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Abstract Robots should ideally perceive objects using human-like multi-modal sensing such as vision, tactile

feedback, smell, and hearing. However, the features presentations are different for each modal sensor. Moreover,

the extracted feature methods for each modal are not the same. Some modal features such as vision, which

presents a spatial property, are static while features such as tactile feedback, which presents temporal pattern,

are dynamic. It is difficult to fuse these data at the feature level for robot perception. In this study, we propose

a framework for the fusion of visual and tactile modal features, which includes the extraction of features, feature

vector normalization and generation based on bag-of-system (BoS), and coding by robust multi-modal joint

sparse representation (RM-JSR) and classification, thereby enabling robot perception to solve the problem of

diverse modal data fusion at the feature level. Finally, comparative experiments are carried out to demonstrate

the performance of this framework.
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1 Introduction

Humans perceive objects synthetically using vision, tactile feedback, smell, hearing, and taste; the for-

mer two sensory inputs are most important. When humans encounter difficulty in visually discriminating

objects with similar appearance, tactile sensing can help distinguish them by reasoning and synthesizing.

Therefore, information of each modality and feature can improve the robustness and accuracy of classi-

fication. However, the physiological mechanism responsible for the concurrent processing of multi-modal

perception information in humans is not understood clearly. Therefore, most current fusion methods for

robot perception are based on probabilistic algorithms and employ Bayesian rule to combine multi-modal

data. However, a critical problem in the multi-modal fusion process is that the spatial temporal pat-

terns of feature space from multi-modal sensor data are different. In other words, perceiving an object’s

shape, color, and size by vision is usually static. We can classify objects based on their appearance from

graphs or photos. However, tactile feedback is dynamic. We perceive an object’s stiffness by the grasping

process. It is, hence, very complex to fuse these two modal data.
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In recent years, more and more researchers have paid attention to multi-modal fusion, which is usually

divided into three classes: data fusion, feature fusion, and decision fusion [1]. Fusion of various data should

be in accordance with the task to be performed. Initially, multi-features or multi-tasks of vision, such as

color, shape, and texture, were used in image recognition applications. These applications are usually in

the same modal, either static or dynamic. Feature vectors extracted by histogram of Oriented Gradient

(HOG) or scale-invariant feature transform compact (SIFT) have similar forms and represent same static

character. Multimodal fusion finds wides application in human computer interaction (HCI). Multimodal

systems of HCI can allow users to interact through diverse input modalities, such as speech, handwriting,

hand gesture, and gaze, and can receive information from the system through output modalities, such

as speech synthesis, smart graphics, and others modalities. However, these multimodal fusions are only

employed at the decision-making level by histogram techniques [2], multivariate Gaussians [2], artificial

neural networks (ANNs) [3,4] or hidden Markov models (HMMs) [2]. In all these systems, the probabilistic

outputs of the modalities have been combined assuming conditional independence by using either the

Bayesian rule or a weighted linear combination over the mode probabilities for which the weights are

adaptively determined. They have not considered data properties and relationships at the feature level.

Another method that attempts to obtain better fusion results in the coding step is joint or structured

sparse representation for multi-modal and multi-feature fusion. Since ref. [5] demonstrated the appli-

cation of sparse coding in the receptive fields of a human being’s visual cortex to extract meaningful

information from images, the algorithms of sparse coding have seen rapid development in the past few

years. In particular, it has led to state-of-the-art results in face recognition (FR), voice analysis, texture

classification, etc. For sparse representation of multiple modalities and features, independent class in-

cluding various features has within-group similarity. Furthermore, each class has a discriminative group

structure for classification. Nguyen et al. [6] propose a novel multi-task multivariate (MTMV) sparse rep-

resentation method for multi-sensor classification of personnel footstep recognition. The data is collected

from nine sensors including acoustic, seismic, PIR and ultrasonic sensors. They add error items to sparse

representation formulation in order to reduce arbitrary large noise. Zhang et al. [7] investigate the joint-

structured sparsity based methods for transient acoustic signal classification with multiple measurements.

Three kinds of joint structured sparse priors: same sparse code (SSC), common sparse pattern (CSP)

and joint dynamic sparse (JDS) models are proposed and compared to other popular classifiers, such

as nearest neighbor (NN), support vector machine (SVM), sparse representation-based classifier (SRC).

They aim to employ multiple measurements from the same type of sensors rather than single channel to

improve the accuracy. Yuan et al. [8] address visual multiple features classification as a multi-task joint

sparse representation model for recognition. The multi-features of test images, such as color, shape, and

texture, are extracted for fusion and joint sparse representation. A proximal gradient method is used

to optimize the restructure dictionary. Liu and Sun [9] apply the joint sparse representation method to

construct the likelihood function of particle filter tracker to enable the fusion of the color visual spectrum

and thermal spectrum images for object tracking. Shekhar et al. [10] propose a multi-modal sparse repre-

sentation method to constrain the observations from different modalities, which contain iris, fingerprint

and face, for biometrics recognition. These modalities of information are fused by assigning more weights

to the more reliable modalities, which are ranked according to the Sparsity Concentration Index (SCI).

Experiments have shown that their method is robust and improves the recognition accuracy significantly.

Furthermore, Rao et al. [11] propose Sparse Overlapping Group (SOG) lasso to solve problems of multi-

modal grouped features that have some notion of similarity. Zhang and Levine [12] present a multi-task

robust sparse representation (MRSR) model to address the fusion of multi-focus gray-level images with

misregistration. It is obvious to see that joint or structured sparse representation is applied to solve the

multi-task or multi-modal fusion problem by various methods.

Although various methods are proposed for multi-modal fusion at the data, feature, and decision

level, most of them are not cross-modal that include dynamic and static. Moreover, there is no uniform

framework for the fusion of the entire perception process from raw senor data to decision results. In

this study, we propose a novel framework for the fusion of visual and tactile modal data (Figure 1) for

robot perception and propose a Robust Multi-modal Joint Sparse Representation (RM-JSR) for coding.
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Figure 1 (Color online) Illustration of framework and pipeline of multi-modal and multi-feature fusion for robot percep-

tion. Given a query object, multi-modal raw data from various sensors are collected. Next, multi-features are extracted

from visual and tactile modalities. Then, the feature vectors from different feature spaces are normalized to the same form

and dimensionality by using bag-of-system (BoS). Each feature vector can be jointly represented as a linear combination

product of training dictionary and sparse coefficient that have the same sparsity pattern of nonzero with different value.

Finally, the dictionary is optimized and the object is classified for recognition.

The proposed framework is effective for the fusion of diverse modal data, including static and dynamic.

Our framework comprises the following four steps: (1) Extraction of features from raw data obtained

from various sensors, including static and dynamic modal data. (2) Normalization of feature vectors

from different feature spaces based on bag-of-system (BoS). (3) Proposal of Robust Multi-modal Joint

Sparse Representation (RM-JSR) for coding and classification. (4) Classification of objects by Sparse

Representation based Classification (SRC).

2 Visual perception

Most object classification tasks are based on static images. There are several of features that describe

images, such as SIFT [13], HOG [14], and JCD [15]. SIFT and HOG are the most widely used descriptors

owing to their good performance and efficiency. After the features are extracted, the feature matrix

should be encoded for classification.

Aldous et al. [16] propose bag-of-words (BoW) method for text retrieval that represents textual docu-

ments as histograms over a vocabulary of English words. Similar to the BoS approach, BoW can encode

the local descriptors into a codebook that comprises codewords. Gemert et al. [17] consider codewords as

characteristic representatives of the image descriptors and all codewords making up the codebook that are

generated from the training image dataset. Conventional methods for codebook building include captur-

ing the probability distribution of the local descriptors by Gaussian Mixture Model (GMM) and dividing

the local descriptor space by k-means clustering. Then, the codewords are activated by encoding methods

such as Hard Assignment (HA), Local Soft Assignment (LSA), Sparse Coding (SC), Locality-constrained

Linear Coding (LLC) [18], and Fisher vector (FV). Finally, the feature vectors for classification can be

obtained after pooling and normalization.

In conclusion, visual perception of robot includes feature extraction, encoding, and classification. The

BoW method plays an important role in feature vector generation.

3 Tactile perception

Tactile sensing reading is dynamic press value in sequence that can be modeled by Linear Dynamic

System (LDS) [19]. Their temporal and spatial features can be extracted from tactile sequence data that
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include multiple subsequences. The LDS model is formulated as follows:

{
x(t + 1) = Ax(t) +Bv(t), x(0) = x0,

y(t) = Cx(t) +W (t),
(1)

where x(t) ∈ ℜp is the hidden state at time t. A ∈ ℜn×n maps the dynamics of the hidden state, and

C ∈ ℜp×n models the hidden state of the output of the system, W (t) and Bv(t) are the measurements

and driven by Gaussian white noise, v(t) ∼ N(0, Q), w(t) ∼ N(0, R).

Then, the dimension is reduced by principle component analysis (PCA) and use single value decom-

position (SVD) to compute the observed sequence. The function is given as follows:

Y = UΣV T, (2)

where U ∈ ℜq×n, V ∈ ℜτ×n, Σ = diag[σ1, . . . , σn] is diagonal matrix.

Then, we obtain the estimated C and X from the following function:

{
Ĉ = U,

X̂ = ΣV T,
(3)

X̂ = [x(1), x(2), . . . , x(τ)], A = [x(2), x(3), . . . , x(τ)][x(1), x(2), . . . , x(τ − 1)]†,

where † is Moore-Penrose inverse. (A,C) apply to describe the tactile feature, where A denotes the

dynamic temporal feature and C represents the spatial feature.

Ellis et al. [20] and Mumtaz et al. [21] apply BoS to combine different generative models at various time

resolutions through the selection of the BoS codewords, thereby resulting in superior performance. It is

obvious to see that BoS can transform temporal sequence data to feature vectors easily. Therefore, for

tactile data, BoS can also be used to extract features from subsequences, which can then be indicated by

a histogram h = [h1, h2, . . . , hm]T ∈ ℜm. Thus the tactile array can be represented by a feature vector,

hi,j =
ci,j∑k
j=1 ci,j

, i = 1, . . . ,m; j = 1, . . . , k, (4)

where hi,j is the frequency of the jth value in the ith tactile sequence. ci,j is the number of times of

codeword j. m is the number of tactile sequences. In this way, the tactile sensing reading transforms to

m-dimensional of feature vector as classifiers input [22].

The BoS method can be applied to both visual and tactile perception to encode the features, regardless

of spatial or temporal data, and generate feature vectors. Therefore, BoS can normalize features from

different modals into a uniform pattern in order to enable object recognition.

4 Robust multi-modal joint sparse representation (RM-JSR)

4.1 RM-JSR formulation presentation for multi-modal classification

Sparse representation has been widely used in visual classification since the past ten years. Let us

consider a c class classification problem. Let matrix X ∈ ℜd×n be an n column training feature vector of

dimension d. c denotes the label of Xj ∈ ℜd×nj , j ∈ 1, . . . , c. Given a testing image feature y, the sparse

representation model seeks to solve the following optimization problem:

ω̂ = argmin
ω

‖ω‖0, s.t. ‖y −Xω‖0 6 ε, (5)

where ‖ · ‖0 is ℓ0 norm which is the sparse constraint. However, it is well-known as a NP-hard problem.

Recent research has shown that l1-norm can recover sparse representation in most cases. Therefore, it is
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Figure 2 (Color online) x belongs to the same class but has different features. For the RM-JSR model, the sparse

coefficients are the summation of A and B. A captures the share supports, while B represents unique supports from

different features and classes.

transformed into a convex optimization problem that can be easily solved. Subsequently, the class label

of y can be determined by the reconstruction error, as follows:

Ĵ = argmin
j∈1,...,c

‖y −Xjω̂j‖0. (6)

In recent years, structured sparse coding has been a trend in sparse coding (SC) research. Yuan et

al. [8] propose a novel visual classification method with multitask joint sparse representation, wherein

the problem is changed to a multi-task regression. It is defined as

min
W

1

2

K∑

k=1

L∑

l=1

‖ykl −XkW kl‖22 + λ‖W‖F , (7)

where Xk ∈ ℜdk×n denote the training multi-modal features, k = 1, . . . ,K. l = 1, . . . , L are different

samples for each feature and λ is the regularization parameter.

Sprechmann et al. [23] obtain the collaborative HiLasso model (C-HiLasso) that is very well suited

for source identification and separation. It can impose the same group-sparsity pattern in all the same

class samples and the different in-group sparsity patterns between samples. In addition, Jalali et al. [24]

propose Dirty Block Sparse Model that defines A as the sum of shared structured atoms and B as the

individual atoms. The formulation is given as follows:

min
S,B

1

2n

K∑

k=1

‖y(k) −X(k)(A(k) +B(k))‖22 + λA‖A‖1,1 + λB‖B‖1,1, (8)

where k denotes k-th task. For any matrix Xn
m(m-th row× n-th column), ‖X‖1,1 :=

∑
m,n |X

n
m| denotes

the sums of absolute values; ‖X‖1,∝ :=
∑

m maxn |X
(n)
m | denotes the summation of each row element’s

maximum absolute values. λA and λB are the regularization parameters.

In order to simplify multi-modal joint sparse representation, we impose the l1,2-norm group-sparsity

regularization on the representation matrix to jointly learn the multi-modal sparse representation. For

robust representation, we propose the RM-JSR model (Figure 2) by the addition of weight vectors for

different features of training data, which is given as follows:

min
D,A,B

K∑

k=1

L∑

l=1

(
1

2
‖ωkx

kl
c −D(Ac +Bc)‖

2
2 + λ1‖Ac‖1,2 + λ2‖Bc‖1,1

)
, ∀c, (9)

where k = 1, . . . ,K denote each feature of the modalities index, l = 1, . . . , L is the sample times, the

dictionary D is the concatenation of sub-dictionaries D1, . . . , Dc belonging to different classes, where C is

the total number of classes. For any matrix Xn
m(m-th row×n-th column), ‖X‖1,1 :=

∑
m,n |X

n
m| denotes

the sums of absolute values that induce sparsity; ‖X‖1,2 :=
∑

m ‖Xm‖2 denotes the sums of each row

vector’s l2 norm. ωk is the weight vector of each feature. λ1 and λ2 are the regularization parameters.
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4.2 Optimization approach

Formulation (9) is l1/l2 regularization problem that can be solved by convex optimization theory. Clarke

[25] proposes gradient-type methods for Optimization and non-smooth analysis. Chen et al. [26] and

Schmidt et al. [27] present smooth function to approximate l1 regularization. Figueiredo et al. [28] pro-

pose the Gradient Projection for Sparse Reconstruction (GPSR) method to solve the quadratic program-

ming problem that is transformed by l1/l2 regularization. Decomposition algorithm is another effective

solution. Wright et al. [29] present the Sparse Reconstruction by Separable Approximation (SpaRSA)

framework and iterative methods that involve a quadratic term with diagonal Hessian plus the original

sparsity-inducing regularizer. Yin et al. [30] apply Bregman Iterative Algorithms for l1 Minimization

that yields exact solutions in a finite number of steps. In recent years, Alternating Direction Methods of

Multipliers (ADMM) [31] become a hot research topic for optimization solution owing to its efficiency.

Complexity analysis and numerical experiments by Chi and Lange [32] show that the alternating mini-

mization algorithm (AMA) is significantly more efficient than ADMM. Therefore, we choose AMA as the

Optimization Approach (Algorithm 1). RM-JSR can be reformulated as follows:

min
A,B

λ1‖Ac‖1,2 + λ2‖Bc‖1,1 s.t. ωkxc −D(Ac +Bc) = 0, ∀c. (10)

We use AMA to solve Eq. (10) and reformulate as

min
A,B,P,Q

λ1‖Ac‖1,2 + λ2‖Bc‖1,1 s.t. Ac − Pc = 0, Bc −Qc = 0, ωkxc −D(Ac +Bc) = 0, ∀c, (11)

where P,Q ∈ ℜK×N are alternating factors.

The augmented Lagrangian for the AMA problem is

Lµ(A,B, P,Q, µ1, µ2, µ3) = λ1‖P‖1,2 + λ2‖Q‖1,1 + 〈µ1, A− P 〉+ 〈µ2, B −Q〉

+ 〈µ3, ωkX −D(A+B)〉+
µ

2
(‖A− P‖2F + ‖B −Q‖2F + ‖ωkX −D(A+B)‖2F ), (12)

where the dual variables µ1, µ2, µ3 > 0 denote a vector of Lagrange multipliers.

Algorithm 1 Sparse coding and dictionary learning by AMA

Input: Labeled training data xkl
c ; k = 1, . . . ,K; l = 1, . . . , L; c = 1, . . . , C, multi-feature weight vector ωk, regularization

parameters λ1, λ2, scalar ρ = 1.1

Output: D, Ac, Bc

1: Initializing A0 = 0, B0 = 0, µ0
1,c = 0, µ0

2,c = 0, µ0
3,c = 0, µ = 1, µmax = 106, n = 0;

2: For c = 1, . . . , C do

3: While not converged do

4: Fix Bc, Pc, Qc and update Ac

An+1
c = argminAc

L0(Ac, Bc, P
n
c , Qn

c ,
n
1,c,

n
2,c,

n
3,c)

= (DTD + µI)−1[DT(ωkXc + µn
3,c −DBn

c ) + µ(Pn+1
c − n

1,c)] = D−1(ωkXc + µn
3,c −DBn

c )

5: Fix Ac, Pc, Qc and update Bc

Bn+1
c = argminBc

L0(Ac, Bc, P
n
c , Qn

c , µ
n
1,c, µ

n
2,c, µ

n
3,c)

= (DTD + µI)−1[DT(ωkXc + µn
3,c −DAn+1

c ) + µ(Qn+1
c − n

2,c)] = D−1(ωkXc + µn
3,c −DAn+1

c )

6: Fix Ac, Bc, Qc and update Pc

Pn+1
c = argminPc

Lµ(A
n+1
c , Bn+1

c , Pc, Qc, µ
n
1,c, µ

n
2,c, µ

n
3,c) = Proxλ2,Ω(1,2)

(An
c + µn

1,c)

7: Fix Ac, Bc, Pc and update Qc

Qn+1
c = argminQc

Lµ(A
n+1
c , Bn+1

c , Pc, Qc, µ
n
1,c, µ

n
2,c, µ

n
3,c) = Proxλ1,Ω(1,1)

(Bn
c + µn

2,c)

8: Update Lagrange multipliers µ1,c, µ2,c, µ3,c

µn+1
1,c = µn

1,c + µ(An+1
c − Pn+1

c )

µn+1
2,c = µn

2,c + µ(Bn+1
c −Qn+1

c )

µn+1
3,c = µn

3,c + µ(ωkXc −D(An+1
c +Bn+1

c ))

9: Update penalty parameter µ = min(µmax, ρµ)

10: Return Estimated sparse codes Ac, Bc.

The proximal maps for the ℓ1 and ℓ2 norms have explicit solutions, therefore, Steps 6 and 7 in

Algorithm 1 can be derived as

Proxλ1,Ω1,2(v(i,:)) =

(
1−

λ1

µ‖v(i,:)‖2

)

+

v(i,:), (13)
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Proxλ2,Ω1,1(v(i,j)) =

(
1−

λ1

µ|v(i,j)|2

)

+

v(i,j), (14)

where v(i,j) is defined as i-th row j-th column of V , and (x)+ = max(x, 0). Finally, we get the shared

sparse coefficient Ac and unique sparse coefficient Bc.

4.3 Classification

The group structured pattern enables a very simple classification. We apply sparse representation-based

classification (SRC) to classify objects and only use Ac to train the classifier. Given the optimal solution

Âj , the class label of y is decided based on the following criterion of minimum reconstruction error:

Ĵ = argmin
j∈1,...,c

‖ωky
k −DjÂj‖2. (15)

5 Multi-modal fusion method

Estimating the weight value of each feature is crucial for multi-modal fusion. Conventionally, weight values

are optimized in the dictionary learning procedure. However, it results in the addition of computational

costs. Therefore, we propose a simple iteration adapted weight distribution algorithm to maximize the

classification accuracy. There are mainly two factors related to the iteration efficiency, initial value

and step length. We divide the samples into training data and testing data and obtain each feature’s

classification accuracy individually. High accuracy means more contribution. Then, we normalize and

initialize the weight values, as given by the following function:

ωi =
ai∑k
1 ai

, (16)

where ai is classification accuracy of each feature and i = 1, . . . , k denote kth feature. ωi is the initial

weight value. The iteration adapted weight distribution algorithm is presented as Algorithm 2.

Algorithm 2 Weight value estimation

Input: step length ∆d

Output: optimal ωi

1: Initializing ωi by formulation (16), i = 1;

2: For j = i+ 1, . . . , k do

3: For n = 1, . . . ,m do

4: while ωi > 0

5: ωi = ωi ± n∆d;ωj = ωj ∓ n∆d;

6: calculate accuracy a by RM-JSR framework

7: if ∆a 6 0

8: a=max

9: end

10: Return ωi

6 Experiment

6.1 Experiment setup

We have not found a data-set that contains both visual and tactile data. Therefore, we build the data-

set ourselves. We use Barrett hand (BH8-280) as the robotic hand platform and Kinect as visual data

collection equipment. The torque output of Barrett hand was set to 2500 (programing value). We chose

several-different objects for classification that look similar but have different texture and some have

similar texture but appear different (Figure 3): (1) an empty beverage bottle; (2) a bottle of beverage;

(3) a box of biscuits; (4) a box of toothpaste; (5) an empty water bottle; (6) a bottle of water; (7) a box
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Figure 3 (Color online) Grasp objects photo.

Figure 4 (Color online) Sample photos of object.

of milk; (8) an empty milk box; (9) a can of beer; (10) an empty beer can; (11) an empty cola can; (12)

a can of cola; (13) an empty paper cup; (14) a paper cup of water.

6.2 Comparative experiment

6.2.1 Classification only by visual image

We utilize Kinect to capture 10 photos each of 14 different objects (Figure 4). The size of each graph

is 149× 149 pixels. We chose five random samples of each class for training and the other five for test.

Then, we extract the features by dense DSIFT (Figure 5) and HOG, respectively, and gain feature vectors

by Locality-constrained Linear Coding (LLC) method. We set the size of codewords to 500 in order to

get 500-dimension feature vectors. Finally, we apply SVM to classify these objects. Our algorithms

are implemented in MATLAB/Windows, and run on a personal desktop computer equipped with Intel

i3 CPU and 4GB RAM. The classification accuracy results by utilizing DSIFT and HOG for feature

extraction are 74.2857% (52/70) (Figure 6) and 87.1429% (61/70) (Figure 7), respectively.

Analyzing the two results, we can find that the HOG feature classification accuracy is higher than

DSIFT, and an unexpected error arising in the classification between cola and beer can, which have

different appearances. Therefore, the classification based only on visual data is not reliable sometimes.

6.2.2 Classification only by tactile

We utilize the Barrett hand to grasp each of 14 objects for 10 times. The number of Barrett hand

tactile sensor units is 24× 4 = 96. Therefore, we obtain 96 tactile sample values (Figure 8) by fixing the

frequency from beginning of grasping to stable grasping.

We use the LDS model to transform the raw tactile data and obtain the feature matrices A and C.

Then, we apply two methods to classify these tactile data. First, we calculate the Martin distance of

each tactile features and determine the most similar classification by k-nearest neighbors algorithm. The

accuracy is 74.2857% (52/70) based on MATLAB simulation (Figure 9). Another method is the BoS

model. We transform the entire time series tactile data to codewords by segmentation and cluster the

codewords into 500 classification groups by K-means algorithm. Then, we generate 500 d feature vectors
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Figure 5 Two random of DSIFT feature vectors extracted from object photos; the x-axis represents code-word and y-axis

represents normalization frequency.

Figure 6 DSIFT feature classification accuracy by SVM is 74.2857% (52/70). There are some errors in the classification

of objects with similar appearance. For example, the accuracy of ‘a can of beer’ is 0.4 (2/5), while error arises in the case

of ‘an empty beer can’. Therefore, classification only by visual data is not very accurate and credible.

by using the statistical histogram method. Fanally, these vectors are classified using SVM. The accuracy

of the results obtained using the second method is 91.4286% (64/70) (Figure 10). By comparing the two

tactile classification methods, it is easy to find that the BoS model play an important role in improving

the classification accuracy.

6.2.3 Classification by visual and tactile fusion

Based on the above experiment, we can obtain visual and tactile feature vectors by BoS model; both the

vectors have uniform 500 d. First, we fuse the visual and tactile feature vectors by adding proper weights

and then classify them using SVM. The accuracy of the classification result is 98.5714% (69/70). Then,

we apply our framework of visual and tactile fusion and utilize RM-JSR to classify these two modal data.

The result is that our methods perform better and achieve 100% accuracy.

By performing these series of experiments, multi-modal fusion perception was shown to grasp more

features. Moreover, its ability to discriminate improved greatly as compared to any other solo modal

in term of classification accuracy. Furthermore, the proposed RM-JSR achieve better performance than

SVM in terms of classification accuracy owing to its ability to capture the structure similarity between
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Figure 7 HOG feature classification accuracy by SVM is 87.1429% (61/70).

Figure 8 Tactile sensor values of Barrett hand during the task of grasping an object. The x-axis represents the number

of tactile sensor units, the y-axis represents the sampling time, and the z-axis indicates the tactile values.

data in the same class and unique atoms representing in-class variation.

7 Conclusion

We present a framework for the fusion of visual and tactile data for classification purposes, which handles

the static and dynamic sensing data fusion problem. Meanwhile, we develop the RM-JSR algorithm

for visual and tactile classification applications. Experiments on multi-class object recognition designed

by the authors show that the proposed method performs better than the single modal approach and

other classification methods. In summary, we conclude that our framework is an effective method for

visual and tactile fusion and can improve the classification accuracy. In the future, much more modal

sensing data, such as hearing or other sensor data, will be tested and applied our framework to evaluate

robot perception. Another interesting direction is to build a database that records and updates sparse

representation dictionary automatically and systematically.
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Figure 9 Classification accuracy by using Martin distance and k-nearest neighbors algorithm is 74.2857% (52/70).

Figure 10 Classification accuracy by using BoS model and SVM is 91.4286% (64/70).

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos.

613278050, 61210013, 91420302, 91520201) and Academic of Military Medical Science (AMMS) Innovation Foun-

dation (Grant No. 2015CXJJ020).

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Sharma R, Pavlovic V I, Huang T S. Toward multimodal human-computer interface. Proc IEEE, 1998, 86: 853–869

2 Nock H J, Iyengar G, Neti C. Assessing face and speech consistency for monologue detection in video. In: Proceedings

of the 10th ACM International Conference on Multimedia. New York: ACM, 2002. 303–306

3 Meier U, Stiefelhagen R, Yang J, et al. Towards unrestricted lip reading. Int J Pattern Recogn Artif Intell, 2000, 14:

571–585

4 Wolff G J, Prasad K V, Stork D G, et al. Lipreading by neural networks: visual processing, learning and sensory

integration. In: Proceedings of Advances in Neural Information Processing Systems, Denver, 1993. 1027–1034

5 Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by v1? Vision Res,

1997, 37: 3311–3325



Zhang W C, et al. Sci China Inf Sci January 2017 Vol. 60 012201:12

6 Nguyen N H, Nasrabadi N M, Tran T D. Robust multi-sensor classification via joint sparse representation. In:

Proceedings of the 14th International Conference on Information Fusion. New York: IEEE Press, 2011. 1–8

7 Zhang H C, Zhang Y N, Nasrabadi N M, et al. Joint-structured-sparsity-based classification for multiple-measurement

transient acoustic signals. IEEE Trans Syst Man Cybern-part B Cybern, 2012, 42: 1586–1598

8 Yuan X-T, Liu X B, Yan S C. Visual classification with multitask joint sparse representation. IEEE Trans Image

Process, 2012, 21: 4349–4360

9 Liu H P, Sun F C. Fusion tracking in color and infrared images using joint sparse representation. Sci China Inf Sci,

2012, 55: 590–599

10 Shekhar S, Patel V M, Nasrabadi N M, et al. Joint sparse representation for robust multimodal biometrics recognition.

IEEE Trans Pattern Anal Mach Intell, 2014, 36: 113–126

11 Rao N, Nowak R, Cox C, et al. Classification with the sparse group lasso. IEEE Trans Signal Process, 2016, 64:

448–463

12 Zhang Q, Levine M D. Robust multi-focus image fusion using multi-task sparse representation and spatial context.

IEEE Trans Image Process, 2016, 25: 2045–2058

13 Lowe D. Distinctive image features from scale-invariant keypoints. Int J Comput Vision, 2004, 60: 91–110

14 Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition. New York: IEEE Press, 2005. 886–893

15 Chatzichristofis S A, Zagoris K, Boutalis Y S, et al. Accurate image retrieval based on compact composite descriptors

and relevance feedback information. Int J Pattern Recogn Artif Intell, 2010, 24: 207–244

16 Aldous D, Ibragimov I, Jacod J. Exchangeability and Related Topics. Berlin: Springer, 1985. 1–198

17 van Gemert J C, Veenman C J, Smeulders A W, et al. Visual word ambiguity. IEEE Trans Pattern Anal Mach Intell,

2010, 32: 1271–1283

18 Wang J, Yang J, Yu K, et al. Locality-constrained linear coding for image classification. In: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE Press, 2010. 3360–3367

19 Doretto G, Chiuso A, Wu Y N, et al. Dynamic textures. Int J Comput Vision, 2003, 51: 91–109

20 Ellis K, Coviello E, Chan A B, et al. A bag of systems representation for music auto-tagging. IEEE Trans Audio

Speech Lang Process, 2013, 21: 2554–2569

21 Mumtaz A, Coviello E, Lanckriet G R G, et al. A scalable and accurate descriptor for dynamic textures using bag of

system trees. IEEE Trans Pattern Anal Mach Intell, 2015, 37: 697–712

22 Ma R, Liu H P, Sun F C, et al. Linear dynamic system method for tactile object classification. Sci China Inf Sci,

2014, 57: 120205

23 Sprechmann P, Ramirez I, Sapiro G, et al. C-hilasso: a collaborative hierarchical sparse modeling framework. IEEE

Trans Signal Process, 2011, 59: 4183–4198

24 Jalali A, Sanghavi S, Ruan C, et al. A dirty model for multi-task learning. In: Proceedings of Conference on Neural

Information Processing Systems, Canada, 2010. 964–972

25 Clarke F H. Optimization and Nonsmooth Analysis. Hoboken: Wiley, 1990. 24–109

26 Chen X J, Zhou W J. Smoothing nonlinear conjugate gradient method for image restoration using nonsmooth non-

convex minimization. SIAM J Imag Sci, 2010, 3: 765–790

27 Schmidt M, Fung G, Rosaless R. Optimization Methods for L1 Regularization. Berlin: Springer-Verlag, 2009

28 Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed

sensing and other inverse problems. IEEE J Sel Topics Signal Process, 2007, 1: 586–597

29 Wright S J, Nowak R D, Figueiredo M A T. Sparse reconstruction by separable approximation. IEEE J Sel Topics

Signal Process, 2009, 57: 2479–2493

30 Yin W T, Osher S, Goldfarb D, et al. Bregman iterative algorithms for l1-minimization with applications to compressed

sensing. SIAM J Imag Sci, 2008, 1: 143–168

31 Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method

of multipliers. Found Trends Mach Lear, 2010, 3: 1–122

32 Chi E C, Lange K. Splitting methods for convex clustering. J Comput Graph Stat, 2015, 24: 994–1013


	Introduction
	Visual perception
	Tactile perception
	Robust multi-modal joint sparse representation (RM-JSR)
	RM-JSR formulation presentation for multi-modal classification
	Optimization approach
	Classification

	Multi-modal fusion method
	Experiment
	Experiment setup
	Comparative experiment
	Classification only by visual image
	Classification only by tactile
	Classification by visual and tactile fusion


	Conclusion

