs P and P∗ will output the same values. If P and P∗ cannot form a

differing-inputs circuit family which means that there exists a sample algorithm can sample (C0 = P, C1 = P∗, aux = C)

and an adversary can find out the differing-input (x, f, skf ) such that C(x) = 0, f(x) = 1, and Sig.Vrfy(vk, f, skf ) = 1. The

validation of Sig.Vrfy(vk, f, skf ) = 1 means that skf is a valid signature for f , where f(x) = 1 and f was not queried to

the Register honest user and Extract oracles.2) We can use such a differing input to break the security of the signature

2) This only can be checked after the game and thus increase C’s workload. However, this will not affect A’s advantage

to win game G1.
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scheme. Therefore, the security of the signature scheme shows that P and P∗ form a differing-inputs function family. Hence,

according to the security of diO, the obfuscations diO(P) and diO(P∗) are indistinguishable. This in turn shows that G0
is indistinguishable from G1. 2

Lemma 4. If FC is a secure constrained PRF for circuits, then the advantages of any PPT adversary in games G1 and

G2 must be negligibly close.

Proof. We show that if there is a PPT adversary A with different advantages in games G1 and G2, then we can construct

a pair of attackers (A1,A2) to break the pseudorandomness property of the PRF FC . A1(1λ) simply invokes the adversary

to obtain the challenge X∗. It then sets C and FC as describe in G1. Next, A1 gives τ = (OSignsk , vk, C,KC) to A2,

where OSignsk is the signing oracle with respect to the signature scheme S. A2 obtains τ from A1 and a value z∗ from the

PRF challenger, where z∗ = F (K,x∗) and or a random t. Note that (1) given τ , algorithm A2 can answer the adversary

A’s Register honest user, Extract, and Reveal queries because OSignsk and KC in τ ; and (2) this yields either the value

z∗ computed in G1 or G2. Finally, A2 outputs 1 if the adversary succeeds. In conclusion, any adversary with different

advantages in games G1 and G2 leads an attacker on the pseudorandomness of the punctured PRF FC . 2

Finally, in the last game G2, any PPT adversary obviously cannot win the game because the real shared key is replaced

by a random value. This completes the proof of Theorem 2. 2

Appendix E Connection to IBNIKE and two- or more-party ABNIKE

In this section, we show that how to construct identity-based non-interactive key exchange (IBNIKE) schemes and two- or

more-party shared-key-policy attribute-based non-interactive key exchange (SP-ToMABNIKE) schemes from shared-key-

policy attribute-based non-interactive key exchange (SP-ABNIKE) schemes.

An IBNIKE scheme consists of three PPT algorithms: IB.Setup algorithm takes as input a security parameter λ to

generate public parameter pp′ and master key msk′; IB.KeyGen algorithm takes as inputs the master key msk′ and user’s

identity id to generate a secret key skid; IB.SharedKey takes as inputs the public parameters pp′, a group of users I =

(id1, . . . , idn), and a secret key skids to generate a session key KI .

The idea of the transformation is the following: In SP-ABNIKE scheme, we assume that user’s attribute set is defined by

an unique identity, i.e., x := id. Then, set the policy for the session key as f = id1
∨
· · ·

∨
idn which means that f(id) = 1

if and only if id = idi for i ∈ [1, n]. Concretely, the IBNIKE construction which is based on SP-ABNIKE is as following:

• IB.Setup(1λ): Run (pp,msk)← AB.Setup(1λ). Set pp′ := pp,msk′ := msk.

• IB.KeyGen(msk′, id): Run skid ← AB.KeyGen(msk, id).

• IB.SharedKey(pp, I = (id1, . . . , idn), skids , s): Set the policy function as fI = id1
∨
· · ·

∨
idn, where I = (id1, . . . , idn)

is sorted by lexicographic order. Then run KfI ← AB.SharedKey(pp, fI , skids , s).

In SP-ABNIKE schemes, we assume that an attribute set x uniquely determines a user. An SP-ToMABNIKE scheme

consists of three PPT algorithms: ToMAB.Setup algorithm takes as input a security parameter λ to generate public parameter

pp′ and master key msk′; ToMAB.KeyGen algorithm takes as inputs the master key msk′ and user’s attribute set xi, to

generate a secret key skxi ; ToMAB.SharedKey takes as inputs the public parameters pp′, attribute sets of the participants

x1, . . . , xn, n > 2, and a secret key skxi , i ∈ [1, n] to generate a session key K1,...,n. The difference betweens SP-ABNIKE

and SP-ToMABNIKE is the following: in SP-ABNIKE schemes, the session key is established on behalf of some policy

function; However, in SP-ToMABNIKE schemes, the session key is established on behalf of some specific group of users.

The transformation for SP-ToMABNIKE which is similar to the IBNIKE case. The detail is as following:

• ToMAB.Setup(1λ): Run (pp,msk)← AB.Setup(1λ). Set pp′ := pp,msk′ := msk.

• ToMAB.KeyGen(msk′, x): Run skx ← AB.KeyGen(msk, x).

• ToMAB.SharedKey(pp′, (x1, . . . , xn), skxi , i): Set the policy function as fn = x1
∨
· · ·

∨
xn, where x1, . . . , xn is sorted

by lexicographic order. Then run Kfn ← AB.SharedKey(pp, fn, skxi , i).
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