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Abstract Complex diseases are generally caused by the dysregulation of biological functions rather than in-
dividual molecules. Hence, a major challenge of the systema tical study on complex diseases is how to capture
the di�erentially regulated biological functions, e.g., p athways. The traditional di�erential expression analysis
(DEA) usually considers the changed expression values of ge nes rather than functions. Meanwhile, the conven-
tional function-based analysis (e.g., PEA: pathway enrich ment analysis) mainly considers the varying activation
of functions but disregards the structure change of genetic elements of functions. To achieve precision medicine
against complex diseases, it is necessary to distinguish bo th the changes of functions and their elements from
heterogeneous dysregulated pathways during the disease de velopment and progression. In this work, in contrast
to the traditional DEA, we developed a new computational fra mework, namely di�erential function analysis
(DFA), to identify the changes of element-structure and exp ression-activation of biological functions, based on
comparative non-negative matrix factorization (cNMF). To validate the e�ectiveness of our method, we tested
DFA on various datasets, which shows that DFA is able to e�ect ively recover the di�erential element-structure
and di�erential activation-score of pre-set functional gr oups. In particular, the analysis of DFA on human gastric
cancer dataset, not only capture the changed network-struc ture of pathways associated with gastric cancer, but
also detect the di�erential activations of these pathways ( i.e., signi�cantly discriminating normal samples and
disease samples), which is more e�ective than the state-of- the-art methods, such as GSVA and Pathi�er. Totally,
DFA is a general framework to capture the systematical chang es of genes, networks and functions of complex
diseases, which not only provides the new insight on the simu ltaneous alterations of pathway genes and pathway
activations, but also opens a new way for the network-based f unctional analysis on heterogeneous diseases.
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1 Introduction

The etiology of complex diseases involves numerous genes, environmental factors and their interaction-
s [1,2], and thus the study of complex diseases is more complicated than expected. Traditional gene-based
analysis explores the associations between individual genes and a disease, but only identi�es a small pro-
portion of the genetic variants related to a disease, which contribute to a limited understanding of complex
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diseases. There is a growing consensus that complex diseases are mostly contributed by multiple genes
through their sophisticated interactions, rather than by the indiv idual genes [3,4]. Hence, the molecular
network analysis of complex diseases could make us further interpret the molecular mechanisms of com-
plex diseases [5] at a system level. However, the molecular network analysis could not directly elucidate
the biological or functional roles of the excavated genes/interactions. To provide a comprehensive under-
standing of the molecular mechanisms causing complex diseases, it is necessary to develop function-based
analysis based on the molecular network for complex diseases.

Actually, there are many studies on investigating the biological functions and constructing biological
function databases, such as GO ontology database [6] and KEGG pathway database [7]. Based on
these well-known databases, a few methods of function-based analysis have been proposed, such as Gene
Ontology-based analysis [8,9] and pathway-based analysis [10]. Especially, the biological pathways could
provide the genetic regulated information of the biological functions, and thus the pathway-based analysis
is speci�c and direct on biological functions.

The early developed pathway-based approaches were motivated to understand the biological roles of
the excavated genes/interactions, such as the gene set enrichment analysis (GSEA) [10] and network
ontology analysis (NOA) [11, 12]. Recently, some new methods have also been proposed to detect the
dysregulated pathways by parsing the topological information of apathway, e.g., signaling pathway impact
analysis (SPIA) [13] and CliPPER [14]. Moreover, some other approaches have also been proposed to
transform the genetic expression values into functional activation-scores and identify the di�erentially
regulated pathways, such as pathway-based personalized analysis of cancer (Pathi�er) [15] and GSVA [16].
Currently, those methods for function-based analysis have become an important way to understand the
molecular mechanisms of complex diseases [17].

However, the topological information of the pathways deposited indatabases is the assembled in-
formation, which is the combination of experimental results from the di�erent labs under the di�erent
conditions. Therefore, the topological information could not represent the actual regulated relationships
of pathway elements/genes in a speci�c condition, e.g., a speci�c disease. The conventional pathway-
based analysis directly used such aggregated topological information, and thus considered the varying
activation of pathways but disregarded the details of the structure change of pathways.

In this work, in contrast to the traditional DEA on individual molecule s, we develop a novel computa-
tional framework, namely di�erential function analysis (DFA), to id entify the changes of network-structure
and expression-activation of the pathways at a network level, based on our new integration method, i.e.,
cNMF. By testing on various datasets, we show that DFA is able to e� ciently recover the di�erential
element-structure and di�erential activation-score of pre-set functional groups. Particularly, the analysis
of DFA on human gastric cancer dataset, not only captures the changed network-structure of the path-
ways associated with gastric cancer, but also detects the di�erential activations of these pathways, which
signi�cantly distinguishes normal samples and disease samples and is also more e�ective than the state-
of-the-art pathway-based methods, such as GSVA and Pathi�er. Our analysis show that DFA is a general
framework to detect the systematical changes of genes, networks and functions of complex diseases, which
not only provides a new insight on the simultaneous alterations of pathway genes and pathway activations,
but also opens a new way for the network-based functional analysis on heterogeneous diseases.

2 Methods and material

In this section, we describe the framework of DFA (Figure 1). We �rst introduce the problem, and then
present the mathematical model of DFA. Next we describe the iterative multiplicative updating algorithm
to solving the model.

2.1 The problem

We could measure the gene expression of samples in complex disease.Because some genes implement the
same biological functions, the gene expression data actually have particular sub-structures, which include
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Figure 1 (Color online) Overview of DFA for identifying the dysregul ated pathways in complex diseases.

the element component of the biological functions and the activation expression of the biological functions
in samples. So, the gene expression (i.e., the matrixX ) could decompose to the so-called basis matrix
W and the coe�cient matrix H . The basis matrix contains the element component information of each
biological function, while the coe�cient matrix represents the activ ation information of each biological
function in samples. Such a problem of expression decomposition could be formulated as the non-negative
matrix factorization (NMF) problem.

The non-negative matrix factorization could divide a matrix X into two non-negative matrices including
a coe�cient matrix H and a basis matrix W with a lower rank than matrix X [18, 19]. The solution
of NMF can be used to easily identify sub-structures of the data [20, 21]. Especially, NMF can be
applied to decompose the observed element expression matrixX of prior-known pathways into the actual
element component matrix W and the activation matrix H of these pathways. Due to the e�ectiveness
and the inherent advantages of NMF, there were plentiful applications of NMF and its variants in the
analysis of large-scale gene expression datasets [22{25], the classi�cation and clustering [26{28], and new
class discovery [29, 30]. Besides, several variants of NMF have alsobeen developed by incorporating
various kinds of constraints: discriminative constraints [31], locality-preserving or network-regularized
constraints [32{34], sparsely constraints [35{38], etc.

However, the main focus of this work is to identify the dysregulatedbiological functions in complex
diseases. To interpret the dysregulation of pathways in complex diseases, one key is to �nd the di�er-
ential elements/genes and the di�erential activations of corresponding biological function under di�erent
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conditions (e.g., normal or disease). This could be described in mathematical terms as follows. The
input data are the elements of each pathway and the expression values of these elements in two sample
groups (e.g., the matricesX 1 and X 2 for normal and disease sample groups respectively). A mathemat-
ical model is designed to decompose the matrices (X 1, X 2) into the basis matrices (W1, W2) and the
coe�cient matrices ( H1, H2) correspondingly. Therefore, some joint-NMF model is needed. Recently,
a number of joint-NMF models have been proposed [23, 39]. These methods usually assume that the
coe�cient matrix or the basis matrix of pathways would be identical in two sample groups, which could
not detect the di�erentially regulated elements and the di�erentially activated pathways simultaneously.
Thus, to address this issue, we proposed a new model for DFA, based on a novel technique, i.e., cNMF.
This model is more general than the traditional joint-NMF, and makes that the coe�cient matrix and
the basis matrix of pathways would have restricted di�erences, simultaneously.

2.2 Comparative non-negative matrix fraction (cNMF)

The model of DFA is mainly based on cNMF, which includes the �tness function, the pathway-enriched
constraint, the dysregulation constraint and the sparse constraint.

2.2.1 Fitness function

DFA does not require the same coe�cient matrix or the same basis matrix of pathways in the two group
samples, and thus cNMF could decompose the matrices (X 1, X 2) into the basis matrices (W1, W2) and
the coe�cient matrices ( H1, H2) respectively. In other words, the basis matricesW1 and W2, and the
coe�cient matrices H1 and H2 could be di�erent. Hence, the joint decomposition of the expression data
for the two group samples can be derived by optimizing the following �tness function:

F (W1; W2; H1; H2) = min
X

I =1 ;2

kX I � WI H I k2
F ; (1)

whereX 1 and X 2 have the same dimensionss � m; W1 and W2 have the same dimensionss � k; H1 and
H2 have the same dimensionsk � m. The parameter k is chosen prior to optimization, which is just the
number of the analyzed pathways in this study.

2.2.2 Pathway-enriched constraint

The information on the known components or elements of pathwayscan be used to make each column
of the basis matrix enriched on one corresponding pathway. That means, the basis matrix could contain
the actual element information of each pathway where the value ofeach column represents the degree of
an element belonging to a pathway. Thus, we have the following hypothesis: if one column of the basis
matrix enriched on the corresponding pathway, the element valuesof this pathway should be very larger
than those of the other elements. Then, the mathematical formalization of so-called pathway-enriched
constraint could be derived by the following function:

O1 =
X

i

X

k

(a(i; k )w1(k; i ) � b(i; k )w1(k; i )) +
X

i

X

k

(a(i; k )w2(k; i ) � b(i; k )w2(k; i ))

= tr( AW1 � BW1) + tr( AW2 � BW2); (2)

where the binary matrix A re
ects the information of the known elements of pathways, and an element
belongs to the corresponding pathway only when its value is one. Thebinary matrix B represents the
information of the contrary elements, where an element does not belong to the corresponding pathway
only when its value is one. Clearly the value of this constraint function is expected to be as large as
possible, and thus the function (2) is actually taken as a soft constraint to add to the objective function (1).
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2.2.3 Dysregulation constraint

In complex diseases, the elements/genes of pathways in two samplegroups (i.e., normal and disease
samples) may be di�erent; meanwhile the activation scores of pathways in the samples may be also
di�erent. Hence, each column of the basis matricesW and each row of the coe�cient matrix H in
two samples groups could be di�erent. We apply the Frobenius-normon the basis matrix W and the
coe�cient matrix H to constrain the di�erential element-structures and the di�eren tial activation-scores
of pathways respectively.

In details, the mathematical formalization of so-called dysregulation constraint could be derived by
the following function:

G1(W1; W2) =
X

i

sX

k

(w1(k; i ) � w2(k; i ))2 = kW1 � W2k2
F ; (3)

G2(W1; W2) =
X

i

mX

k

(h1(i; k ) � h2(i; k ))2 = kH1 � H2k2
F : (4)

Note that, the above function makes the model is suitable to handlethe matched sample data, e.g.,
the tumor samples and the tumor-adjacent normal samples. All those constraints are soft constraints,
which are added to the objective function (1).

2.2.4 Sparsity constraint

The sparse representations of NMF methods could discover the partial patterns [18], and several ap-
proaches have been proposed to obtain the sparseW and/or H factors [35,37,40,41]. Our cNMF of DFA
similarly adopt the idea of imposing L 1-norm to make the sparsity of basis matricesW1 and W2 [41].

Finally, by adding all of those soft constraints, the extended objective function of cNMF is de�ned as
follow:

min
X

I =1 ;2

kX I � WI H I k2
F � � 1[tr( AW1 � BW1) + tr( AW2 � BW2)]

� � 2(kW1 � W2k2
F + kH1 � H2k2

F ) + � 3

X

i

(kw1(i; :)k2
1 + kw2(i; :)k2

1)

+ � 4(kH1k2
F + kH2k2

F ); (5)

where the term� 3
P

i (kw1(i; :)k2
1+ kw2(i; :)k2

1) encourages the sparsity of the matrixW , while � 4(kH1k2
F +

kH2k2
F ) limits the growth of the matrix H .

2.3 Di�erential function analysis: a new model of function a nalysis

2.3.1 Solving DFA by cNMF

Obviously, cNMF is not convex in W1,W2, H1 and H2. Therefore, it is unrealistic to �nd the global
minimum. Similar to the classical NMF algorithms [19,23,42], we have developed the iterative algorithm of
cNMF to solve the DFA model as the following algorithm, which e�ciently converges to a local minimum
by iteratively updating the matrix decomposition. The updating rules and proof of this algorithm are
provided in supplementary information (SI).

2.3.2 Pathway-enriched analysis of DFA by pathway remodeling on basis matrices

Each column of the basis matrix is expected to represent a particular pathway. Thus, the enrichment
signi�cant score (ES-score) of each pathway is designed to evaluated whether the estimated basis matrix
of DFA could recover the element-structure of the analyzed pathways, and ES-score is calculated on one
column of the basis matrix as bellows.

The elements of one column of the basis matrix are ranked by their values in a descending order, and
the �rst N elements are selected, whereN denotes the element number of the particular pathway of
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Algorithm 1 Algorithmic framework for DFA

1: Step 1 Initialize W1 , W2 , H 1 and H 2 with non-negative values, and set the iteration index t = 0.

2: Step 2 Fix H 1 and H 2 , solve the constrained problem

3: min
P

I =1 ;2
kX I � W I H I k2

F � � 1 [tr( AW 1 � BW 1 )+tr( AW 2 � BW 2 )] � � 2kW1 � W2k2
F + � 3

P
i (kw1 (i; :)k2

1 + kw2 (i; :)k2
1):

4: That is, update W1 , W2 with

5: w1
ij  w1

ij
(2 X 1 H T

1 + � 1 A T +2 � 2 W 1 ) ij

(2 W 1 H 1 H T
1 + � 1 B T +2 � 3 W 1 ek � k +2 � 2 W 2 ) ij

:

6: w2
ij  w2

ij
(2 X 2 H T

2 + � 1 A T +2 � 2 W 2 ) ij

(2 W 2 H 2 H T
2 + � 1 B T +2 � 3 W 2 ek � k +2 � 2 W 1 ) ij

:

7: Step 3 Fix W1 and W2 , solve the constrained problem

8: min
P

I =1 ;2
kX I � W I H I k2

F � � 2kH 1 � H 2k2
F + � 4 (kH 1k2

F + kH 2k2
F ):

9: That is, update H 1 , H 2 with

10: h1
ij  h1

ij
(2 W T

1 X 1 +2 � 2 H 1 ) ij

(2 W T
1 W 1 H 1 +2 � 4 H 1 +2 � 2 H 2 ) ij

:

11: h2
ij  h2

ij
(2 W T

2 X 2 +2 � 2 H 2 ) ij

(2 W T
2 W 2 H 2 +2 � 4 H 2 +2 � 2 H 1 ) ij

:

12: Step 4 let t  t + 1, repeat Steps 2 and 3 until convergence criteria are satis �ed.

this column. (i) For the synthetic examples, the ES-score of each pathway in one column directly uses
the percentage of pathway elements in the Top-N. (ii) For the real biological samples, the ES-score is
the P-value of a hypergeometric test on the enrichment of pathway elements in the Top-N, where the
hypergeometric test is introduced in SI.

Note that there are two basis matrices in cNMF, and thus the same columns in the two matrices are
considered to play the same biological role, e.g., the same pathway enriched. The moderate signi�cant
value, which is the minimum score of the two ES-scores of one pathway for the synthetic examples and
is the maximum score of the two ES-scores of one pathway for the real biological samples, is the �nal
ES-score of this pathway on this column in both basis matrices.

The ES-score of the pathway corresponding to one column can represent the pathway-enriched signif-
icance of this column. The pathway-enriched signi�cance of all columns consist of the pathway-enriched
signi�cance vector, and their average value is the pathway-enriched signi�cant score (PE-score) of the
basis matrices. If the pathway-enriched signi�cance of one columnis larger than ES-scores of other path-
ways, this column is called as the pathway-identi�ed column. The pathway-identi�ed ratio is further
measured by the percentage of the pathway-identi�ed columns in all.

The pearson correlation between the same column from the calculated and pre-set basis matrices is
calculated. And in cNMF, the minimum value of the two correlation values for the same column from
the two calculated basis matrices is de�ned as the �nal correlation value (P-score) of this column. The
P-score of one column can represent the signi�cance of the element weights of this column consistent
with the pre-set element weights. The P-scores for all columns consist of a new correlation vector, and
the average value of this vector is called as pathway remodeling score (PR-score). PR-score represents
the pathway recovery on element weights of the basis matrices.

Especially, for the synthetic example, some additional measurements are designed for evaluation. Two
measurements are used to evaluate the performance of the basismatrix recovery on synthetic samples.
One is the Euclidean distance (EES) between the PE-scores from the calculated vector and the prior-
known vector where each column is the pathway-identi�ed column and its ES-score is one. The other
one is the Euclidean distance (EPS) between P-scores from the calculated correlation vector and the
prior-known correlation vector where the element weights of eachcolumn is consistent with pre-set basis
matrices and its P-score is one. Obviously,EES indicates the pathway recovery on element number and
EPS re
ects the pathway recovery on element weights.

Noted, the basis matrix is considered as the element-structure ofthe computed pathways. In order to
achieve this purpose, a pathway-enriched constraint is designed and actually taken as a soft constraint
to add to the objective function. To deal with the tradeo� of optim ization with such objective function,
the ES-score is further designed to evaluate whether the estimated basis matrix of DFA could recover
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the element-structure of the analyzed pathways. Thus, ES-score could be considered as a criterion for
judging DFA in order to select the optimal parameters of DFA.

2.3.3 Sample-distinguished analysis of DFA by reclassifying samples based on coe�cient matrices

Each row of the coe�cient matrix represents the activation scores of one pathway in the samples. The
K -means algorithm is applied for each row of the coe�cient matrix, and the percentage of the correctly
distinguished samples in all samples is used as the sample-distinguishedscore (SD-score) of the corre-
sponding pathway. The SD-scores for all rows consist of the SD-score vector. And the average value of
this vector can measure the global sample-distinguished score (GSD-score) of coe�cient matrices.

For the synthetic examples, the true sample classi�cation is prior known. Thus, the Euclidean distance
(ESD ) is used to evaluate the di�erences between the two SD-score vector from the calculated coe�cient
matrix and the pre-set coe�cient matrix. Such Euclidean distance is considered to represent the ability
to reclassify samples by DFA, which is expected to be as minimal as best.

3 Result and discussion

3.1 Evaluation on synthetic examples

To illustrate DFA for analysis of the dysregulation of pathways between the two sample groups, a large
number of numeric examples have been produced by the randomly generated datasets. DFA has been
applied on these examples and compared with the conventional NMF approaches. In addition, the
robustness of DFA has also been evaluated.

3.1.1 Simulation of synthetic samples

In order to completely evaluate DFA, the numeric examples include nine categories, which represent
nine di�erent kinds of pathway alterations. Generally, the dysregulated pathways have three types:
the pathways with di�erential elements and di�erential activation ( dWdH); the pathways with only
di�erential element (dW); and the pathways with only di�erential ac tivation (dH). And three di�erent
fractions (100%, 90% and 80%) are also used to represent the degree of the di�erences/dysregulations.
For example, given the dysregulated pathways with di�erential element and di�erential activation, three
datasets were randomly generated corresponding to three di�erent fractions (dWdH 0, dWdH 1 and
dWdH 2), where the di�erence degree of element-structure and activation-score are 100%, 90% and 80%
respectively. Thus, the nine category datasets are denoted by dWdH 0, dWdH 1, dWdH 2, dW 0, dW 1,
dW 2, dH 0, dH 1 and dH 0. For each dataset, there are 10 pathways and each pathway contains 10
elements. Hence, the element expression data of these pathwayshave 100 elements and 50 samples in
each sample group. More details of the synthetic examples are included in SI.

3.1.2 Comparison with conventional NMF methods

DFA was applied in these simulated datasets, and evaluated its performance with other conventional
NMF methods. These conventional methods include two individual NMF model with no joint-constraint
(NMF t) and two joint NMF model (jNMF). jNMF model also contains the jo int-NMF with �xed matrix
W (jNMF w) and the joint-NMF with �xed matrix H (jNMF h). To show our method for recovering
the di�erential element-structures and di�erential activation-s cores of pathways, we give an overview of
the performance of DFA and the conventional jNMF method (e.g., jNMF h) on the simulated pathways
with di�erential elements and di�erential activation (Figure 2).

The four measurements are proposed to evaluate such four methods completely, including the PR-
score of the basis matrices, the PE-score of the basis matrices, the GSD-score of the coe�cient matrices,
and the comprehensive score which is the average value ofEES of the basis matrices,EPS of the basis
matrices and ESD of the coe�cient matrices, and represents the average performance of our method for
the pathway recovery.
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Figure 2 (Color online) The overview of the performance of our method DFA and the conventional jNMF method on
the simulated pathways with di�erential elements and di�er ential activation. The basis matrix contains the informati on for
elements of each pathway, and the coe�cient matrix contains the activation information of each pathway in each sample.

The comparison results are shown in Figure 3. According to the above measurements, DFA actually
displays the best ability to recover the di�erential element-struct ures and di�erential activation-scores of
the pre-set functional groups among all the compared methods/strategies.

3.1.3 Robustness analysis of DFA under di�erent noise disturbances

Moreover, the above nine simulated datasets have additional noisedisturbances including 0%, 0.0001%,
0.001%, 0.01%, 0.1%, 1%, 10%, 20%, 30% and 50% noise, respectively.DFA has been carried on these
additional noisy simulated datasets. As shown in Figure 4, DFA indeedis robust for noisy data.
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Figure 3 (Color online) The performance of DFA and conventional meth ods. They are the average performances from
random 1000 times. (a) The comprehensive score of DFA and con ventional methods, and the minimal score is the best
result; (b) the PR-score of the basis matrices, and the maxim al score is the best result; (c) the PE-score of the basis
matrices, and the maximal score is the best result; (d) the GS D-score of the coe�cient matrices, and the minimal score is
the best result. Note that NMF t and jNMF h cannot provide non-trivial results on the datasets with dW type.
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Figure 4 (Color online) The robustness evaluation of DFA under di�er ent noise disturbances. The nine sub-�gures show
the robustness performance of DFA in nine groups with di�ere nt noise levels respectively. Each sub-�gure displays the
comprehensive score of DFA output under di�erent noise dist urbances.
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3.2 A proof-of-concept study on real biological data

3.2.1 Material and data processing

The gene expression pro�les (GSE27342) of 160 paired gastric cancer samples were downloaded, including
80 tumor samples, and 80 tumor-adjacent normal samples [43].

As a biological case analysis of our methodology, the KEGG pathways[7] are used as input, which
would be comparable with previous studies.

Particularly on the analysis of gastric cancer, the KEGG pathways related to gastric cancer were
selected by the prior knowledge. In details, the pathways related to gastric cancer were de�ned as the
pathways which have signi�cant enrichments on the disease genes and the di�erential expressed genes,
which include several steps as follows:

(1) the genes related with gastric cancer are obtained from the GeneCard (http://www.genecards.org/);
(2) the di�erential expressed genes are obtained by student'sT-test on normal and tumor samples;
(3) the enrichment P-value of each pathway on disease genes and di�erential expressed genes is calcu-

lated by hypergeometric test;
(4) last, there are 53 KEGG pathways with signi�cant enrichment ( P-value< 0.05), and were used in

the following analysis on human gastric cancer.
Based on the above selected pathways and the parameterk is just the number of the analyzed pathways

as 53, the all parameters of DFA are tuned in a reasonable scale andchosen according to the sum of the
optimal pathway-enriched score and SD-score in the following ways.

(1) The basis matrix of DFA is considered as the element-structureof the analyzed pathways, where
each column is expected to represent a particular pathway. So, wedesign the pathway-enriched score
to evaluate the accuracy of DFA by requiring each column of the calculated basis matrix enriched in
corresponding particular pathway. And the larger pathway-enriched score is, the better DFA is.

(2) Meanwhile, the coe�cient matrix is considered as the activation-score of the analyzed pathways,
where the values of the coe�cient matrix are required to distinguish normal and tumor samples. There-
fore, we design the SD-score to evaluate the accuracy of DFA by clearly grouping normal and tumor
samples. And the larger SD-score is, the better DFA is.

Totally, the sum of the pathway-enriched score and the SD-scorecould be used together as the criteria
for evaluating the performance of DFA, by which we can select the optimal parameters for DFA.

Note that the main elements of pathways were the topological information. Not only the genes involved
in pathways but also the edges/gene-pairs of pathways could provide valuable information to understand
complex diseases. Thus, in this work, we used the edges of pathways to analyze the dysregulation of
pathways from the perspective of edges (i.e., network). That means, the input data of DFA was the
quanti�ed element score of gene-pairs rather than original expression value of genes in pathways (see
more details in SI).

3.2.2 Pathway-enriched analysis reveals signi�cant pathway recovered by DFA

Based on the estimated basis matrix, the pathway-enriched signi�cance of all column/pathways is cal-
culated (see Section 2). The pathway-enriched signi�cance of most columns is small, and thus the most
columns are the identi�ed pathways. With di�erent thresholds of sig ni�cance, the columns/pathways
with less pathway-enriched score than the thresholds are counted, and the percentage of these enriched
columns/pathways are shown in Figure 5. Obviously, DFA is very e�ective to recover pathways even when
the signi�cance threshold is strict. The pathway-identi�ed columns are also counted and the pathway-
identi�ed ratio is 96% (51/53), which means that the di�erential info rmation of di�erent pathways are
well decomposed.

3.2.3 Sample-distinguished analysis reveals accurate sample discrimination achieved by DFA

The activation expression of the analyzed pathways can be used tocluster samples byK -means algorithm,
and the SD-score of each pathway was calculated (see Section 2).To illustrate reasonability of the DFA
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Figure 5 (Color online) Performance of the pathway-enriched signi� cance score under the di�erent thresholds of signi�-
cance.
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Figure 6 (Color online) Sample-distinguished evaluation of DFA and the conventional methods. The x-axis represents
the analyzed pathways in a sequence. The y-axis represents the SD-score of the analyzed pathways. Not e that, the SD-score
of the analyzed pathways in the �gure has been sorted for conv enient visualization.

Table 1 The average GSD-score of DFA and the conventional methods

Method Background standard GSVA Pathi�er DFA

GSD-score 0.594 0.596 0.611 0.7026

Increased ratio (%) 0.42 2.8 18.3

consideration on the change of element-structure, DFA and someconventional methods were compared by
evaluating the SD-score, which support that the decomposed pathway structure-change can improve the
pathway activation-score to distinguish normal and tumor samples. The conventional methods (such as
GSVA and Pathi�er) only obtained the activation expression of path ways but not the change of element-
structure. As an experiment control, the SD-score of each analyzed pathway was also directly calculated
from the original gene expression level, which was regarded as the Background Standard.

As shown in Figure 6, GSVA has performance close to control; Pathi�er is slight better; and DFA is
much better than all compared approaches for most pathways. The performance values of these methods
were shown in Table 1, and the increased ratio indicates the improvement of particular method compared
to control. Clearly, these assessments strongly support the necessary of investigating the changes of
element-structure, and our DFA can address this serious issue well and much better than the state-of-
the-art methods.
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Figure 7 (Color online) The illustration of the dysregulation of pat hways in the di�erential elements and the di�erential
activation.

Table 2 The signi�cant pathways regarding to the element-structur ea)

Pathway name P -values E P -values A R

Pyrimidine metabolism 1 :43 � 10� 12 0:001369 N

Basal cell carcinoma 3 :58 � 10� 12 9:99 � 10� 16 N

Dopaminergic synapse 5:61 � 10� 12 4:24 � 10� 15 N

Purine metabolism 6 :99 � 10� 12 1:96 � 10� 16 N

Small cell lung cancer 9 :85 � 10� 11 6:38 � 10� 10 Y

Cell cycle 5:71 � 10� 9 8:81 � 10� 5 Y

Gastric acid secretion 1 :45 � 10� 8 6:21 � 10� 21 Y

Phenylalanine metabolism 1 :8 � 10� 8 1:88 � 10� 21 N

Metabolism of xenobiotics by cytochrome P450 3 :48 � 10� 8 1:4 � 10� 5 Y

Pathways in cancer 4 :62 � 10� 8 2:25 � 10� 20 Y

Epstein-Barr virus infection 1 :11 � 10� 7 2:14 � 10� 6 Y

Systemic lupus erythematosus 6 :53 � 10� 7 1:13 � 10� 17 Y

Proteoglycans in cancer 2 :86 � 10� 6 2:68 � 10� 22 Y

HTLV-I infection 8 :58 � 10� 6 1:08 � 10� 9 N

Melanogenesis 8:44 � 10� 5 7:29 � 10� 16 Y

a) P -values E evaluates the di�erent signi�cance of the elements; P -values A evaluates the di�erent signi�cance of the
activation; R represents whether one pathway is known relat ed with the gastric cancer; Y represents the pathway is known
associated with the gastric cancer; N represents the pathwa y is unclearly associated with the gastric cancer

3.2.4 Dysregulation analysis reveals the simultaneous changes of pathway element and activation by DFA

As mentioned in this paper, identifying the dysregulations of pathways need to consider the changes of
elements and activation. The signi�cant di�erent score of each analyzed pathway between the two sample
groups was calculated by student'sT-test in two aspects as the elements and the activation, which are
shown in Figure 7. Obviously, DFA not only considers the changes of expression-activation, but also
detects the changes of element-structure which are usually disregarded by the conventional methods.

We list the most signi�cant 15 pathways in Table 2. There are 9 pathways related to the gastric cancer
as reported in literatures. These pathways contained: the outcome of gastric cancer (e.g., Epstein-Barr
virus infection), the common pathways in cancer (e.g., Pathways in cancer, Cell cycle and Proteoglycans
in cancer), and the pathways synchronously occurred with gastric cancer (e.g., Small cell lung cancer [44],
Metabolism of xenobiotics by cytochrome P450 [45], Systemic lupus erythematosus [46] and Gastric acid
secretion [47] and Melanogenesis [48,49]).
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Figure 8 (Color online) The case studies of the dysregulated pathway s. (a) shows the In
ammatory mediator regulation of
TRP channels, where its normal-speci�c network and disease -speci�c network were shown; (b) shows Gastric acid secreti on,
where its normal-speci�c network and disease-speci�c netw ork were shown. The red gene represents the disease-related
gene, the black gene represents the actual gene and the gay gene represents visional gene.

3.2.5 A case study of the dysregulated pathways with di�erent changes on element-structure and
expression-activation

Finally, as a real example to display the topological characteristics of two kinds of dysregulated pathways,
Gastric acid secretion and the in
ammatory mediator regulation of TRP channels were used in the
case studies, which correspond to pathways with di�erent element-structure and di�erent expression-
activation, respectively.

For the in
ammatory mediator regulation of TRP channels, it was rela ted with gastric cancer [49],
and its normal-speci�c topological information and disease-speci�ctopological information were shown
in Figure 8(a). The signi�cant di�erent score of this pathway on the elements and activation are 0.02
and 2:11� 10� 13, respectively. Thus, this pathway tends to have only big changes on its activations.

For Gastric acid secretion, it was also reported to be related with gastric cancer [47], and its normal-
speci�c topological information and disease-speci�c topological information were shown in Figure 8(b).
The signi�cant di�erent score of this pathway on the elements and activation are 1:45� 10� 8 and 6:21�
10� 21, respectively. Thus, this pathway would have both signi�cant changes on pathway structure and
pathway activation.

4 Conclusion

The molecular network analysis of the complex disease is a powerful way to interpret the molecular mech-
anisms of complex diseases. But, conventional molecular-based/gene-based analysis could not directly
recover the biological roles of the excavated genes/interactions. Hence, the function analysis based on
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network has increasingly attracted the attention from the communities of biological and medical sciences.

However, the conventional methods for function methods mainly consider the varying activation of
pathways but disregard the details of the topological change of pathways. Therefore, it is di�cult to
precisely indicate the dysregulation of biological functions by thesemethods. In this work, we present an
elaborate computational framework DFA to investigate the changes of network-structure and expression-
activation of the pathways, especially for complex diseases. DFA has been carried on various synthetic
datasets and some real disease datasets as gastric cancer. Theresults indeed show the DFA has the
superior ability to quantify the di�erential element-structure and di�erential activation-score of dys-
regulated pathways. Particularly, the analysis of DFA in human gastric cancer actually detects the
signi�cantly di�erential activations of the pathways associated wit h gastric cancer including the changed
network-structure and pathway activation, which is more e�ectiv e than the state-of-the-art as GSVA and
Pathi�er.

Besides, we also discussed the in
uence of di�erent pathway sources for DFA and conventional methods
on human gastric cancer dataset. Similar to the usage of KEGG, we used Reactome database [50] and
BioCarta database (http://www.biocarta.com) as the prior knowled ge of DFA respectively. We evaluated
and compared these estimated results of DFA with di�erent pathway databases by the global sample-
distinguished score (GSD-score). Moreover, we also integrated the pathways of the KEGG, BioCarta and
Reactome to form the integrated set of all pathways and discussed the performance of DFA with such
integrated pathways as prior knowledge (see more details in SI). Based on these additional results, we
could �nd that DFA always has the best performance than conventional methods under di�erent settings
of pathway sources, which support DFA is actually more e�ective than the state-of-the-art pathway-
based methods. Meanwhile, the performance of DFA is further improved when the integrated pathways
are used, which implies that the integration of pathways maybe a wayto enhance the accuracy of DFA
which is worth of studying in future.

In future, we will develop new dysregualtion constraint function to further extend DFA for wide
applications including paired samples or unpaired samples. Also it is important to consider direct or causal
associations in networks (i.e., by using partial correlation for linear systems or by part mutual information
for nonlinear systems) [51, 52], and further consider dynamics of living organisms (i.e., by dynamical
network biomarkers) [53{56] and modularity of interactome (i.e., by edge or module network [57{60] for
the analysis of biological functions).
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