
SCIENCE CHINA
Information Sciences

January 2017, Vol. 60 012106:1–012106:16

doi: 10.1007/s11432-015-1026-y

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

. RESEARCH PAPER .

DelayDroid: an instrumented approach to reducing

tail-time energy of Android apps

Gang HUANG1*, Huaqian CAI1 , Maciej SWIECH2 , Ying ZHANG1 ,

Xuanzhe LIU1 & Peter DINDA2

1School of Electronics Engineering and Computer Science, Peking University, Bejing 100871, China;
2Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA

Received May 20, 2016; accepted July 8, 2016; published online November 17, 2016

Abstract Mobile devices with 3G/4G networking often waste energy in the so-called “tail time” during which

the radio is kept on even though no communication is occurring. Prior work has proposed policies to reduce

this energy waste by batching network requests. However, this work is challenging to apply in practice due

to a lack of mechanisms. In response, we have developed DelayDroid, a framework that allows a developer

to add the needed policy to existing, unmodified Android applications (apps) with no human effort as well as

no SDK/OS changes. This allows such prior work (as well as our own policies) to be readily deployed and

evaluated. The DelayDroid compile-time uses static analysis and bytecode refactoring to identify method calls

that send network requests and modify such calls to detour them to the DelayDroid run-time. The run-time

then applies a policy to batch them, avoiding the tail time energy waste. DelayDroid also includes a cross-app

communication mechanism that supports policies that optimize across multiple apps running together, and we

propose a policy that does so. We evaluated the correctness and universality of the DelayDroid mechanisms on

14 popular Android apps chosen from the Google App Store. To evaluate our proposed policy, we studied three

DelayDroid-enabled apps (weather forecasting, email client, and news client) running together, finding that the

DelayDroid mechanisms combined with our policy can reduce 3G/4G tail time energy waste by 36%.

Keywords refactor, Android, optimization, energy, network scheduling

Citation Huang G, Cai H Q, Swiech M, et al. DelayDroid: an instrumented approach to reducing tail-time

energy of Android apps. Sci China Inf Sci, 2017, 60(1): 012106, doi: 10.1007/s11432-015-1026-y

1 Introduction

Smartphone apps typically use mobile networks to carry data traffic. When data is to be transferred to

a base station, a phone’s mobile radio (e.g., 3G or 4G radio) operates in a high power mode. When no

data is to be transferred, the radio will first switch to a so-called tail mode that consumes less energy,

and later will switch to an idle mode that consumes even less energy. The intermediate tail mode is a

compromise between energy consumption and fast response to new data transfer requests. However, it

can still lead to a waste of energy when no data is transferred while in tail mode [1].

Reducing such energy consumption can prolong the battery life of a smartphone. One approach is to

batch lower priority or delay-tolerant network requests sent by apps, reducing the occurrence of tail mode.

*Corresponding author (email: hg@pku.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-015-1026-y&domain=pdf
https://doi.org/10.1007/s11432-015-1026-y
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-015-1026-y


Huang G, et al. Sci China Inf Sci January 2017 Vol. 60 012106:2

Prior research efforts [1–4] have proposed request delaying or prefetching algorithms and policies to batch

network requests. However, applying such policies to existing apps, both to deploy the policies and to

evaluate them, is a challenging problem. We describe the design and implementation of a framework,

DelayDroid, which supports such deployments, and use it to evaluate our own policy. DelayDroid allows

policy deployment on existing, unmodified apps with no human effort.

Approaches to applying algorithms and policies to existing apps can be classified according to the layer

at which they operate: application layer, OS layer, and framework layer.

In an application layer approach, developers implement their algorithms/policies within individual

apps by hand. While this leverages the best available information about when batching is acceptable,

it has several limitations. First, it can only batch the requests of the individual app, but the radio is

shared by all the apps on the phone. Second, it limits the opportunities to batch requests. Within

a single app, it may be the case that two requests cannot be batched because there is a dependency

from one to the next (e.g., the second request needs the response of the first request). However, it

may be possible to batch the first request with the request of an unrelated app. More generally, the

larger the scope of requests we consider, the greater the number of potential groupings of requests into

batches.

In an OS layer approach, the system calls to support request handling are redesigned. Because all

requests flow through the OS, the OS can batch requests globally, quite unlike the application layer

approach. Furthermore, minimal application changes may be needed, as the heavy lifting happens under

the stable system call interface. However, this approach also has limitations. First, redesigning the

OS to support request batching of massive apps is challenging, as is the acceptance of such changes.

Second, because the system call interface discards considerable semantic information, the OS’s decision-

making operates at an information disadvantage compared to the application layer approach. Finally,

specialization for specific apps or groups of apps is impossible.

In a framework layer approach, libraries are updated to provide new APIs that allow apps to specify

request batching. For example, iOS provides APIs for developers to indicate delay-tolerant network

requests and batch them. Compared to the application layer and OS layer approaches, the framework

layer approach is lighter weight, incrementally deployable, and capable of integrating batching across all

the apps that make use of it. However, it does require considerable human effort on the part of developers.

Developers must rewrite or modify their apps to use the new APIs. This is particularly challenging for

large, complex apps.

DelayDroid is a framework layer approach, but it leverages compile-time techniques to adapt apps

to the framework instead of requiring the developer to do it. Given a set of apps, DelayDroid first

analyzes their bytecode to find the network-relevant classes, those that make requests. It then refactors

these classes to introduce calls to its run-time. DelayDroid’s compile-time operations are done with no

developer effort. The run-time then schedules these requests according to some desired policy. Instead of

updating the libraries, DelayDroid automatically analyzes apps and generates network-request-batched

apps. Our work makes the following contributions:

• We introduce an automated method of inserting a network request batching mechanism into groups

of complex apps at the framework layer. By batching network requests, we are able to reduce app tail

time energy consumption.

• We describe the design, implementation, and evaluation of an instance of this approach, DelayDroid,

showing how it operates on existing, unmodified Android apps. Our evaluation is based on 14 apps chosen

from the Google App Store.

• We describe the design, implementation, and evaluation of a new policy for request batching. Using

DelayDroid, we apply our policy to a group of three existing apps, and find it is able to reduce the energy

wasted in tail times with an average reduction of 36%.



Huang G, et al. Sci China Inf Sci January 2017 Vol. 60 012106:3

Figure 1 Motivating example. (a) Original network trace; (b) batched network trace.

2 Background and motivation

Today, 3G and 4G are the most widely used mobile networks. We now describe power management in

3G/4G radios and give an example of how careful delaying and batching of requests can lead to reduced

energy consumption by reducing the occurrence of tail time.

2.1 3G/4G power management

3GPP (Third Generation Partnership Project1)) and 4GPP2) are the most common mobile communica-

tion standards today. They have similar state machines for the radio resource control (RRC). The state

machine consists of three states: IDLE, CELL DCH (Dedicated Channel) and CELL FACH (Forward

Access Channel). In the IDLE state, the radio is in a low power state. When the network is activated,

the radio switches to the CELL DCH state, which provides high bandwidth and low latency transmission

at the cost of high power consumption. In the CELL DCH state, after the network is idle for a few

seconds, the radio switches to the CELL FACH state, which has lower bandwidth and higher latency,

but consumes only half of the power of the CELL DCH state. In the CELL FACH state, after the net-

work is idle for a few more seconds, the radio switches to the low power IDLE state. The duration of

inactivity before the radio demotes from the CELL DCH state to the IDLE state is defined as the tail

time. Network operators trade off between network performance and energy consumption [5], typically

configuring the inactivity timeout to be several seconds long.

This mechanism can not only reduce the latency incurred in the promotion from the idle state to

the high power state, but also reduce the signaling overhead incurred in the state transition pro-

cess due to the allocation and release of the communication channel itself (which is released in the

IDLE statement and must afterwards be reacquired). However, in all cases, a transition sequence of

CELL DCH→CELL FACH→IDLE wastes energy due both to the time spent in CELL FACH (which

was completely unneeded) and the extra time spent in CELL DCH.

2.2 Motivating example

Figure 1(a) shows a timeline in which we send two network requests with an interval of 20 s between them.

The upper half of Figure 1(a) is the power consumption of the radio. The dotted lines in the bottom half

denote threads, and the solid arrows denote control flow. Control flow starts with the “background news

pull” thread waking up the “network worker” thread in the network thread pool 1©. Then the “network

worker” thread issues a network call to send network requests 2©. In response, the radio promotes to

CELL DCH, the high power state. Finally, after receiving the response 3©, the “network worker” thread

returns the response to the “background news pull” thread 4©. Now that the first request is finished 3©,

the radio remains in each of the CELL DCH (high power) and CELL FACH states for a few seconds.

After that, the radio demotes to the IDLE state 5©. The interval between 3© and 5©, the time during

which the radio could have been in IDLE is called tail. The energy wasted in the tail is marked in

1) Third generation partnership project (3gpp). http://www.3gpp.org.
2) Fourth generation partnership project (4gpp). http://www.4gpp-project.net/.

http://www.3gpp.org
http://www.4gpp-project.net/


Huang G, et al. Sci China Inf Sci January 2017 Vol. 60 012106:4

backslashes in Figure 1. After some time, the “background update pull” thread wakes up 6©, and the

process repeats, as does the wasted energy of the tail.

Now consider that it may be appropriate to delay a “background news pull” task, at least at the

granularities (10 s) involved in this example. Such delays give us the opportunity to reduce the occurrence

of the tails, as well as to batch work together for when the radio is active. Figure 1(b) illustrates the

process of batching two network requests in our example. As before, the “background news pull” thread

wakes up the “network worker” thread in the network thread pool 7©. However, now, when the network

call is issued, the control flow is detoured to a run-time policy that decides to put “network worker”

thread to sleep for a period of time. During this period, the “background update pull” thread wakes up

another “network worker” thread 8©. Similar to the first “network worker” thread, the second instance

is also put to sleep by the run-time. When the first “network worker” thread has been asleep for long

enough (based on a deadline determined by the run-time) at 9©, it and the second “network worker”

thread are awakened. As a result, their two network requests are batched within a single cycle of the

radio state machine. More detailed information about the run-time operation is given in Subsection 3.2.

2.3 Cross-application batching

Batching network requests is premised on the independence of the requests. In practice, there are two

clear cases that network requests cannot be batched: (1) the requests are sent sequentially by the same

thread; and (2) the second request depends on a result from the first. These cases limit the opportunities

for batching within a single application; batching requests across applications provide a larger scope for

finding opportunities to reduce tail time energy. However, cross-application batching requires that we be

able to readily apply a policy to multiple applications developed by different vendors.

3 DelayDroid

DelayDroid has the goal of allowing us to readily apply batching policies, including those that operate

across applications, to applications created by different vendors, that may be available only as binaries.

OS changes and SDK updates are disallowed. If this goal is achieved, existing, unmodified applications

can be combined with different policies for evaluation on everyday phones, and successful policies can be

easily released for broad use.

We now describe the design and implementation of DelayDroid for Android apps, illustrating its

compile-time and run-time operation, and its policy interface. Section 4 then gives our example cross-

app policy. As we show in Section 5, DelayDroid can be applied directly to groups of applications in the

Google App Store which can then be run together with the policy on an out-of-the-box phone.

3.1 Compile-time

The input to the compile-time processing is an Android apk file. Most existing Android apps are written

in Java and compiled to dex format files3), which are included in the apk file. The dex-format contains

bytecode which preserves the structure of the program, including classes, methods, and the relationships

between classes. This gives the compile-time the necessary information to analyze and refactor the byte-

code to add request batching mechanisms to the program. The DelayDroid compile-time then generates

an optimized app into which a desired policy is embedded. This process is automatic–developers only

need to provide the compile-time with apk files. No source code annotation or source code modification

is required.

Figure 2 shows the compile-time process in more detail, and we follow its steps in our description

below.

(1) Locating the network calls. In the Android app frameworks, developers send network requests

using two kinds of APIs: (i) system APIs provided by Android SDK, such as APIs in java.net, java.nio

3) Dex format. https://source.Android.com/devices/tech/dalvi-k/dex-format.html.



Huang G, et al. Sci China Inf Sci January 2017 Vol. 60 012106:5

Figure 2 Compile-time process.

and org.apache.httpclient, and (ii) third-party APIs provided by third-party libraries, such as Volley and

Retrofit. Because these third-party libraries are based on system APIs, and they are packed into the app

as normal classes when developers build the app, we only need to focus on the system APIs.

To locate all the network calls, methods that send requests using the system APIs, the process es-

sentially matches the method calls in the bytecode with the methods in the Android Network Library.

We include a configuration file that notes which specific system APIs we intend to handle. Two forms

of network calls are handled. The first are short-lived network calls (e.g., the APIs provided by Apache

HttpClient), in which the server responds to a client request only once. The second form is the long-lived

network call (e.g., the APIs provided by Socket), in which the client sets up a connection to the server,

and uses the connection to send and receive multiple requests and responses. These two forms of network

calls are located in the same way, but refactored differently, as we describe next.

(2a) Refactoring short-lived network calls. DelayDroid compile-time uses byte-code refactoring

to detours the control flow of short-lived network calls by replacing the original network call with a call

to a stub, NetworkStub, which is a class provided by the DelayDroid run-time. Figure 3(a) shows an

example. Please note that the actual refactoring is done in Java bytecode—we show the decompiled Java

code for convenience and clarity. In Figure 3(a), the line starting with “−” is the original code, while

the line starting with “+” is the refactored version that replaces the original. Here, DelayDroid replaces

the “execute” method call of HttpClient with the “execute” method call of NetworkStub. The refactored

version uses the same method name as the original one with a different descriptor. The “execute” method

of NetworkStub has an additional argument to convey the original argument to HttpClient.

Figure 3(b) shows NetworkStub. The “c.execute(q)” line executes the original network request (here

with HttpClient). Note, however, that it also includes other method invocations prior to and subsequent

to this step. These are interactions with the policy, named here DelayController. The first method,

namely the “sleep” method of DelayController, causes the current thread to be put to sleep for a duration

selected by the policy. The second method, namely the “wakeUp” method of DelayController, allows the

policy to wake up other threads it has put to sleep, including those in other apps.

(2b) Refactoring long-lived network calls. Long-lived network calls return stream objects. For

example, the “getOutputStream” method in Socket returns a OutputStream object. When its “write”

method is called, network packets are transmitted to the server. Here, the “write” method call is the

network call we are particularly interested in. However, refactoring the “write” method call as we might

for a short-lived network call is infeasible for the several reasons:

• Stream objects are widely used. Not all “write” method calls of OutputStream objects, for example,

send network packets. Even using alias analysis, the result is still inaccurate: may-alias information can

cause false positive, while must-alias can cause false negative. Indeed, due to polymorphism, whether a

particular “write” involves the network is only known at run-time.

• Widely-used utility classes provided by system library, such as BufferedOutputStream, may also call

the “write” method of stream objects. Since the implementations of these classes are not part of the apk,

we cannot refactor them at compile-time.

To deal with these challenges, we refactor methods that return stream objects to return the original

stream object wrapped in a special stream object included in the DelayDroid run-time. Only streams

created at call sites where it is clear the stream originates from a network connection context are wrapped.

Figure 4(a) shows an example of refactoring a long-lived network call. As before the line starting with



Huang G, et al. Sci China Inf Sci January 2017 Vol. 60 012106:6

Figure 3 Refactoring a short-lived network call. (a) A

refactoring example of short-lived network call; (b) “exe-

cute” method in “NetworkSub”.

Figure 4 Refactoring a long-lived network call. (a) A

refactoring example of long-lived network call. The re-

turned value is a “delayed” output stream. (b) “getOut-

putStream” method in “NetworkStub”. (c) DelayedOut-

putStream override all public methods of OutputStream.

“−” is replaced with the one starting with “+”. Figure 4(b) shows how the implementation of the

NetworkStub handles “getOutputStream”, returning a DelayedOutputStream object which is a wrapper

of the underlying OutputStream object. Figure 4(c) shows DelayedOutputStream. Here, the underlying

“write” method is surrounded by calls to the “sleep” and “wakeUp” methods of DelayContoller, as with

short-lived network calls.

(3) Instrumenting with cross-app communication. The cross-app communication mechanism

is designed to support policies that batch network requests across apps. The mechanism consists of two

operations: (i) sending messages to other apps to notify them that it is a proper time to send requests;

and (ii) receiving such messages from other apps and acting in response. The challenge here is not with

the mechanism, but with adding it to existing applications developed by different developers.

To implement these two operations, we leverage a publish/subscribe mechanism, namely Android

BroadcastReceiver4). We define a new broadcast message called the Wakeup message and we register

a corresponding receiver in each app to receive Wakeup messages. While this is simple, for security

purposes, normal classes cannot communicate via such broadcast messages without a shared Context

Object5). We introduce shared access to the Context Object through compile-time refactoring.

As described in the Android Developer Guide, the Context Object can be accessed by ContextWrapper

Object, which has 31 subclasses including two kinds of subclasses: Activity and Service. Activity and

Service are fundamental parts of Android application model. When the app starts, a class that extends

from Activity or Service is instantiated, and the “onCreate” method of it is called. In this methods, the

“this” keyword points to an instance of Activity or Service, which is a ContextWrapper Object.

The DelayDroid compile-time first analyzes the app statically and constructs the inheritance chain6)

for every class in the app. For a given class, its inheritance chain contains all its parent classes in the app

and stretches back to a class in system library. By comparing all of the subclasses of ContextWrapper in

the Android SDK with the inheritance chain of each class, DelayDroid can find all the classes that extend

4) Android BroadcastReceiver. http://developer.Android.com/reference/Android/content/BroadcastReceiver.html.
5) Android context object. http://developer.Android.com/reference/Android/content/Context.html.
6) Inheritance chain. https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html.

http://developer.Android.com/reference/Android/content/BroadcastReceiver.html
http://developer.Android.com/reference/Android/content/Context.html
https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html


Huang G, et al. Sci China Inf Sci January 2017 Vol. 60 012106:7

Figure 5 Run-time architecture.

from ContextWrapper directly or indirectly. Then, DelayDroid adds a method call at the beginning of

the “onCreate” method in these classes. This call takes “this” as an input argument, and initializes the

ContextService class within the DelayDroid run-time. ContextService is then responsible for sending and

receiving the broadcast messages that allow for cross-app communication and thus policies, as described

in detail in Subsection 3.2.

(4) Adding the run-time. In the final step, the DelayDroid run-time, as well as the refactored and

instrumented classes from the original application are reintegrated into a new application. This apk file

can then replace the original.

3.2 Run-time

Figure 5 presents the run-time architecture of DelayDroid and a group of refactored apps that are working

with it. There are four kinds of classes in a refactored app: (1) refactored network-relevant classes (those

with short- or long-lived network calls), (2) refactored context-relevant classes (those that are tracked

in order to enable broadcast communication between DelayDroid-enabled apps; (3) DelayDroid run-time

classes, which implement communication and pluggable policies; and (4) unchanged classes. The arrows

between different classes denote the control flow of the system.

The DelayDroid run-time consists of ContextService, DelayController and BatchPolices. ContextSer-

vice is in charge of sending and receiving the Wakeup messages. In addition, ContextService can provide

the Context Object to a policy to allow it to access information in other contexts. When the app starts,

context-relevant classes are instantiated. Then the instrumented code is executed to initialize ContextSer-

vice. During its initialization, ContextService registers a Wakeup message receiver for the app. Finally

ContextService initializes DelayController.

DelayController is in charge of batching the network requests of all DelayDroid-enabled apps on the

system. During the initialization of DelayController, it chooses a batching policy according to a configu-

ration file, and instantiates an instance of the policy. Operationally, before a network request is sent in

any DelayDroid-enabled app, control flow is detoured to DelayController. DelayController then delays

the request according to the policy and the other requests it knows about. Once a request is triggered

and completed, the thread once again detours into DelayController which can then, according to policy,

decide to wake up other requests as well, since at this point the radio is on.

3.3 Policy

The goal of batching network requests is to delay requests until the time that will minimize the energy

wasted in the tail time. A good policy will minimize the occurrence of the tail, and when a tail does

occur will maximize its communication value.

DelayDroid’s policy interface, BatchPolicy consists of three methods: “start”, “issue”, and “finish”.

Before a request is sent, “start” is invoked, and it decides how long to delay the request before it is



Huang G, et al. Sci China Inf Sci January 2017 Vol. 60 012106:8

Table 1 Classification of the 110 network calls currently handled by DelayDroid

Category Description

HTTPWebkit Methods that send Http request in package Android/webkit

HTTPApache Methods that send Http request in package org/apache

HTTPJavaNet Methods that send Http request in package java/net

TCPSocket Methods that send TCP packets, for example, “send” method in class socket

UDPSocket Methods that send UDP packets, for example “send” method in class DatagramSocket

actually sent, which it accomplishes by putting the invoking thread to sleep. When this time has passed,

the request is actually sent. When a Wakeup message is received DelayController invokes the “issue”

method of the policy, which can in turn decide to allow delayed requests to start at this point, prior to

their normal timeout. The idea here is that if a request has been sent, the radio is on, so the policy may

also want to let its sleeping threads make use of it. And after the request is done, the “finish” method is

called to allow cleanup or to issue Wakeup messages.

BatchPolicy is an abstract Java interface. By implementing the interface, developers can write their

own batching policies and deploy them to their apps easily. Policy implementations can also access

ContextService and thus introspect on the DelayDroid-enabled applications as a whole. Section 4 will

describe an example policy we have developed that seems quite effective.

3.4 Implementation details

In our implementation, we unpack the existing apk file, and refactor the dex bytecode using dex2jar7).

A core aspect of the compile-time is the location of network calls. We handle 110 network calls from 16

classes in the Java SDK version 1.6 and Android SDK release 22. These network calls can be divided into

five categories according to their protocol types and the Java packages they belong to, as summarized in

Table 1. These calls can be expanded if necessary.

The DelayDroid compile-time consists of 2611 lines of Java source code, not including the ASM library.

The DelayDroid run-time is written in 3652 lines of Java source code. This library is included in all

DelayDroid-enabled apps, where it has a footprint of about 64 KB in the dex bytecode format.

4 Policy example

As part of our evaluation of DelayDroid, and as a contribution in its own right, we have developed an

effective cross-app batching policy which we now describe. The policy is based on the observations of

Huang et al. [2] who found that when the screen is off, there is a much higher chance that the user is

not actively interacting with the device. We think it follows that at this time the network traffic is also

most likely to be delay tolerant. Therefore, to minimize the visible effect on users, our policy only delays

requests that are sent when the screen is off.

Our screen-status based policy, ScreenOffBatcher, operates as follows:

• If the screen is on, ScreenOffBatcher does not delay any requests.

• If the screen is off, requests are delayed by a default of 120 s. This batching window is intended to

be a user-configurable value, similar to the screen timeout.

• When a request is sent by any app, ScreenOffBatcher assures that other delayed requests for it and

other apps are also sent.

ScreenOffBatcher leverages ContextService in order to register a “screen status” receiver to get updates

about the screen.

Figure 6 is the flow chart of the “start”, “issue”, and “finish” methods ofScreenOffBatcher. As is

shown in Figure 6(a), when the “start” method of ScreenOffBatcher is called, it first checks the status

of screen 1©. If the screen is on, the network call is issued immediately 2©. Otherwise 3©, the run-time

checks the timestamp of the last network call. If the last network call was finished within a threshold (10

7) dex2jar. https://code.google.com/p/dex2jar/.

https://code.google.com/p/dex2jar/


Huang G, et al. Sci China Inf Sci January 2017 Vol. 60 012106:9

Figure 6 Policy example: ScreenOffBatcher. (a) Flow chart of ScreenOffBatcher.start(); (b) flow chart of ScreenOff-

Batcher.finish().

seconds by default), the current network request will be issued right away as well 4©. If too much time

has passed, the run-time puts the thread into a thread pool, and calculates the deadline for the thread

to awaken, for example, 120 s from now 5©. The sleeping threads in the pool will be awakened on three

occasions:

• The wake-up message receiver in ContextService receives a broadcast message, which will call the

“issue” method of ScreenOffBatcher 6©;

• The earliest deadline in the thread pool is reached 7©;

• The “screen-status” receiver receives a “screen on” broadcast 8©.

After being awoken from the thread pool 9©, the “sleep” method returns and control flow resumes at

the network call 10©. Finally, the control flow is detoured to DelayController.wakeUp 11©, which invokes

the “finish” method of the SceenOffBatcher policy.

Figure 6(b) shows the flow chart of the “finish” method. The ScreenOffBatcher policy updates the

timestamp of the last network call 1©. Then it checks the timestamp of the last Wakeup message to be

sent or received 2©. If this Wakeup message was received or sent within 120 s, it returns immediately 4©.

Otherwise, ScreenOffBatcher uses ContextService to send a Wakeup message 3© and returns 5©. In this

way, we can limit the time between Wakeup messages to at least 120 s, avoiding broadcast storms that

might otherwise occur as we aggregate more DelayDroid-enabled applications.

While ScreenOffBatcher avoids impacting users by delaying requests only when the screen is off, it is

important to note that this is a conservative policy, even in regard to users. For example, prior work [6]

shows that users may tolerate slowdown even if they are interacting heavily with the phone while the

screen is on. More aggressive policies could be readily employed within the DelayDroid framework.

5 Evaluation

Our evaluation of DelayDroid has two primary aspects. The first is the universality of the compile-time:

can we indeed transform off-the-shelf apps into DelayDroid-enabled apps, and what is the overhead of

doing so? The second aspect is the evaluation of the run-time, which we do together with our example

cross-app policy: how well does it work for saving tail time energy?

5.1 Compile-time

We applied DelayDroid’s compile-time toolchain to the fourteen off-the-shelf apps shown in Table 2.

Please note that these are popular apps within the Google App Store that are available in binary (apk)

form, and that our compile-time automatically transforms them into new apks that can replace the

originals.



Huang G, et al. Sci China Inf Sci January 2017 Vol. 60 012106:10

Table 2 Off-the-shelf apps from the google app store that we DelayDroid-enabled

App Category Number of users App Category Number of users

Aws Weather forecast 10000000–50000000 Mjweather Weather forecast 1000000–5000000

Sohunews News client 500000–1000000 Netease News client 500000–1000000

Nytimes News client 10000000–50000000 Taobao E-commerce app 5000000–10000000

Pinterest Social app 10000000–50000000 Renren Social app 100000–500000

K9mail Email client 5000000–10000000 Outlook Email client 10000000–50000000

Pandora Music app 100000000–500000000 Spotify Music app 10000000–50000000

Mapquest Map app 5000000–10000000 Translate Google translate 100000000–500000000

Figure 7 Network calls in different categories instrumented by DelayDroid.

The compile-time processing of DelayDroid is quite fast and produces very compact results. The

process took from 28.8 s (Mapquest) to 92.2 s (Renren) on a typical development machine equipped

with an Intel i5 3247U processor (1.8–2.6 GHz), 4 GB of memory, and a 128 GB SSD. This cost is paid

only once—the resulting apk file can then be used in place of the original. The resulting apks were

only marginally larger than the originals. Expansion was generally less than 1%, with the worst case

being about 1.5% (K9mail and Translate). As one might expect, the percentage overhead in code size

is inversely related to the original code size since typically the fixed size (64 KB) DelayDroid run-time

library dominates the code expansion.

Figure 7 presents the result of the static analysis of each of our test apps, breaking down how many

network calls in each of five categories are instrumented. HttpWebkit is widely used to fetch and render

a web page as a part of an Android app. HttpApache and HttpJavaNet are popular for request/response

communication because they are recommended in Android Developer Guide. Both are often used in

third-party libraries, such as Volley and Retrofit, which further simplify networking in Android apps.

TCPSocket provides a lower-level endpoint for reliable stream communication between client and server.

Email clients such as K9mail use this to implement the IMAP and POP3 protocols. Pinterest and

Pandora use TCP sockets indirectly. Pinterest uses Apache Thrift, while Pandora uses Java-WebSocket.

Both of these third party libraries in turn build on SocketChannel within the standard library, which is

a TCP socket. The unreliable datagram abstraction, UDPSocket, is rare—we saw it only in Netease.

The DelayDroid compile-time makes network calls slightly more expensive, as each call is treated

indirectly, with wrapping calls to the policy. For a null policy, the overhead is essentially three extra calls

per network call. However, since the cost of an underlying network operation itself is so much larger than

that of a function call, the overhead of these additional calls is almost unmeasurable.

5.2 Run-time and example policy

The energy saved by the DelayDroid run-time depends on the apps, the policy and the network re-

quest pattern. When more apps run together, more network requests are sent, and thus there are more

opportunities to delay and batch requests.



Huang G, et al. Sci China Inf Sci January 2017 Vol. 60 012106:11

Table 3 App configurations for run-time experiments

App Configuration

Aws Add only one forecast location: Beijing

K9mail Add an email account that created for the experiment; no new emails received every day

Sohunews Default configuration

Table 4 Parameters of network energy model

Parameter Value

Continuous downlink transfer power 1950.1 mW

Tail power 1060.0 mW

Tail duration 11576.0 ms

Figure 8 The reduction of radio energy consumption in each individual app as a result of reducing the occurrence of tails.

(a) Aws; (b) K9mail; (c) Sohunews.

As the interaction between user satisfaction and delay/slowdown is outside of the scope of this paper,

we selected a set of apps from Table 2 which can be reasonably be said to avoid this question. These

apps, Aws, K9mail, and Sohunews, do not feature fine-grain interaction between the user and the network.

Their configurations for our experiments are shown in Table 3. In our evaluation, we use the policy of

Section 4, both operating on the individual apps, and on the apps operating together.

We run on Samsung Galaxy S3 mobile phones where network connectivity is 3G provided by China

Unicom. The phones run CynaogenMod8), which is a variant of Android 4.2.2 that allows us more careful

control over what processes are running on the phone. We use a fresh install plus the three DelayDroid-

enabled apps. A Monsoon meter9) is used to measure the current flowing into the phone at a 5000 Hz rate.

We are interested not only in the power/energy characteristics of the system as a whole, but also for the

radio specifically. As we cannot measure the latter directly, we derive it from the system measurements

using Huang et al.’s model [7], which is particularly suitable for our purposes as it focuses on screen-off

scenarios, just as our example policy. Table 4 shows the parameters we use for the model.

5.2.1 Radio energy savings for individual apps

We measured the apps individually using batching window configurations of 0 s (disabled batching),

30 s, 60 s, and 120 s. In each case, the phone was kept screen-off, and measured for a period of 24 h.

Figure 8 presents the results. Each graph shows an individual app. The bars show the occurrence of

tails (left vertical axis), while the line shows the radio energy (right vertical axis), both as a function

of the batching window (horizontal axis). The bars are stacked, showing the rough distribution of tail

lengths into four bins (< 30 s, 30–60 s, 60–120 s, and > 120 s). Shorter tails are evidence of greater

energy waste. These are not common in Aws or K9mail, but much more so in Sohunews. As a result, our

policy improves Sohunews considerably more than the others (although all do improve). With a batching

8) CyanogenMod. http://www.cyanogenmod.org/.
9) Monsoon power monitor. https://www.msoon.com/LabEquipment/PowerMonitor/.



Huang G, et al. Sci China Inf Sci January 2017 Vol. 60 012106:12

Figure 9 Reduction in the number of requests as a function of increasing batching window size.

window of 120 s, the radio energy consumption of Sohunews is reduced by 63% while the occurrence of

the shorter tails is reduced by about 56%.

The radio energy reduction is due to two effects. The first is the reduction in the number of requests

over any given duration (the request rate). Figure 9 shows this effect for each of the apps. For apps

like Aws and K9mail, although we do not usually batch requests, the delay we introduce in responding

to a request also delays the subsequent request. As a result, the request rate is reduced, and with it

the occurrence of tails. For Aws and K9mail, this reduction is about 10% with a 120 s window. For

Sohunews, the reduction is almost 26%, accounting for roughly half of its overall reduction.

The second effect leading to radio energy savings is batching requests, which, when the apps are consid-

ered individually, tends only to be common with Sohunews. Here it accounts for the other half of its overall

reduction in “short” tails. With a batching window of 120 s, the number of tails with an idle time < 120 s

reduces by about 92%, while the number of tails with an idle time > 120 s reduces by about 25%.

As far as we are aware, previous work does not consider radio energy savings based on this combination

of effects because it assumes network requests are independent. In the case of these applications, they

have sequential dependencies. The rate reduction made possible by this dependency, combined with

batching, explains why the radio energy reduction we see in Sohunews is higher than in previous work.

5.2.2 Radio energy savings for multiple apps

We now consider combining applications. Given the results of the previous section, a natural question

to ask is whether we can improve the radio energy savings for the Aws and K9mail apps by combining

them to collectively produce more opportunities for batching. We will also consider combining all three

apps. We consider three policy configurations: setting 1 indicates the policy is disabled, setting 2 uses

the 120 s batching window determined to work well in the previous section, and setting 3 combines this

with inter-app batching via the broadcast mechanism. Other than these changes, our methodology is

identical to that of the previous section.

Figure 10(a) shows the results for the combination of the Aws and K9mail apps. When run individually,

these apps each have a 10% energy reduction when run under our policy with a 120 s window. Combining

them (setting 2) results in a 15% energy reduction. When the cross-app policy is fully deployed (setting 3),

the energy reduction jumps to about 42%. This jump is due to a further reduction in the the occurrence

of tails, which is due to batching that can now happen across the apps. Figure 10(b) illustrates what is

happening in a strip plot of the requests. With setting 2, requests in the same app become batched, while

with setting 3 they are more aggressively batched. The latter point is somewhat difficult to see on the

plot since the combination of requests at timescales less than 120 s is difficult to differentiate—essentially,

the vertical strips are just darker for setting 3.

Figure 10(c) shows the results of combining all three of Aws, K9mail and Sohunews. As noted in the

previous section, batching requests in Sohunews itself produces considerable radio energy savings. This

remains true when the three apps are combined. Setting 2 achieves 35% energy savings, while setting 3



Huang G, et al. Sci China Inf Sci January 2017 Vol. 60 012106:13

Figure 10 (Color online) Reduction of radio energy consumption for groups of apps using our policy. (a) Tail number &

energy consumption of Aws & K9mail; (b) network requests of Aws & K9mail in 2 h; (c) tail number & energy consumption

of Aws & K9mail & Sohunews; (d) network requests of Aws & K9mail & Sohunews in 2 h.

Figure 11 CDF of actual delays added by the policy for

a batching window of 120 s.

Figure 12 CDF of measured system current for different

configurations.

achieves almost 56%. Recall that individually, Aws and K9mail achieved only about a 10% improvement.

Figure 10(d) is a strip plot showing the dynamics of combining the applications, illustrating the increasing

batching opportunities in settings 2 and 3.

Figure 11 gives a CDF of the actual delays inserted by DelayDroid and our policy during this exper-

iment. Here the batching window is set to 120 s, the maximum we consider. The average delay Aws

sees is 66 s, while K9mail sees 5 s, and Sohunews sees about 8 s. The differences are due to the different

communication patterns of the apps and their structures (e.g., how many threads they use internally).

The results clearly demonstrate how by leveraging the cross-app communication and integration en-

abled by DelayDroid, our example policy can more effectively batch network requests from multiple apps

and thus reduce the energy wasted in tail time. In practice, inserted delays are also quite small.

5.2.3 Measurements of system energy

The previous sections have presented results for the radio alone. We now present the direct system energy

measurements of our example policy running across the three DelayDroid-enabled apps. Figure 12 shows

CDFs of the current for four configurations:



Huang G, et al. Sci China Inf Sci January 2017 Vol. 60 012106:14

• 0 apps is simply the phone without any applications running, and the screen off. The average current

is 5.5 mA.

• Original is the phone running our three applications with the screen off. The average current is

37.5 mA.

• 0 s is the phone running DelayDroid-enabled versions of the three applications with the screen off

and the policy disabled (0 s batching interval). The average current is 38.4 mA.

• 120 s is the phone running DelayDroid-enabled versions of the three applications with the screen off

and the policy active (120 s batching interval and broadcast). The average current is 24.1 mA.

Our conclusion is that DelayDroid-enabling the group of three applications incurred an overhead of

1 mA (< 3%), while allowing the creation and use of a policy that reduced current by 13.4 mA (36%).

6 Related work

There are numerous previous studies on reducing energy waste in tail time and these can be divided into

three categories.

Policies and algorithms. A range of algorithms and policies have been proposed to reduce tail

energy waste. Balasubramanian et al. [1] created TailEnder, a protocol that reduces tail energy waste by

either delaying or aggressively prefetching network requests in applications that can benefit from such

methods. However, applications must be classified by hand. In contrast, DelayDroid is able to delay

network requests in arbitrary applications automatically. Work done by Huang et al. [2] has found that

network activity when a phone’s screen is off accounts for a large portion of the total network activity.

Our example DelayDroid policy leverages this observation along with the fact that users should not be

annoyed by delays introduced when the screen is off to decide how to batch requests.

The aforementioned prior studies are evaluated using traces from real-world apps, DelayDroid addi-

tionally has the potential to enhance the evaluation of such studies by making it possible to easily deploy

the policies described in those studies and perform measurements directly.

Fast dormancy. Fast dormancy is another technology for optimizing the tail by allowing smart-

phones to immediately put the 3G radio in a low power state once all network communication has been

completed. It extends the static RRC (radio resource control) state machine, and provides an interface

to the developer to change the radio state dynamically10). Qian et al. [4] propose a simple interface,

TOP, to allow different apps to leverage the fast dormancy feature. The app can explicitly invoke a tail

removal API provided by TOP, which informs the cellular radio to quickly go into a low energy state.

Athivarapu et al. [8] created RadioJockey, a system that uses program execution traces to predict the

end of communication spurts, thereby accurately invoking fast dormancy without increasing network

signaling load. Similar to fast dormancy, several papers have proposed to dynamically choose idle timer

values of the RRC state machine based on traffic characteristics instead of using static idle timer as is

currently done [9, 10] .

These studies are complementary to DelayDroid. More energy savings could be achieved by combining

them with DelayDroid.

Policy deployment and application development. Simplifying the deployment of policies for

tail energy waste reduction (or fast dormancy) is an important challenge. One aspect is measurement.

For example, ARO [11] is a tool that collects profiling data when an application is running (e.g., packet

traces, user interaction, etc.) and provides developers with cross-layer information (TCP, radio states,

etc.) on which to base policies. However, it is potentially costly for the developer to redesign his apps to

directly embed such a policy. A tool like ARO could be used together with DelayDroid to allow wider

deployment of policies that leverage detailed profiling data.

At the application layer, Xu et al. [12] have studied the power characteristics of email synchronization

in smartphone apps. They developed five new techniques to optimize the energy consumption of the

10) Fast dormancy behavior. http://www.gsma.com/newsroom/wp-content/uploads/2013/08/TS18v1-0.pdf.



Huang G, et al. Sci China Inf Sci January 2017 Vol. 60 012106:15

email client. While we feel that optimizing at the application layer can likely achieve the best result for

individual apps, it leaves out opportunities to optimize across applications.

At the framework layer, Nikzad et al. [13] proposed APE, an annotation language and middleware

service that eases the development of energy-efficient Android applications. Leverage APE, developers

can apply the policy into their own application to batch network requests. However, it not only requires

a lot of effort to identify all the network calls manually, but also misses the opportunity to batch requests

in different apps.

Vergara et al. [14] created an OS-level packet scheduling mechanism using the Linux kernel Netfilter

framework and implemented the Cluster Layer Burst Buffering algorithm [15]. Kernel-level deployment

such as this allows a policy to be applied to all applications, but little application-level context is available

in the kernel for the policy to use.

As for application development, there are various related studies. Zhang et al. [16] presented Dpartner,

which refactors existing Android apps for on-demand computation offloading. Wu et al. [17] presented

CoseDroid, an refactoring tool for Android app. By bytecode instrumenting, CoseDroid enables Android

applications to virtually borrow computation or sensing resources from other devices. Ravindranath et al.

[18] developed Procrastinator, an refactoring tool for Windows phone. Procrastinator can automatically

decide when to fetch each network object that an app requests to minimize the data traffic wasted in

prefetch. Dpartner, CoseDroid, Procrastinatorand DelayDroid are complementary. The difference is that

DelayDroid uses similar technology to minimize the energy wasted in sending network requests.

DelayDroid focuses on enabling the design, implementation, and evaluation of framework layer policies

within existing, unmodified, off-the-shelf applications. Unlike previous work, it provides a toolchain

that automatically analyzes and instruments application binaries, and provides an interface that allows

multiple-application policies for request batching to be incorporated. These policies can make use of the

rich semantic information available at the framework layer to make their decisions.

7 Threats to validity

In DelayDroid, we attempt to automatically apply a policy within the apps through static analysis and

bytecode transformations. Leveraging DelayDroid, developers can use the default batching policy or

provide their own batching policy to save the energy wasted in tail time. However, it still meets the

following limitations.

One limitation of DelayDroid is that DelayDroid does not provide any API to differentiate the delay-

tolerant network requests from urgent network requests that are triggered by user. As a result, the default

policy uses the screen status to distinguish the requests. A possible solution to this would be to utilize

additional APK code information—in many cases network requests may be performed by events such

as “onClick” or “onTouchEvent”, implying that they were launched by a user interaction and thus not

delay-tolerant. By leveraging additional bytecode analysis DelayDroid could trace the origins of network

requests, allowing for more fine-grained batching.

Another limitation of DelayDroid is that DelayDroid can only schedule the network requests that are

sent in Java bytecode. In other words, DelayDroid cannot schedule the requests sent by native code such

as C and C++. An extended version of DelayDroid could mitigate this limitation by also looking at

any portions of apps that exist in LLVM11) IR (Intermediate Representation), and refactor network calls

made at that level at compile-time.

8 Conclusion

As the energy wasted in tail time becomes an important issue, many algorithms and policies are being

proposed to address it. However, applying these policies to apps is challenging. We argue that asking an

11) LLVM. http://llvm.org/.

http://llvm.org/


Huang G, et al. Sci China Inf Sci January 2017 Vol. 60 012106:16

app developer to modify his code is not a winning proposition because it asks for altruism from the app

developer to think hard about each network transfer and rewrite code around it.

In conclusion, we have implemented the first framework, DelayDroid, that can automatically analyze

and refactor complex, existing Android apps, and expose the opportunity for batching network requests

across apps to developers. DelayDroid has been demonstrated to operate successfully across a range of

popular off-the-shelf apps available directly from the Google App Store. In addition, we have implemented

a screen-status based policy as a default. An evaluation shows that using this default policy, DelayDroid

can reduce the energy used by 3G by 5% to 63% in individual apps. When the cross-app communication

mechanism is enabled, DelayDroid and the default policy can achieve energy savings as high as 41.6%.

Moreover, in lab experiments we found that DelayDroid and the default policy can reduce the total

measured system energy by 36%.

Acknowledgements This work was supported by National High Technology Research and Development Pro-

gram of China (863) (Grant No. 2013AA01A208) and National Natural Science Foundation of China (Grant Nos.

61300002, 61421091, 61370020).

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Balasubramanian N, Balasubramanian A, Venkataramani A. Energy consumption in mobile phones: a measurement
study and implications for network applications. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement, Chicago, 2009. 280–293

2 Huang J, Qian F, Mao Z M, et al. Screen-off traffic characterization and optimization in 3G/4G networks. In: Pro-
ceedings of the 12th ACM SIGCOMM Conference on Internet Measurement, Boston, 2012. 357–364

3 Qian F, Wang Z, Gao Y, et al. Periodic transfers in mobile applications: network-wide origin, impact, and optimization.
In: Proceedings of the 21st World Wide Web Conference, Lyon, 2012. 51–60

4 Qian F, Wang Z, Gerber A, et al. TOP: tail optimization protocol for cellular radio resource allocation. In: Proceedings
of the 18th Annual IEEE International Conference on Network Protocols, Kyoto, 2010. 285–294

5 Chuah M C, Luo W, Zhang X. Impacts of inactivity timer values on UMTS system capacity. In: Proceedings of IEEE
Wireless Communications and Networking Conference Record, Orlando, 2002. 897–903

6 Swiech M, Dinda P A. Making javascript better by making it even slower. In: Proceedings of the 21st International
Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, San Francisco, 2013.
70–79

7 Huang J, Qian F, Gerber A, et al. A close examination of performance and power characteristics of 4G LTE networks.
In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, MobiSys’12,
Ambleside, 2012. 225–238

8 Athivarapu P K, Bhagwan R, Guha S, et al. Radiojockey: mining program execution to optimize cellular radio usage.
In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Istanbul, 2012.
101–112

9 Puustinen I, Nurminen J. The effect of unwanted internet traffic on cellular phone energy consumption. In: Proceedings
of International Conference on New Technologies, Mobility and Security (NTMS), Paris, 2011. 1–5

10 Yeh J-H, Chen J-C, Lee C-C. Comparative analysis of energy-saving techniques in 3GPP and 3GPP2 systems. IEEE
Trans Veh Tech, 2009, 58: 432–448

11 Qian F, Wang Z, Gerber A, et al. Profiling resource usage for mobile applications: a cross-layer approach. In: Pro-
ceedings of the 9th International Conference on Mobile Systems, Applications, and Services, Bethesda, 2011. 321–334

12 Xu F, Liu Y, Moscibroda T, et al. Optimizing background email sync on smartphones. In: Proceedings of the 11th
Annual International Conference on Mobile Systems, Applications, and Services, Taipei, 2013. 55–68

13 Nikzad N, Chipara O, Griswold W G. APE: an annotation language and middleware for energy-efficient mobile
application development. In: Proceedings of the 36th International Conference on Software Engineering, Hyderabad,
2014. 515–526

14 Vergara E J, Sanjuan J, Nadjm-Tehrani S. Kernel level energy-efficient 3G background traffic shaper for Android
smartphones. In: Prcoeedings of the 9th International Wireless Communications and Mobile Computing Conference,
Sardinia, 2013. 443–449

15 Vergara E J, Nadjm-Tehrani S. Energy-aware cross-layer burst buffering for wireless communication. In: Proceedings
of the 3rd International Conference on Future Energy Systems: Where Energy, Computing and Communication Meet.
New York: ACM, 2012. 24

16 Zhang Y, Huang G, Liu X, et al. Refactoring Android java code for on-demand computation offloading. In: Pro-
ceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, Tucson, 2012. 233–248

17 Wu X, Xu C, Lu Z, et al. Cosedroid: Effective computation- and sensing-offloading for Android apps. In: Proceedings
of the 39th IEEE Annual Computer Software and Applications Conference, Taichung, 2015. 2: 632–637

18 Ravindranath L, Agarwal S, Padhye J, et al. Procrastinator: pacing mobile apps’ usage of the network. In: Proceedings
of the 12th Annual International Conference on Mobile Systems, Applications, and Services, Bretton Woods, 2014.
232–244


	Introduction
	Background and motivation
	3G/4G power management
	Motivating example
	Cross-application batching

	DelayDroid
	Compile-time
	Run-time
	Policy
	Implementation details

	Policy example
	Evaluation
	Compile-time
	Run-time and example policy
	Radio energy savings for individual apps
	Radio energy savings for multiple apps
	Measurements of system energy


	Related work
	Threats to validity
	Conclusion

