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Abstract Constraint solving is a frequent, but expensive operation with symbolic execution to generate tests

for a program. To improve the efficiency of test generation using constraint solving, four optimization techniques

are usually applied to existing constraint solvers, which are constraint independence, constraint set simplifica-

tion, constraint caching, and expression rewriting. In this paper, we conducted an empirical study, using these

four constraint optimization techniques in a well known test generation tool KLEE with 77 GNU Coreutils

applications, to systematically investigate how these optimization techniques affect the efficiency of test genera-

tion. The experimental results show that these constraint optimization techniques as well as their combinations

cannot improve the efficiency of test generation significantly for ALL-SIZED programs. Moreover, we studied

the constraint optimization techniques with respect to two static metrics, lines of code (LOC) and cyclomatic

complexity (CC), of programs. The experimental results show that the “constraint set simplification” technique

can improve the efficiency of test generation significantly for the programs with high LOC and CC values. The

“constraint caching” optimization technique can improve the efficiency of test generation significantly for the

programs with low LOC and CC values. Finally, we propose four hybrid optimization strategies and practical

guidelines based on different static metrics.
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1 Introduction

Software testing is critical for software development, but it is labor-intensive and time-consuming. Testing

cost can usually account for 30%–50% of total development cost [1]. Hence, it is imperative to implement

automatic methods to reduce the cost of software testing. In the past decades, automatic test generation

has been intensively studied in both academic and industry [2, 3]. Combination of symbolic execution

and constraint solving is one of the popular solutions of test generation [4].

Symbolic execution is an old program analysis method, proposed by King in the late 1970s [5]. It

uses symbolic values instead of actual data as input values and uses symbolic expressions to represent

program variable values [6]. Then it generates a symbolic path condition which is a set of symbolic
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expressions for conditions in a path. However, it lacked effective tools for several insurmountable technical

challenges at that time, so the development was at a standstill. In recent years, due to the development

of computer hardware and compute capacity, symbolic execution has attracted renewed attention of

researchers, especially used for test generation [7].

Path conditions, i.e., constraints, constructed by symbolic execution will be solved to generate test

data1) by constraint solvers [8–11]. This is a challenging task of test generation, because constraint

solving is a classical mathematic problem and non-decidable in general [8]. These challenges have hindered

extensive industrialization of test generation. Although some effective constraint solvers [12] have been

developed in recent years, the cost of constraint solving is still extremely expensive and leads to a large

percentage of total cost of test generation. Therefore, some constraint optimization techniques have been

proposed to simplify constraints (i.e., path conditions) or reduce queries of constraint solvers, as well as

reduce cost of test generation.

Many test generation tools have been developed based on symbolic execution and constraint solv-

ing [6]. These tools are employed with some constraint optimization techniques, including constraint

independence, constraint set simplification, constraint caching, and expression rewriting, to improve

their efficiency. Therefore, it is valuable to systematically study on these optimization techniques for test

generation. In this paper, we empirically evaluate these four popular constraint optimization techniques

in a well known test generation tool KLEE [8] with 77 GNU Coreutils applications. To the best of our

knowledge, this is the first study on evaluating constraint optimization techniques for test generation.

In summary, the main contributions of this paper are as follows:

(1) We conducted experiments on KLEE by running 77 GNU Coreutils applications. The experimental

results show that the optimization techniques and their combinations cannot improve the efficiency of

test generation for ALL-SIZED of programs.

(2) We investigated the constraint optimization techniques with respect to two static metrics of pro-

grams. The experimental results show that the “constraint set simplification” technique can improve the

efficiency of test generation significantly for the programs with high LOC and CC values. The “constraint

caching” technique can improve the efficiency of test generation significantly for the programs with low

LOC and CC values.

(3) Some guidelines are provided to use appropriate constraint optimization techniques based on dif-

ferent static metrics. Four hybrid optimization strategies are proposed to be used in practice.

The rest of paper is as follows: Section 2 introduces test generation, constraints solving, and constraint

optimization used in our study. Section 3 presents our experiment comparing optimization techniques

and their combinations. Section 4 investigates the constraint optimization techniques with respect to

static metrics. Section 5 studies hybrid optimization strategies. Section 6 discusses threats to validity

and related work. Conclusion and future work are drawn in the last section.

2 Background

2.1 Test generation

Many automatic test generation tools have been developed in the past decades [7]. In this paper, we

study test generation based on symbolic execution [5] and constraint solving [13]. Symbolic execution

uses control flow information to identify paths to be covered and constraint solving generates test data for

these paths. As shown in Figure 1, given a program, the path search strategy explores candidate paths in

a program. We use depth-first-search (DFS) strategy in our study. DFS traverses the execution tree from

the root and explores as far as possible. Symbolic execution [5] uses symbolic values instead of actual data

as input values and simulates program execution. It uses symbolic expressions to represent intermediate

variable values and records program execution status. Finally, symbolic path conditions (“PC” for short)

1) We use test and test data interchangeably in this paper.
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Figure 1 (Color online) Test generation based on symbolic execution and constraint solving.

Figure 2 An example program.

are generated. A PC is a set of constraints from program predicates with input parameters updated by

symbolically executing program. A constraint solver is used to find solutions of PCs, i.e., constraints.

Symbolic execution has some practical challenges in handling large or complex programs. If execution

paths are too long, then it is possible that the tools will not record all program execution status. If a

program contains complex data types and external calls, the traditional symbolic execution may not be

completed. In recent years, dynamic symbolic execution has been widely used in test generation [8–11,

14, 15], automated filter generation [16–20] and malware analysis [21–24]. Dynamic symbolic execution

runs a program using concrete and symbolic inputs together. It uses some concrete values instead of

symbolic values to significantly improve the efficiency of symbolic execution in practice.

We use a simple program, shown in Figure 2, to demonstrate how symbolic execution generates the

condition of a path {1, 2, 3, 5, 6, 11}. x1, x2, x3, and x4 are symbolic inputs for a, b, c and d, respectively.

In statement 1, we get the constraint x4 < 5. In statements 2 and 3, an intermediate variable e is replaced

by input parameters to get the constraint x1 = x2 + x3. This process continues until this path has been

completely executed. Finally, the path condition, i.e., a conjunction of all constraints in this path, is

(x1 = x2 + x3) ∧ (x2 > 10) ∧ (x4 < 5).

2.2 Constraint solving

Constraint solving is a classical mathematic problem [13]. It is to find a solution of a set of constraints,

e.g., a path condition for test generation [25–27]. A Boolean satisfiability (SAT) problem is a typical

constraint solving problem and it is NP-complete [28]. A satisfiability modulo theory (SMT) [12] is an

extension of SAT to solve more types of constraints, besides of Boolean constraints.

Some advanced constraint solvers, e.g., STP [29], Z3 [30], CVC3 [31], have been adopted in test

generation tools. Using these constraint solvers, we can find a solution, i.e., test input, of path condition.

For example, a solution (x1 = 17, x2 = 11, x3 = 6, x4 = 1) can be generated by constraint solvers with

the path condition (x1 = x2 + x3) ∧ (x2 > 10) ∧ (x4 < 5) for executing the path {1, 2, 3, 5, 6, 11}.



Zhang Z Y, et al. Sci China Inf Sci January 2017 Vol. 60 012105:4

2.3 Constraint optimization

To improve the efficiency of test generation, several constraint optimization techniques have been proposed

to simplify constraint expressions or reduce queries to constraint solvers. We introduce four representative

constraint optimization techniques which are widely used for test generation [8].

2.3.1 Constraint independence (Oi)

Two constraints are considered as dependent if the solution of one can affect the solution of the other,

which means they share one or more variables directly or indirectly. Constraint independence optimization

divides independence constraints into different constraint subsets. For example, the path condition (x1 =

x2 +x3)∧ (x2 > 10)∧ (x4 < 5) could be divided into two groups (x1 = x2 +x3)∧ (x2 > 10) and (x4 < 5),

since x4 is independent of x1, x2 and x3. Solving two small constraint subsets costs much less time

than solving the whole constraint set. Moreover, it is easier to find a solution for independent constraint

subsets than the whole constraint set in practice, although they have equivalent solvability in theory.

2.3.2 Constraint set simplification (Os)

New constraints are incrementally added into the path condition during symbolic execution. Constraint

set simplification could quickly find out whether existing constrains can be eliminated or if the new

constraints conflict against the existing constraints. For example, there is a constraint x2 > 10 in the

path condition (x1 = x2+x3)∧ (x2 > 10)∧ (x4 < 5). If a new constraint x2 > 100 is added, then x2 > 10

will be eliminated, because x2 > 100 implies x2 > 100. On the contrary, if the new added constraint

is x2 < 5, it is easier to detect that the path condition has no solution with two conflict constraints.

Constraint set simplification can reduce queries of constraint solvers in this case.

2.3.3 Constraint caching (Oc)

Constraint caching could quickly find out solution according to characteristics of subset and superset,

which is, if a path condition is unsatisfiable then its superset is unsatisfiable; if a path condition is

satisfiable then its subset is satisfiable. For example, (x > 10) ∧ (x < 5) is unsatisfiable. Then we can

stop symbolic execution because any superset of (x > 10) ∧ (x < 5) is unsatisfiable. The path condition

(x > 10) ∧ (y < 0) has a solution (x = 11, y = −1), then two subsets, x > 10 and y < 0 have solutions.

Moreover, the new constraints often do not invalidate the solution to the existing subset. According to

this heuristic, the existing solution of a subset can be used to verify the whole constraint set. It can

reduce much time cost because verifying a constraint set is much faster than solving a constraint set.

2.3.4 Expression rewriting (Or)

Expression rewriting could transform the original path conditions into a much easier form before sending

them to constraint solvers in order to speed up constraint solving. For example, the path condition

x+ 0 > 5 could be simplified to x > 5 and 2× x− x > 5 could be rewritten as x > 5.

3 Comparing optimization techniques and their combinations

This paper is to empirically study constraint optimization techniques for test generation. The first

research question is

(RQ1) Can the constraint optimization techniques or their combinations improve the efficiency of test

generation?

3.1 Experiment design

KLEE [8], one of the most well known test generation tools, was used in our study. We adopted the

depth-first-search (DFS) strategy in symbolic execution, with the constraint solver STP [29] for test
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generation. In our experiments, we used the computer with 2.66 GHz CPU and 4 GB memory.

99 GNU Coreutils applications were used as our experimental programs. There are several reasons

behind our selection. Firstly, GNU CoreUtils programs have been developed for decades and are widely

used all over the world. Moreover, GNU CoreUtils programs have been studied on KLEE in many

pervious academic studies. Secondly, KLEE is designed and configured specifically for GNU CoreUtils,

thus GNU CoreUtils programs are stable enough running on KLEE and could reduce noises from software

bugs [8,32]. Lastly, library APIs may cause symbolic execution exploration to stop early and mask other

potential limitations of symbolic execution. Since KLEE has built library APIs for GNU CoreUtils

programs, running GNU programs could reduce the effect of lacking library APIs. In our experiments,

we used the GNU CoreUtils 6.11 because this version is the most stable version for KLEE.

We discarded the applications for which either (a) our version of KLEE ran into unsupported LLVM

instructionsor system calls (LLVM is a compilation infrastructure designed which could compile program

language such as C language), or (b) KLEE finished in less than 360 s. Finally, 22 GNU Coreutils

applications were discarded and 77 applications were used in our study.

For each program, we conducted test generation by KLEE without constraint optimization technique

(Onon), with the single constraint optimization techniques (Oi, Os, Oc, and Or), and with the combined

constraint optimization techniques (Ois, Oic, Oir, Osc, Osr, Ocr, and Oall), respectively. All together,

there are 11 techniques. For example, Ois is the combination of Oi and Os. Oall is the combination of

Oi, Os, Oc, and Or.

We give an example to show how to combine basic optimization techniques. Optimization combination

means more than one basic optimization techniques are applied simultaneously during symbolic execution.

For example, (x1 = x2 + x3) ∧ (x2 > 10) ∧ (x4 < 5) is a constraint set. When a new constraint (x2 > 5)

is added. “Caching” is applied firstly to judge whether the new constraint set has a solution. Next, if it

has a solution, “simplification” simplifies the constraint set. In our example, the constraint (x2 > 5) is

eliminated because it is the sub-constraint of (x2 > 10). Lastly, “independence” divides the constraint

set into two subsets — (x1 = x2 + x3) ∧ (x2 > 10) and (x4 < 5).

We selected these seven combined methods for the following reasons:

Firstly, we consider that one optimization technique may affect the effectiveness of other optimization

techniques during symbolic execution. That means, we consider that when using combined optimization

techniques, symbolic execution may not perform better than when using single optimization techniques

respectively. Similarly, though two single optimization techniques cannot improve the effectiveness of

symbolic execution respectively, their combined optimization technique may improve the effectiveness.

In order to make our experiment more convincing, we selected (Ois – Ocr) to find whether they perform

better than non-optimization during symbolic execution.

Secondly, one hypothesis is that when using all optimization techniques, symbolic execution performs

best. So in practical, researchers usually apply all optimization techniques during symbolic execution.

To make our conclusion can be applied to practice and to prove whether this hypothesis is correct, in

this paper, we selected Oall in our study.

For each program, we set up the execution time to be 360 s for test generation. That is, we use 360 s

to generate as many as paths and test data for a given program. During symbolic execution, KLEE

may be frozen because of some reasons, such as complex paths, floating numbers and so on. To make

programs can be executed continually, for each path, we set up the timeout to be 10 s for test generation.

That is, if a path cannot be explored or solved in 10 s, we will skip it. Please note that the time cost

includes test generation, path searching, symbolic execution, optimization, and constraint solving, for

fair comparisons.

We set 10 s for test generation of each path for two reasons. One is that we only execute 360 s for

each program. If the timeout value is too large, KLEE may be frozen with some reasons, such as floating

numbers. If the value is too small, some complex paths may not be completed in this time. “10 s” is

an appropriate value in our experiments. Other is that we consider practical application of symbolic

execution in our experiment. In practical, if the timeout value is set too large or too small, KLEE cannot

run continually. To make our results can be used in practical, we set timeout value as 10 s, so KLEE can
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Figure 3 (Color online) N∗ of each optimization technique.

Table 1 T-test of N∗ for each optimization technique (α = 0.05)

Ni Ns Nc Nr Nis Nic Nir Nsc Nsr Ncr Nall

Average 13.5 55.0 −1.2 5.4 35.8 0.10 5.4 31.5 40.1 −0.61 29.9

P-value 0.09 0.17 0.89 0.53 0.27 0.99 0.44 0.34 0.23 0.93 0.35

Significant × × × × × × × × × × ×

run continually.

KLEE can provide the number of paths, denoted by N , during test generation. A higher N indicates

a better efficiency of test generation. In order to investigate the efficiency of constraint optimization

techniques, we calculated the improvement of N for optimization techniques, i.e., NO∗
−NOnon

, denoted

byN∗. For example, Ni = NOi
−NOnon

is the increased number of paths for the “constraint independence”

optimization technique. A higherN∗ indicates a better improvement of constraint optimization technique.

3.2 Experimental results and analysis

According to the number of completed paths in Appendix A, we collected N∗ for each of the 11 optimiza-

tion techniques and the 77 programs. The box-plots of optimization techniques are shown in Figure 3.

The horizontal axis represents the optimization techniques and the vertical axis represents the increased

number of paths (N∗). It is surprising that all optimization techniques cannot improve the efficiency of

test generation significantly for ALL-SIZED programs. The zero line crosses over all box-plots and is

close to the median lines of all box-plots. Moreover, the averages of N∗ (small boxes) of the optimization

techniques Oc and Ocr are less than zero.

Furthermore, we collected the averages of N∗ of each optimization technique, as shown in Table 1.

The averages of N∗ of Oc and Ocr are −1.2 and −0.61, respectively. It shows that the efficiency of test

generation using these two optimization techniques are even worse than those without using optimization

techniques. The average N∗ of Os is the best one, 55.0. In order to investigate the experimental results,

we did t-test for each optimization technique to Onon. All p-values are much larger than the standard

significant threshold (α = 0.05). That is, the differences of completed path numbers are not significant,

even for Os.

The experimental results from Figure 3 and Table 1 show that the constraint optimization techniques do

not perform well. To insight into the results, we recorded the number of best times for each optimization

technique. A “best” for one optimization technique means when using this optimization technique in

test generation, it generates the most paths (and test data) among all optimization techniques (including
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Table 2 The number of best times for each optimization technique

Onon Oi Os Oc Or Ois Oic Oir Osc Osr Ocr Oall

4 8 7 8 8 3 8 10 6 8 12 7

Onon). This number is denoted as NO∗
which is the largest one for a given program. Table 2 shows

the best times of each optimization technique. If we did not use any optimization technique (Onon in

Table 2), we can get 4 times of best results from the 77 programs. The left 73 programs were covered by

the 11 optimization techniques. For example, Ocr has 12 times of best results from the 77 programs. The

experimental results show that constraint optimization techniques are useful for test date generation to

some extend, but there is no one optimization technique which can win in most cases.

3.3 Explanation

From our experiment results, we found that all optimization techniques cannot improve the efficiency of

test generation significantly for ALL-SIZED programs. We consider that there are some main reasons

behind this phenomenon. For single optimization techniques, they may be not suitable for some programs.

For example, if one program has few inputs and they are all dependent, so “independent” is not useable

and cannot improve the effectiveness, but KLEE costs much time on “independent”. For combined

optimization techniques, two single optimization techniques may be conflict during symbolic execution.

Take Os, Oc and Osc for example, Osc may cost much time to deal with constraint caching, so the

performance of Osc is worse than Os but better than Oc. Another reason is that some path conditions

are not suitable to use combined optimization techniques. We introduce an example to show that the

case is not suitable for the combination of Os and Or. For a PC 2×x−x > 0∧y > 0, if Or is used, then

the PC is rewritten to x > 0 ∧ y > 0. When we add a new constraint x > 10 to the PC, if Os is used,

2 × x− x > 0 is eliminated and the optimized PC is x > 10 ∧ y > 0. That means Or can be skipped to

avoid additional cost.

To understand the phenomenon of Table 2, we analysed symbolic execution and constraint solving

information of some programs. We observed that using Os completed much more paths than using other

optimization techniques for some programs. Take the program “expr” for example, Os completed 2433

paths while other optimization techniques only completed around 30 paths. The main reason is that

many concentrated intermediate variables is in one block of “expr”, so that it is easy to simplify them.

For other programs, there may have many input variables. In this way, Os costs much time to find the

same variables to simplify them.

4 Optimization techniques w.r.t. static metrics

Based on the experimental results in the previous section, no one optimization technique can win in most

cases for test generation. This motivates us to study the constraint optimization techniques with regard

to program characteristics. Static metrics have been widely used in software engineering [33, 34]. We

introduce two simple static metrics: Line of Code (LOC) and Cyclomatic Complexity (CC) to investigate

how the effect of constraint optimization techniques changes with respect to different programs. The

second research question is

(RQ2) Do and how the constraint optimization techniques depend on static metrics of programs?

4.1 Experiment design

Two simple and widely-used metrics, LOC and CC, were adopted in our experiments. LOC is the number

of lines only containing source code, without comments and blank. CC is the cyclomatic complexity to

measure the complexity of control-flow graph. It is defined by E − N + 2P , in which E is the number

of edges in a CFG, N is the number of nodes in a CFG, P is the number of connected components in a

CFG.
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Table 3 Averages of LOC and CC w.r.t. “best” programs

Oi Os Oc Or Ois Oic Oir Osc Osr Ocr Oall

LOC 426.5 577 255.4 365.9 270.7 332.7 764.5 610.5 323.6 290.7 672.5

CC 68.4 109.4 49.9 73.8 65.6 50.0 155.1 103.6 59.6 47.9 126.3

Table 4 Averages and p-values of top-10 and bottom-10 programs w.r.t. LOC (α = 0.05)

Ni Ns Nc Nr Nis Nic Nir Nsc Nsr Ncr Nall

T10A 9.0 11.8 −25.9 6.2 5.7 −1.1 6.6 −10.5 −25.2 −3.7 11.9

T10p 0.23 0.04 0.25 0.69 0.62 0.88 0.43 0.58 0.24 0.74 0.33

B10A −16.7 11.4 10.6 −7.3 −4.7 −12.5 13.8 −28.2 −0.1 −16.4 −12.5

B10p 0.47 0.31 0.02 0.69 0.81 0.56 0.40 0.14 1.00 0.45 0.45

Table 5 Averages and p-values of top-10 and bottom-10 programs w.r.t. CC (α = 0.05)

Ni Ns Nc Nr Nis Nic Nir Nsc Nsr Ncr Nall

T10A 11.1 16.8 −16.5 7.7 5.3 −4.2 −0.4 −15.2 −23.8 −10.3 11.9

T10p 0.15 0.00 0.50 0.62 0.65 0.58 0.97 0.43 0.27 0.43 0.33

B10A 11.0 8.3 11.5 11.9 −2.0 9.2 15.0 0.0 −1.6 −7.6 4.8

B10p 0.32 0.40 0.01 0.11 0.83 0.31 0.12 1.00 0.89 0.34 0.33

We used Understand 2), a popular static analysis tool for measuring and analysing program code, to

obtain the static metrics of the 77 programs respectively. In our study, we only calculate the code of the

program without library, white line or comment. For example, “ls” is the largest program (LOC=2812,

CC=701) among the 77 experimental programs. Understand completed static analysis and generated the

LOC and CC in 3 s for this program. Please note that the static analysis only did once. Hence, we can

ignore the cost of static analysis in our experimental result analysis.

4.2 Experimental results and analysis

To study the constraint optimization techniques with regard to static metrics, we firstly calculated the

average LOC and CC of “best” programs for each optimization techniques, as shown in Table 3. The

experimental results show that the average of LOC w.r.t. Oc is the smallest (255.4) and the average of

LOC w.r.t. Oir is the largest (764.5). The average of CC w.r.t. Oc is the smallest (49.9) and the average

of CC w.r.t. Oir is the largest (155.1).

Moreover, we selected the top-10 and bottom-10 largest programs among the 77 experimental pro-

grams w.r.t. LOC and CC, respectively. The averages and p-values of N∗ of optimization techniques are

calculated in Tables 4 and 5. T10A and B10A mean the average differences of top-10 and bottom-10

programs, respectively. T10p and B10p mean the p-values of top-10 and bottom-10 programs, respec-

tively. The experimental results show that the averages of Os are 11.8 and 16.8 for top-10 programs

w.r.t. LOC and CC, respectively. The p-values of Os are 0.04 and 0.00 for top-10 programs w.r.t. LOC

and CC, respectively. That is, Os can improve the efficiency of test generation significantly for top-10

programs w.r.t. LOC and CC. The experimental results also show that the averages of Oc are 10.6 and

11.5 for bottom-10 programs w.r.t. LOC and CC, respectively. The p-values of Oc are 0.02 and 0.01

for bottom-10 programs w.r.t. LOC and CC, respectively. That is, Oc can improve the efficiency of test

generation significantly for bottom-10 programs w.r.t. LOC and CC. Therefore, we suggest to use Os for

large and complex programs and Oc for small and simple programs in test generation.

In order to enable this suggestion to be used in practice, we classify programs into three types based

on LOC [33]. The LOC of tenth largest and smallest program are 853 and 84, respectively. So the three

program types based on LOC are small programs with LOC6100, medium programs with 1016LOC6800,

and large programs with LOC>801. Similarly, We also classify programs into three types based on

CC [34]: simple programs with CC620, medium programs with 216CC6150, and complex programs

2) Understand. http://scitools.com/.
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Table 6 Averages and p-values of large, medium and small programs w.r.t. LOC (α = 0.05)

Ni Ns Nc Nr Nis Nic Nir Nsc Nsr Ncr Nall

L-A 10.8 12.8 −28.5 7.6 8.8 −0.8 6.0 −9.2 −25.7 −1.7 16.0

L-p 0.19 0.04 0.26 0.66 0.48 0.92 0.52 0.66 0.29 0.89 0.22

M-A 17.7 70.4 −0.9 5.2 47.39 0.4 1.2 48.4 58.4 0.0 40.1

M-p 0.08 0.21 0.94 0.65 0.29 0.97 0.90 0.29 0.21 1.00 0.37

S-A −2.1 18.8 16.4 4.7 3.7 −0.7 22.7 −11.8 8.0 −2.5 −3.5

S-p 0.92 0.12 0.02 0.76 0.82 0.97 0.11 0.47 0.46 0.89 0.80

Table 7 Averages and p-values of complex, medium and simple programs w.r.t. CC (α = 0.05)

Ni Ns Nc Nr Nis Nic Nir Nsc Nsr Ncr Nall

C-A 10.0 14.7 −27.1 8.6 8.0 −1.2 7.3 −11.7 −26.4 −4.1 13.2

C-p 0.23 0.01 0.28 0.62 0.53 0.88 0.43 0.58 0.28 0.74 0.34

M-A 19.1 78.6 −1.2 6.9 53.4 1.6 1.6 54.3 63.3 −0.3 44.8

M-p 0.08 0.19 0.92 0.58 0.28 0.88 0.87 0.27 0.20 0.97 0.36

S-A −1.3 5.4 12.5 −0.6 −2.2 −3.8 15.6 −13.9 5.6 0.4 −5.8

S-p 0.93 0.65 0.04 0.96 0.87 0.78 0.16 0.28 0.49 0.98 0.58

with CC>151.

Tables 6 and 7 shows the experimental results of three types of programs based on LOC and CC,

respectively. L-A, M-A and S-A mean the average differences of completed path numbers of large,

medium and small programs, respectively. L-p, M-p and S-p mean the p-values of large, medium and

small programs, respectively. The averages of Os are 12.8 and 14.7 and the p-values of Os are 0.04 and

0.01 for large and complex programs. That is, Os can improve the efficiency of test generation significantly

for large and complex programs. It can also be observed that the averages of Oc are 16.4 and 12.5 and

the p-values of Oc are 0.02 and 0.04 for small and simple programs, respectively. In this way, Oc can

improve the efficiency of test generation significantly for small and simple programs. However, there is

no significant conclusion can be derived for medium programs. The best one is Oi with the p-value 0.08,

which is close to α = 0.05.

We suggest testers using an optimization technique that satisfies two conditions. One condition is that

the averageN∗ for medium programs is larger than zero, which means symbolic execution could complete

more paths when using this optimization technique. Thus, we do not suggest an optimization technique

with the average N∗ less than zero. Other condition is that the p-value is less than 0.05, which means the

improvement is significant. If all p-values of optimization techniques, which the average N∗ larger than

zero, are less than 0.05, we prefer the optimization techniques that p-value is closed to 0.05, because we

believe that it means the increase is nearly significant. In our experiment, though Oi does not have the

largest average N∗ for medium programs, it has the smallest p-value for medium programs. On the other

hand, though Os has the largest average N∗ for medium programs, the p-value is much larger than 0.05,

which means the increase is not significant. So in summary, since there is no one optimization technique

that its p-value is less than 0.05, we suggest that testers can use Oi for medium programs.

Oc uses supersets and subsets for optimization based on the existing solutions of path conditions. A

small and simple program usually consists of path conditions which are small and simple as well, such

that it can easily generates some solutions for these path conditions. Hence, Oc performs well on small

and simple programs. Os simplifies the redundant constraints in path conditions. Because a large and

complex program usually contains large and complex path conditions which are highly possible to have

some redundant constraints. As a result, Os performs well on large and complex programs.

5 Hybrid optimization strategies

The guidelines with program classifying based on LOC and CC suggest testers to use Oc for small

(LOC6100) and simple (CC620) programs and use Os for large (LOC>801) and complex (CC>150)
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Figure 4 (Color online) Box-plots of N∗ of hybrid optimization strategies.

Table 8 Averages and p-values of hybrid optimization strategies

LOC-Osic CC-Osic LOC-Osnonc CC-Osnonc

Average 16.9 17.2 4.3 4.9

P-value 0.02 0.02 0.00 0.00

programs. For medium programs, testers can use Oi or skip constraint optimization techniques directly.

Based on the guidelines from the previous section, we can design some hybrid optimization strategies.

First, given a program under test, we can calculate LOC and CC values by the Understand tool. Test

generation tools can then use appropriate optimization techniques based on the LOC and CC values to

generate test cases.

• LOC-Osic: Os for large programs (LOC>801), Oi for medium programs (1016LOC6800), and Oc

for small programs (LOC6100).

• CC-Osic: Os for complex programs (CC>151), Oi for medium programs (216LOC6150), and Oc

for simple programs (LOC620).

• LOC-Osnonc: Os for large programs (LOC>801), Onon for medium programs (1016LOC6800), and

Oc for small programs (LOC6100).

• CC-Osnonc: Os for complex programs (CC>151), Onon for medium programs (216LOC6150), and

Oc for simple programs (LOC620).

Figure 4 describes the box-plots of hybrid optimization strategies. The horizontal axis represents the

hybrid optimization techniques and the vertical axis represents the increased number of paths. The

whole boxes of LOC-Osic, CC-Osic, and CC-Osnonc are above the zero line. The box of LOC-Osnonc is

degraded as a straight line and almost hit zero. Specially, for LOC-Osnonc, there are some outliers with

positive value, and the values is larger than 60, so the outliers are not shown in the figure. Consider these

outliers, the mean value of LOC-Osnonc is higher than zero and the maximum value is beyond the range.

Figure 4 suggests that LOC-Osic and CC-Osic have a better performance than LOC-Osnonc and CC-

Osnonc. Furthermore, the averages and p-values of hybrid optimization technique are shown in Table 8.

The experimental results show that all hybrid optimization strategies can improve the efficiency of test

generation significantly. The average improvement of LOC-Osic (16.9) and CC-Osic (17.2) are better than

those of LOC-Osnonc (4.3) and CC-Osnonc (4.9).
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6 Discussion

6.1 Threats to validity

Threats to internal validity are concerned with the uncontrolled factors that may be also responsible

for the results. There are many constraint optimization techniques and symbolic execution tools. The

selection of tools and optimization techniques may influence the results. In this paper, we include KLEE

and four optimization techniques in our empirical study. KLEE is a well-known test generation tool which

has been used in many research projects or real programs. Constraint independence Oi, constraint set

simplification Os, constraint caching Oc and expression rewriting Or are also four popular optimization

techniques. Moreover, Understand is a professional static analysis tool for measuring and analyzing

program code bases. These well-known tools and techniques help reduce the internal threats to our

empirical study to certain extends.

Threats to external validity are concerned with whether the findings in our experiments are generaliz-

able for other settings. The selection of experiment objects is a key point for our study. GNU Coreutils

applications are real programs which form the core user-level environment of Unix systems. They have

been used for previous test generation research. The 77 GNU Coreutils programs used in our study are

also diversified in program size. We preferred to use these programs to reduce the external threats to our

empirical study. In the future, we definitely will include more real-life programs to enhance our empirical

study.

Threats to construct validity are concerned with the uncontrolled factors that may be also responsible

for the results. The evaluation metric is a major concern that may affect the experimental results. Since

the execution paths play a key role in software testing, we used the number of completed paths as the

criterion to evaluate optimization techniques. Furthermore, we calculate the improvement of optimization

techniquesN∗ = NO∗
−NOnon

which is a reasonable evaluation metric to study the utilization of constraint

optimization techniques in test generation.

Threats to conclusion validity are concerned with that can lead researchers to reach an incorrect

conclusion about a relationship in the observations. To reduce the threats to the conclusion of our

empirical study, we firstly count several characters of programs, including MaxCyclomatic, AvgEssential

and so on. Then, for each program character, we analyze whether there exists a relationship between the

character and the optimization technique, by evaluating the effectiveness of all, top-ten and bottom-ten

programs, respectively. These ensure that we do not miss relationships or conclude a relationship when

in fact there is not.

6.2 Related work

Ferguson and Korel [35] divided automatic test generation approaches to three classes: random, path-

oriented and goal-oriented. Symbolic execution with constraint solving is a typical path-oriented test

generation approach [7]. Random test data generation is considered to be the simplest method for test

data generation. The study [36] indicated that random test generation always had low code coverage

because of its narrow ranges of inputs. This paper studies the impact of constraint optimization techniques

on test generation and does not study how test generation is performed in general.

Palikareva et al. [32] conducted an empirical study about multi-solver support to symbolic execution in

test generation. In their study, they ran KLEE on GNU Coreutils applications with different constraint

solvers, such as STP [29], Z3 [30] and Boolector [37]. They compared the execution time with the same

number of instructions. The path search strategy DFS is adopted in test generation with or without

constraint caching respectively. Their experimental results show that STP perform best. STP is initially

designed specifically for EXE, which has the same types queries as KLEE. Their study only focused on

the efficiency of different constraint solvers and did not compare the efficiency of constraint optimization

techniques.

Erete et al. [38] proposed a constraint solving optimization method DomainReduce. DomainReduce

which refers to restricting the domain for path conditions could help the constraint solver to find a solution
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faster than when considering the complete input domain. DomainReduce negates the last constraint in

the path condition set that corresponds to a branch not yet covered after a path condition set has been

solved. It finds the constraints which are independent from the negated constraint and reuses the existing

values of these constraints. Finally, it solves the remaining symbolic variables and gets a solution. The

result indicated that using DomainReduce optimization could help the constraint solver to find a solution

with higher probability and faster. CUTE [11] employed incremental solving in test generation. That is,

path conditions were solved incrementally during the path exploring process. If two path conditions from

similar paths differ in a small number constraints, solutions could be reused to speed up test generation.

Sen et al. used branch coverage as a criterion to evaluate CUTE. Their experimental results show that

incremental solving was capable of drastically speeding up constraints solving since it reduced the size of

normal path conditions between 49% with 88%. However, both DomainReduce and incremental solving

are solving optimization techniques, not constraint optimization techniques. We will study the impact of

these two types of optimization techniques on test generation in the future.

Cadar et al. [8] conducted a simple experiment to verify the efficiency of Oi and Oc in test generation.

In their experiment, they firstly ran KLEE on GNU Coreutils applications for 5 min without optimiza-

tion, then they rerun the same workload with constraint independence and constraint caching enabled

separately and together for the same number of instructions. After that, they compared the running

time. The result showed that for the same workload, using optimization will reduce much of time during

symbolic execution. To the best of our knowledge, this paper is the first systematical study on constraint

optimization techniques for test generation.

7 Conclusion and future work

In this paper, four single optimization techniques and seven combined optimization techniques were

investigated. The experimental results show that these constraint optimization techniques cannot improve

the efficiency of test generation significantly for ALL-SIZED programs. Furthermore, we investigated the

constraint optimization techniques with regard to static metrics LOC and CC. It can be observed that Os

works well for large and complex programs and Oc works well for small and simple programs. Therefore,

we proposed four hybrid optimization strategies in practice which are able to improve the efficiency of

test generation significantly.

In the future, we will extend our work in two directions. Firstly, we plan to use code coverage and

mutation testing as the metrics to evaluate optimization techniques. Furthermore, we plan to use more

real-world programs as experiment objects.
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Appendix A The number of completed paths

Program Onon Oi Os Oc Or Ois Oic Oir Osc Osr Ocr Oall

base64 899 908 893 894 920 904 896 920 886 893 917 893

cat 2143 2292 2225 2210 2294 2070 2021 2063 2017 2128 2006 2252

chcon 1168 1171 1087 1171 1186 1087 1150 1168 1102 1158 1155 1153

chgrp 1175 1190 1141 1229 1141 1116 1116 1170 1121 1155 1173 1134

chown 1136 1170 1155 1190 1134 1173 1137 1134 1170 1119 1159 1139

comm 1152 1150 1132 1134 1121 1134 1139 1135 1116 1099 1153 1118

cp 1099 1075 1084 1054 1039 1072 1057 1022 1056 1039 1057 1058

csplit 1075 1134 1098 1078 1172 1072 1072 1057 1057 1057 1078 1058

cut 912 916 1161 919 916 1137 888 888 1121 1134 890 1141

date 1042 1075 918 914 975 995 1075 1029 1028 1041 1057 961

dd 959 972 976 755 1025 1040 1005 992 1023 969 1030 1058

df 1241 1245 1241 1245 1247 1241 1243 1243 1241 1249 1245 1241

dir 545 616 755 696 758 697 545 626 763 717 758 545

dircolors 1906 2006 2062 2019 2019 2036 2036 1994 1984 2036 2067 1829

echo 202 206 198 208 208 191 208 207 183 198 206 192

env 1132 1222 1229 1209 1193 1209 1176 1185 1188 1202 1173 1193

expand 1878 1878 2145 1887 1899 2154 1899 1884 2076 2145 1896 2091

expr 38 15 2432 38 38 2430 38 15 2432 2432 44 2432

factor 450 901 377 882 898 629 855 782 761 945 423 375

fmt 234 224 235 226 225 235 234 224 235 234 236 236

fold 1697 1619 1621 1620 1619 1595 1603 1607 1603 1571 1603 1611

ginstall 1096 1096 1081 1081 1081 1081 1096 1096 1096 1081 1096 1096

groups 1859 1894 1897 1875 1908 1869 1901 1876 1881 1848 1879 1881

head 2866 2887 2901 2945 2866 2847 2835 2796 2819 2866 2800 2866

hostid 1126 1164 1162 1163 1156 1176 1160 1197 1176 1141 1161 1141

id 2808 2857 2817 2698 2718 2686 2792 2818 2825 2710 2857 2809

join 944 937 947 941 937 922 940 956 922 922 922 919

kill 1549 1549 1549 1549 1549 1549 1549 1549 1549 1549 1549 1549

link 1105 1051 1051 1110 1109 1051 1087 1106 1051 1051 1120 1088

ln 675 743 658 611 675 692 674 743 743 675 760 773

logname 1145 1194 1159 1157 1142 1141 1163 1195 1124 1192 1148 1145

ls 678 713 708 705 597 687 678 722 540 484 618 669

md5sum 3 3 1772 3 3 3 3 3 11 11 3 11

mkdir 1120 1105 1123 1123 1123 1105 1131 1123 1105 1147 1131 1123

mkfifo 1060 1060 1042 1075 1096 1060 1078 1131 1096 1043 1150 1060

mknod 1082 1049 1049 1049 1031 1085 1030 1028 1104 1013 1031 1013

mktemp 1077 994 996 995 1028 1012 1078 1046 1012 1012 1012 995

mv 1069 1093 1054 1074 1071 1054 1051 1054 1069 1036 1071 1069

nice 690 710 681 707 682 690 684 690 692 693 693 683

nl 2601 2530 2503 2508 2569 2608 2650 2651 2602 2602 2527 2561

od 1292 1292 1328 1292 1292 1340 1281 1322 1357 1340 1292 1344

paste 2936 2943 2927 2878 2846 2846 2858 2892 2873 2871 2903 2895

pathchk 366 378 346 368 367 333 365 376 326 383 366 366

pinky 1002 1002 981 981 1002 1133 1143 1153 1143 1133 1153 1143

pr 646 653 655 655 655 646 657 661 651 655 656 655

printenv 2045 2030 2071 2060 2060 1937 2071 1957 1945 2066 1931 2024

printf 1454 1507 1515 1425 1508 1557 1455 1538 1519 1557 1465 1469

ptx 1812 1796 1813 1755 1804 1771 1771 1780 1771 1771 1772 1820

readlink 93 93 95 98 95 95 95 93 96 95 93 95

rm 1038 1007 974 1006 1021 1024 1023 1007 1040 1042 1043 1007

rmdir 842 804 827 786 842 838 860 837 858 871 856 802

seq 946 946 946 946 946 946 946 946 946 946 946 946

setuidgic 903 903 870 924 889 870 870 907 888 906 921 888

sha1sum 1752 1871 1809 1882 1908 1979 1822 1762 1982 2004 1867 1794

shred 628 675 570 526 488 589 572 564 658 450 450 450

sleep 583 576 573 575 573 575 572 576 573 575 573 573

stat 1851 1851 1844 1882 1889 1807 1837 1844 1837 1837 1851 1837

stty 661 661 664 640 661 661 661 639 637 637 661 661

su 2133 2069 2097 2061 2045 2133 2025 2105 1787 2141 2081 2113

Continued on next page
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Program Onon Oi Os Oc Or Ois Oic Oir Osc Osr Ocr Oall

sum 3490 3474 3287 3499 3477 3356 3380 3365 3404 3417 3391 3420

tac 2287 2308 2172 2306 2300 2224 2260 2253 2196 2243 2268 2259

tee 1832 1835 1849 1736 1811 1821 1818 1776 1832 1835 1727 1818

touch 494 494 494 494 494 538 539 538 537 537 538 537

tr 1085 1084 1096 1087 1086 1085 1076 1089 1089 1079 1086 1087

tsort 717 746 720 750 722 718 739 722 748 737 746 743

tty 1106 910 1174 1110 947 1226 922 1199 973 1131 956 959

uname 1075 1077 1078 1077 1078 1090 1078 1060 1090 1059 1060 1060

unexpand 920 926 919 923 918 918 911 912 908 907 901 912

uniq 457 479 479 472 469 469 469 496 472 479 472 479

unlink 1003 985 1002 1018 985 967 1002 1000 985 949 986 1021

uptime 1322 1307 1209 1279 1271 1268 1304 1289 1250 1306 1340 1289

users 1289 1340 1340 1304 1326 1307 1343 1322 1325 1341 1289 1307

vdirr 2374 2469 2434 2428 2418 2408 2474 2459 2345 2331 2413 2433

wc 1208 1219 1077 1034 1169 1019 1161 1103 1084 1085 1227 1126

who 1494 1490 1459 1465 1441 1520 1478 1516 1513 1525 1537 1565

whoami 1159 1159 1156 1169 1178 1142 1128 1163 1141 1177 1213 1174

yes 3 3 3 3 3 3 3 3 3 3 3 3
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