
SCIENCE CHINA
Information Sciences

January 2017, Vol. 60 012103:1–012103:16

doi: 10.1007/s11432-015-0764-7

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

. RESEARCH PAPER .

Evaluating the impacts of hugepage
on virtual machines

Xiaolin WANG1 , Taowei LUO1 , Jingyuan HU1 , Zhenlin WANG2 & Yingwei LUO1*

1School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China;
2Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA

Received March 25, 2016; accepted May 10, 2016; published online November 29, 2016

Abstract Modern applications often require a large amount of memory. Conventional 4KB pages lead to large

page tables and thus exert high pressure on TLB address translations. This pressure is more prominent in a

virtualized system, which adds an additional layer of address translation. Page walks due to TLB misses can

result in a significant performance overhead. One effort in reducing this overhead is to use hugepage. Linux

kernel has supported transparent hugepage since 2.6.38, which provides an alternate large page size. Generally,

hugepage demonstrates better performance on address translations and page table modifications. This paper

first analyzes the impact of hugepage on native system, and then, compares the impact of hugepage on different

memory virtualization approaches: hardware-assisted paging (HAP), shadow paging, and para-virtualization.

We observe that the current implementation of transparent hugepage is inefficient. It cannot exploit the full

performance advantage of hugepages. Worse yet, the conservative strategy of transparent hugepage may conflict

with existing OS functions, which can lead to performance degradation. So, we propose a new memory allocation

strategy, alignment-based hugepage (ABH) that promotes hugepage allocations. We apply ABH to different

paging modes in virtualized systems. The results show that the new allocation strategy can significantly reduce

TLB misses and up to 90% page walk cycles due to TLB misses and thus improve the performance in real world

applications.

Keywords hugepage, memory management, translation lookaside buffer, virtualization, performance

Citation Wang X L, Luo T W, Hu J Y, et al. Evaluating the impacts of hugepage on virtual machines. Sci

China Inf Sci, 2017, 60(1): 012103, doi: 10.1007/s11432-015-0764-7

1 Introduction

Virtualization is a core technology in cloud computing. Many datacenter services run on virtual machines.

Modern applications often have large working set sizes and require large amount of memory. The large

footprints of these applications lead to large page tables and thus put a lot of pressure on TLB (Translation

Lookaside Buffer) address translation. TLB misses and the miss penalties become a key bottleneck for

a series of memory-intensive applications. This bottleneck is more severe in virtualized systems which

introduce an additional layer of address translation.

The TLB pressure can be mitigated by using large page sizes. Many processors support multiple page

sizes when mapping a program’s virtual memory to physical memory. Recent Intel processors can establish

*Corresponding author (email: lyw@pku.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-015-0764-7&domain=pdf
https://doi.org/10.1007/s11432-015-0764-7
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-015-0764-7

Wang X L, et al. Sci China Inf Sci January 2017 Vol. 60 012103:2

4KB, 2MB or 1GB page mappings by setting the Page Size Extension (PSE) flag in the corresponding

level of page table entry. A page larger than a 4KB regular page is referred to as a hugepage. Hugepages

can deliver better performance than regular 4KB pages in several ways. Firstly, a hugepage’s TLB entry

covers more address space, which will typically lead to fewer TLB misses. Secondly, a hugepage access

takes less memory accesses in page walk on a TLB miss. Finally, using hugepages can reduce the number

of page faults because a single page fault for a hugepage can now cover more address mappings than a

fault for a regular page.

To take advantage of hugepages, software support is required. The Linux kernel has introduced a simple

implementation of hugepage, transparent hugepage (THP), since kernel 2.6.381). It can automatically

establish a hugepage mapping by tagging the page table’s Page Middle Directory (PMD) entry as a

hugepage. If a hugepage mapping fails to build, the kernel would allocate a regular page instead. THP

can only be applied to anonymous pages up to the recent Linux versions.

In a virtualized system, an extra layer address translation is introduced to map a guest OS’s physical

memory addresses to machine addresses. The extra layer heavily affects the memory performance. The

influence depends on the memory access pattern of an application as well as the memory virtualization

approach of the system. Hugepage may also affect the performance—the impact varies in different

virtualization environments as well. This study systematically evaluates the impact of hugepage on a

virtualized system and proposes a software enhancement to improve hugepage allocation ratio in which

more pages can be allocated as hugepages. Specifically, our work makes the following contributions:

• We measure and analyze the memory system performance on native and on several virtualization

environments.

• We analyze the limitations of the current implementation of THP on alignment, show its inefficiency,

and propose an alignment-based hugepage (ABH) approach to improve hugepage coverage.

• We evaluate the performance of ABH. The result shows that shadow paging on KVM has the best

memory performance among all virtualization environments. The result also suggests the needs to support

hugepage in shadow paging for Xen.

The rest of the paper is organized as follows. In Section 2, we analyze the performance of THP and

show that the current implementation of THP can improve the performance, but the implementation is

ineffective. In Section 3, we compare the performance of THP on different virtualization environments

and explain why their performance is different. In Section 4, we optimize THP and attempt to exploit

the full performance advantage of hugepage. And in Section 5, we evaluate our optimization scheme

in those virtualization environments with our improvement. Section 6 makes some discussions about

our optimization and the limitation of hugepage. Section 7 discusses related work. Finally, Section 8

concludes.

2 Overview of transparent hugepage

In order to measure the impact of THP, we use a computer which has an Intel i7-3770 processor with

32 GB of memory. The CPU has 512 4KB-page TLB entries for regular page and 32 2MB-page TLB

entries for hugepage. The operating system is 64-bit CentOS 6, with Linux kernel 3.6.3. We use Ptmalloc

as the memory allocator2). Since we use a 64-bit system, the hugepage size is 2 MB. We select a set of

benchmarks from SPEC CPU2006 [1] and Parsec 3.0 [2] where the time spent on TLB page walk costs

more than 5% of the total execution time in native mode with regular page. In addition, we choose gcc

and dedup, both of which cause lots of page faults.

2.1 The performance of transparent hugepage

Hugepage can improve the performance by reducing TLB and page fault overhead. In native mode, the

cost of page fault handling is not as significant as in some virtualization environments discussed later.

1) Andrea Arcangeli. Transparent hugepage support. In: KVM Forum, 2010.
2) Wolfram Gloger. Ptmalloc, 2006.

Wang X L, et al. Sci China Inf Sci January 2017 Vol. 60 012103:3

1.72%

37.50%

7.52%
5.71%

4.89%
8.33%

11.08%

28.88%

3.65%

11.80%

2.25%

9.55%

5.31%

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

R
at

io
 o

f
p
ag

e
w

al
k
 c

y
cl

es
 w

it
h
 r

es
p
ec

t
to

th
e

w
h
o
le

 r
u
n
ti

m
e

(%
)

40
3.

gc
c

42
9.

m
cf

47
3.

as
ta

r

47
1.

om
ne

tp
p

48
3.

xa
la

nc
bm

k

43
3.

m
ilc

43
4.

ze
us

m
p

43
6.

ca
ct

us
A

D
M

45
0.

so
pl

ex

45
9.

G
em

sF
D

TD

de
du

p

ca
nn

ea
l

st
re

am
cl

us
te

r

Without THP With THP

Figure 1 The TLB impact of transparent hugepage (THP) in native mode.

Table 1 Page fault counts in native mode

Benchmark # Regular page faults # Hugepage faults Total Memory allocated (MB) Alloc.Ratio (%)

403.gcc 679035 3862 682897 10376.48 74.44

429.mcf 1574 835 2409 1676.15 99.63

471.omnetpp 46702 0 46702 182.43 0.00

473.astar 153892 105 153997 811.14 25.89

483.xalancbmk 124534 0 124534 486.46 0.00

433.milc 876160 17560 893720 38542.50 91.12

434.zeusmp 471 254 725 509.84 99.64

436.cactusADM 476194 323 476517 2506.13 25.78

450.soplex 59761 173 59934 579.44 59.71

459.GemsFDTD 38761 358 39119 867.41 82.54

dedup 3404457 675 3405132 14648.66 9.22

canneal 195282 87 195369 936.82 18.57

streamcluster 2832 49 2881 109.06 89.86

The performance improvement by THP mainly comes from reducing TLB miss page walking. We count

the CPU cycles pending on page walk as well as the total execution time in term of cycles. Figure 1

shows that in native mode, the page walk cycles can be significantly reduced by THP. The percentages

above the bars show the performance improvements by THP.

Although THP shows significant performance improvement, we observe that the current implementa-

tion does not fully exploit the advantage of hugepage. We introduce a metric, Alloc.Ratio, to measure

the portion of pages that are allocated as hugepages. This metric can be interpreted as the coverage

of hugepage. Alloc.Ratio is calculated by dividing the space of hugepages by the total space of both

hugepages and regular pages allocated during the page fault handing process. Note that 512 regular

(4KB) pages are equal to 1 hugepage (2 MB). So Alloc.Ratio is equal to 512×hpgf
512×hpgf+rpgf

, where hpgf and

rpgf are the number of hugepages and regular pages allocated during page fault process, respectively.

Note that an application can also release memory during its execution. Therefore, Alloc.Ratio is not the

real distribution of regular pages and hugepages in page table, but an approximate metric.

Table 1 shows how many regular page faults and hugepage faults occur in each benchmark. Based on

the page fault counts, we calculate how much memory is allocated in page fault handling process and

Alloc.Ratio. As shown in Table 1, Alloc.Ratio is far away from 100%. Even more, there are six benchmarks

whose Alloc.Ratio is below 50%. Alloc.Ratio for dedup is only 9%, a great amount of memory is allocated

in regular 4KB pages which causes large overhead on page fault handling process. For other benchmarks,

Wang X L, et al. Sci China Inf Sci January 2017 Vol. 60 012103:4

Allocation failed because of
unaligned VMA

Allocation failed because the PMD
is already used

Memory
request 1

Memory
request 2

Memory
request 3

PMD entry1 PMD entry2 PMD entry3 PMD entry4

Virtual
address

space

Figure 2 (Color online) A demonstration on PMD pollution.

their low Alloc.Ratio attributes to low number of hugepage allocations. As we know, hugepage usually

leads to better performance on page walk than regular page, so next, we will investigate why these

benchmarks fail to allocate hugepages and thus still suffer significant TLB overhead.

2.2 The usage of transparent hugepage

In this section, we explain why the OS kernel fails to allocate hugepages sometimes. Any application must

reserves memory addresses from the OS before accessing them, usually by invoking system calls such as

mmap and sbrk. The OS kernel allocates virtual memory in the application’s address space and creates a

VMA (virtual memory area) to track the virtual memory space. Physical memory will not be allocated

until the virtual memory in a VMA is accessed to trigger a page fault. In the page fault handling process,

the kernel records the virtual address addr which causes the fault and performs the following checks:

(1) Does the addr belong to an existing VMA?

(2) Is the memory in the VMA anonymous?

(3) Is the PMD (Page Middle Directory) entry of addr entirely covered by the VMA?

(4) Is the PMD entry of addr empty?

If the first check fails, the application might access an illegal address and the kernel will terminate the

process. If the second check fails, the accessed memory may be mapped to a file or already be swapped

out. THP does not consider this type of memory. Then, if both the third and fourth checks pass, the

system will allocate a hugepage for address addr. Otherwise, a regular page will be allocated.

Figure 2 shows how PMDs can be polluted in such process, which causes failures on hugepage allocation.

In our benchmarks, most failures on hugepage allocation are due to rules (3) and (4). An application

might repeatedly request a small piece of memory and then access it. On the first memory access, the

kernel will not allocate hugepage because the requested memory is not large enough for a hugepage. In

the next iterations, the kernel will allocate virtual memory areas near the last request, and might combine

the VMAs into a larger one. The combined VMA may cover several PMDs eventually, but the kernel is

still not able to allocate hugepages in the page fault handling process, because the PMD is not empty

and has been used for mapping regular pages in previous page faults.

Hugepage promotion can influence the distribution of regular pages and hugepages in page table. There

is a daemon process khugepaged which scans the application’s memory and try to promote regular pages

to hugepage if possible. But the promotion cannot fully eliminate the TLB overhead as it is hard to

find a suitable frequency to scan and promote. If it works on a high frequency, it would cause overhead

on scanning. On the other hand, if the scanning frequency is too low, the application would suffer the

overhead of regular page in a longer period. The default frequency for scanning and promoting is 8

hugepages per 10 seconds. It is quite slow. Lots of extra TLB misses may happen before a page is

promoted. What’s more, it does nothing to alleviate the page fault overhead.

The memory release can also influence the ratio of regular page and hugepage. If lots of regular pages

are released and thus hugepages dominate, the TLB overhead would be small. But this situation seldom

happens. The upper layer has no idea about which part of memory is mapped with regular pages or

hugepages, so it cannot accurately release in concert with the OS kernel to maintain a high hugepage

coverage. Indeed, memory release may break a hugepage if the address is unaligned to hugepage size. This

Wang X L, et al. Sci China Inf Sci January 2017 Vol. 60 012103:5

hugepage demotion can create lots of regular pages which will damage TLB performance and introduce

additional overhead on page table modification. dedup is such a case that suffers from memory release,

which will be discussed in Subsection 3.3.

In summary, THP can improve the overall performance by using hugepage to reduce the CPU pending

time on page walks. But its implementation is inefficient because the current memory management

library typically does not generate hugepage-aligned memory requests to the kernel and thus breaks the

alignment requirement for hugepage allocation.

3 Overview of memory virtualization

Memory virtualization involves page tables that translate among virtual addresses, physical addresses, and

machine addresses. We name the page table that maps a guest OS’s virtual addresses to physical addresses

as the v2p table, and the page table that maps a guest OS’s physical addresses to machine addresses

as the p2m table. The p2m table is managed by a virtual machine monitor (VMM). A virtual machine

can be full-virtualized or para-virtualized. In a full-virtualized virtual machine, the guest OS is unaware

that it is running above a virtual machine and the source code is intact for guest OS virtualization. In

contrast, in a para-virtualized virtual machine, the guest OS knows it is above a virtual machine. The

kernel of the guest OS can be modified for some privilege operations, for example, page table updates.

In a full-virtualized system, memory virtualization can be implemented through hardware-assisted

paging (HAP) or shadow paging. In HAP mode, the Memory Management Unit (MMU) can traverse

the v2p table and p2m table for address translation. During page walk, the MMU first walks through

the v2p table and then the p2m table for each level of address translation. The two-dimensional page

walk needs more memory accesses to complete an address mapping, which yields much higher penalty

than page walk in a native system [3].

Compared to HAP, shadow paging is a pure software approach. In shadow mode, the VMM maintains

a v2m table that directly maps guest virtual addresses to machine addresses. This one-dimensional v2m

page table is directly used by the MMU for page walk. The page walk due to a TLB miss is as fast as it

is in native mode. However, this page table is transparent to the guest OS. When the guest OS tries to

modify its own v2p page table, it traps to the VMM. The VMM takes the responsibility for the v2m page

table updates. The trap would cause a process level context switch, which sometimes needs to flush the

whole TLB depending on the architecture and virtual machine implementation. If the application has a

lot of page table updates, there would be a noticeable overhead on context switches.

In para-virtualization, the situation is similar to shadow paging. The guest directly maintains a v2m

table. The MMU uses this one-dimensional page table for page walk. Because the guest OS is aware of

the existence of the VMM and the extra p2m mapping, when the guest OS tries to modify the page table,

it consults with the VMM and gets the real machine address. The guest OS fills the machine address to

the page table. VMM calls are injected into the guest OS’s kernel so that context switch is avoided. Page

fault handling in para-virtualization is faster than shadow paging. But the system needs to maintain the

extra p2m page mapping, and can result in lots of memory accesses when the table is queried. Therefore,

its performance is worse than HAP and native. What’s more, it has not yet supported hugepage up to

date. The TLB overhead is significant.

When comparing several memory virtualization implementations, para-virtualization does not support

hugepage, so its performance is the worst. As for HAP and shadow paging, shadow paging has better

performance on page walking, because HAP uses two-dimensional page table which can significantly

increase memory accesses for one page walk. But HAP has better performance on modifying page table,

because modifying page table in shadow paging would cause context switches and TLB flushing.

We evaluate hugepage on the native system and two popular VMMs, Xen and KVM. The combination

of VMM and memory virtualization paging mode yields five types of virtualization environments, HAP

on Xen and KVM, shadow paging on Xen and KVM, and para-virtualization on Xen. We name them

XenHAP, XenShadow, KVMHAP, KVMShadow and para-virt, respectively. Their support for hugepage

Wang X L, et al. Sci China Inf Sci January 2017 Vol. 60 012103:6

1.8 2.0

Native Para-virt XenHAP XenShadow KVMHAP KVMShadow

N
o
rm

al
iz

ae
d
 e

x
ec

u
ti

o
n
 t

im
e

co
m

p
ar

in
g
 t

o

T

H
P

 i
n
 n

at
iv

e
m

o
d
e

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

40
3.

gc
c

42
9.

m
cf

47
3.

as
ta

r

47
1.

om
ne

tp
p

48
3.

xa
la

nc
bm

k

43
3.

m
ilc

43
4.

ze
us

m
p

43
6.

ca
ct

us
A

D
M

45
0.

so
pl

ex

45
9.

G
em

sF
D

TD

de
du

p

ca
nn

ea
l

st
re

am
cl

us
te

r

Figure 3 Execution time comparison of different paging modes.

is different. Xen does not support hugepage in the p2m layer of shadow paging and para-virtualization.

But hugepage is supported in both v2p and p2m layers in XenHAP, KVMHAP and KVMShadow. Next

we measure their performance with our selected benchmarks and show how their implementation would

cause different performance.

3.1 Workload performance on virtualization environments

We use the best configuration the current system can support. In KVM, THP (transparent huge page)

is enabled in both v2p and p2m layers. In Xen, we enable THP in the v2p layer. The p2m layer in

Xen is mapped with hugepages in HAP, but with regular pages in shadow paging. In para-virtualization,

hugepage is not supported in both layers by THP.

Figure 3 shows the execution times normalized to the native mode with THP enabled. In most cases, the

performance of para-virt and XenShadow in Xen is worse than others as Xen does not support hugepage

in these two paging modes3). The overhead on TLB misses is much higher in these two settings. In

HAP, the performance is almost the same between KVM and Xen as they both benefit from hugepage

and have the same paging mode. However, KVMShadow shows best performance in many cases. It

outperforms KVMHAP or XenHAP because page walk latency in one-dimensional page table is lower

than two-dimensional. A special case is dedup where KVMShadow shows the worst performance. dedup

triggers lots of memory release operations which cause a great number of hugepage demotions and page

table modifications. In shadow paging mode, page table modification is 2–3 times slower than native

mode and HAP mode.

3.2 Characteristics of benchmarks

The characteristics of a benchmark can affect its performance on different virtualization environments.

Generally, the number of page faults an application raises (with or without hugepage) and the time an

application spends on page walking due to TLB misses are two key characteristics that affect paging and

memory virtualization performance.

Three benchmarks, 403.gcc, 433.milc and dedup are sensitive to the speed of page fault handling. The

total memory allocated by page fault handling process in these three benchmarks exceeds 10 GB, while

others never exceed 3 GB and the page fault handling time for them is negligible. Hugepage can reduce

the number of page faults and alleviate the overhead on 403.gcc and 433.milc, while dedup still shows a

significant overhead on page fault even if THP is in use. The behavior of dedup can be explained by its

excessive number of page faults, which will be discussed further in Subsection 3.3.

As for TLB overhead, Figure 4 shows the ratio of the cycles for page walk time due to TLB misses

compared to the total execution time. Generally, para-virt and XenShadow have much more overhead

3) Actually, even though THP is enabled in XenShadow ’s guest OS, Xen does not support hugepage in its p2m layer,

the final v2m page table is still mapped with regular pages.

Wang X L, et al. Sci China Inf Sci January 2017 Vol. 60 012103:7

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00

40
3.

gc
c

42
9.

m
cf

47
3.

as
ta

r

47
1.

om
ne

tp
p

48
3.

xa
la

nc
bm

k

43
3.

m
ilc

43
4.

ze
us

m
p

43
6.

ca
ct

us
A

D
M

45
0.

so
pl

ex

45
9.

G
em

sF
D

TD

de
du

p

ca
nn

ea
l

st
re

am
cl

us
te

r

R
at

io
 o

f
p
ag

e
w

al
k
 c

y
cl

es
 w

it
h
 r

es
p
ec

t
to

th
e

w
h
o
le

 r
u
n
ti

m
e

(%
)

Native Para-virt XenHAP XenShadow KVMHAP KVMShadow

Figure 4 Ratio of page walk cycles with respect to the whole runtime.

on TLB because they do not use hugepage. XenHAP and KVMHAP demonstrates better performance

on TLB than para-virt and XenShadow but they perform worse than KVMShadow and native.

3.3 Performance analysis on virtualization environments

Now, we analyze the performance of individual benchmarks across virtualization environments.

Obviously, 403.gcc performs worse in para-virt than in all other environments. The main reason is

that in para-virt the guest OS does not use hugepage, which leads to lots of page faults.

In dedup, para-virt does not use hugepage, so it takes lots of time on page fault handling. We observe

that shadow paging is much more slower than HAP. dedup is a small benchmark with lots of memory

operations (memory allocations and memory releases). It is a case that THP can indeed degrade per-

formance. When dedup allocates memory, hugepages are used with the help of THP. Then, when dedup

releases some memory, the kernel would demote the hugepages due to unaligned release operations. In

page demotion, the kernel inserts the missed last level page table, and sets each PTE entry. For each PTE

entry update, it traps to the VMM and a context switch occurs. The amount of context switches due to

these page table updates are much more significant for dedup, which causes performance degradation in

shadow paging mode. A further discussion about the overhead on page promotion and demotion is made

in Subsection 6.3. HAP and para-virt do not preform context switches when page table is modified, but

it is still slower than native because of the huge number of page faults.

Both 429.mcf and 436.cactusADM are TLB-intensive benchmarks. para-virt and XenShadow fail to

use hugepage, so their performance are much worse than other modes. KVMShadow can use hugepage

on each layer, so it is faster than HAP because it uses one-dimensional page table. 433.milc is also a

benchmark with a large number of page faults so para-virt delivers the worst performance. It is also

a TLB intensive benchmark. If hugepage is not used, the overhead would be more significant. THP

mitigates most TLB overhead on 433.milc.

For the remaining benchmarks, as they are all TLB intensive, para-virt and Xenshadow fail to deliver

competitive performance. Hugepage can alleviate the overhead on TLB. But for large workloads, due to

large page walk penalty, HAP is slower than KVMShadow and native mode.

4 Alignment-based hugepage (ABH): design and implementation

We have shown that using hugepage can lead to better performance on TLB as well as page fault.

However, the implementation of THP is inefficient and the TLB and page fault handling overhead can still

be significant in these cases. This section proposes a new Alignment-based Hugepage (ABH) allocation

scheme so as to exploit the full performance benefit of hugepage. In our new approach, hugepage will

be allocated at the first memory access to the page, and promotion is no longer necessary. For memory

release, we want to make the request aware of hugepage to avoid hugepage demotion.

Wang X L, et al. Sci China Inf Sci January 2017 Vol. 60 012103:8

Our preliminary study indicates that by making aligned memory requests, the kernel can allocate many

more hugepages in page fault handling process [4]. This section details the design and implementation of

ABH. The key trade-off in ABH design is to balance among hugepage allocation ratio, physical memory

consumption and cache conflicts.

4.1 Memory management in Linux

By tracing how an application’s memory is requested and allocated in the Linux kernel, we find out that

sbrk and mmap are the main system calls which an application triggers for memory requests. Most sbrk

and mmap calls are initiated by malloc. PTmalloc in Glibc handles users’ malloc requests and calls sbrk

and mmap to request memory from the kernel. Unaligned VMA allocation in sbrk and mmap is the

main reason that the kernel cannot allocate hugepages in page fault process. The number of regular

pages allocated in page faults is highly relevant to the number of unaligned VMAs generated in sbrk and

mmap. This indicates that we can use more hugepages by aligning those VMAs in sbrk and mmap.

4.2 Making aligned memory area

The system call sbrk is used to manage the heap of an application. The kernel sets the start address of

the heap once the process is created. The application requests or releases memory in heap by setting the

end address of the heap with sbrk. We make the heap start address aligned to hugepage when the kernel

initializes the memory space of a process. For a sbrk call that requests memory, we extend the heap to

make it hugepage-aligned. For a sbrk call that releases memory, we reserve extra memory to keep the

heap aligned.

The memory allocated in mmap may not be aligned in some cases. First, if the size of a memory

request is not aligned to hugepage, the rest part cannot use hugepage anyway. Next, when allocating

virtual address for mmap, the kernel prefers to use memory space adjacent to the last mmap request. If

the previous mmap was not aligned, the current mmap may be split into several adjacent PMDs. The

memory on two sides may not cover a whole PMD and thus cannot be mapped to a hugepage. An ad hoc

approach is to extend the length of the mmap requests to be hugepage-aligned, and allocate an aligned

start address in VMA for mmap requests.

It would increase memory consumption significantly if we extended every memory request (small request

especially) to hugepage. We choose to sacrifice hugepage coverage a bit to save memory. We do not align

heap allocation for the first several megabytes. An application which only uses a few KB of memory in

heap will not use hugepages in this case. If the total memory in heap exceeds a given threshold, we perform

the hugepage extension since now the application consumes more memory and the ratio of memory

waste is controlled. In mmap, we do not expand the allocation size unless the unaligned fragment on

hugepage exceeds a given threshold. This is useful for small memory requests in mmap. We also increase

mmap threshold in PTmalloc so that small chunks will be left to heap to avoid memory extension and

waste. To summarize, our design avoids low hugepage coverage for large memory applications. Meanwhile,

it does not waste too much memory for small applications.

4.3 Other details in implementation

The implementation will modify code in kernel as well as in PTmalloc. We modify the kernel to allocate

hugepage-aligned start address for VMA in mmap and perform memory extension in sbrk and mmap.

The mmap threshold is adjusted in PTmalloc.

A VMA may be adjusted by system calls such as mremap and mprotect. We keep the boundary of

the new VMA aligned to hugepage by extending its length. The extension of heap is transparent to user

applications as sbrk returns the requested heap top and maintains the actual top by itself. The extended

memory can be used for future memory requests. User applications assume that new memory allocated

through page faults is automatically set to 0 by kernel. Our extension may break this assumption when

we reserve extra memory to make heap hugepage-aligned. When the memory is accessed again, the

system neither raises a page fault nor sets the memory to 0. We need to check the released memory and

Wang X L, et al. Sci China Inf Sci January 2017 Vol. 60 012103:9

Memory request 1
Memory
request 2

Memory
request 3

PMD entry1 PMD entry2 PMD entry3 PMD entry4

Heap
start

Memory
request 1

Memory
request 2

Memory
request 3

PMD entry1 PMD entry2 PMD entry3 PMD entry4

Virtual
address

space

Memory request 1
Memory
request 2

Memory
request 3

PMD entry1 PMD entry2 PMD entry3 PMD entry4

Heap
start

Real heap top after memory request 1 and 2, and after memory request 3

Random bias

Memory
request 1

Memory
request 2

Memory
request 3

PMD entry1 PMD entry3 PMD entry5

Allocation failed because
of unaligned VMA

Allocation failed because
the PMD is already used

Succeed in hugepage
Allocation

(a)

(b)

(c)

(d)

Figure 5 (Color online) Comparison between THP and ABH. (a) Heap layout of THP; (b) heap layout of ABH; (c) mmap

layout of THP; (d) mmap layout of ABH.

set it to 0. We also need to check whether the memory is mapped before resetting. Otherwise, the kernel

will raise a page fault when accessing those memory, which leads to kernel panic.

Alignment may cause conflicts in cache and memory. In some applications, many VMAs have a similar

memory accessing pattern. They might use the same cache sets and memory channel that lead to conflicts.

We take several approaches to alleviate the conflicts. First, we make a VMA not aligned to its boundary

address by randomly leaving some unaligned memory space on both sides. Next we do not return the start

address of a VMA if mmap extension is performed, by adding a random offset. The offset is acceptable

if it is smaller than the amount of memory extended. At last, we generate a random heap start address

so that the heap address is not fixed. Figure 5 illustrates our design and compares it to default memory

allocation strategy.

Wang X L, et al. Sci China Inf Sci January 2017 Vol. 60 012103:10

Table 2 Memory waste on hugepage and alignment

Benchmark Memory of REG (MB) Extra Memory of THP (MB) Extra Memory of ABH (MB)

456.hmmer 24.14 0.00 24.14 0.24 29.94

416.gamess 6.59 1.47 16.27 0.00 16.27

435.gromacs 13.60 0.07 14.57 0.18 17.22

436.cactusADM 622.66 0.16 725.04 0.04 753.60

453.povray 2.75 0.00 2.75 0.50 4.14

bodytrack 29.32 0.00 29.38 0.35 39.80

ferret 96.35 0.07 103.05 0.24 127.57

swaptions 2.82 0.00 2.82 1.18 6.16

vips 19.01 0.12 21.27 0.35 28.73

0.00

20.00

40.00

60.00

80.00

100.00

A
ll
o
c
.R

a
ti
o

 (
%

)

THP ABH

40
3.

gc
c

42
9.

m
cf

47
3.

as
ta

r

47
1.

om
ne

tp
p

48
3.

xa
la

nc
bm

k

43
3.

m
ilc

43
4.

ze
us

m
p

43
6.

ca
ct

us
A

D
M

45
0.

so
pl

ex

45
9.

G
em

sF
D

TD

de
du

p

ca
nn

ea
l

st
re

am
cl

us
te

r

Figure 6 Improvement in Alloc.Ratio.

97%

38%

99%
99%99%

98%

0%

99%
94% 89%

99%

99%

96%

1
10

100
1000

10000
100000

1000000
10000000

THP ABH

40
3.

gc
c

42
9.

m
cf

47
3.

as
ta

r

47
1.

om
ne

tp
p

48
3.

xa
la

nc
bm

k

43
3.

m
ilc

43
4.

ze
us

m
p

43
6.

ca
ct

us
A

D
M

45
0.

so
pl

ex

45
9.

G
em

sF
D

TD
de

du
p

ca
nn

ea
l

st
re

am
cl

us
te

r

T
h
e

n
u
m

b
er

 o
f

p
ag

e
fa

u
lt

s

Figure 7 Reduction in page fault.

5 Evaluation of ABH

In our evaluation, we let the first 1 MB of memory in heap grow in normal way and do not align it

to hugepage. We change mmap threshold that PTmalloc uses to allocate memory with mmap to 4 MB

(the default is 128 KB). The extension threshold for mmap is set to 1 MB, which suggests that, if the

hugepage unaligned fragment exceed 1 MB, we extend it to a hugepage.

In this section, we first evaluate the ABH’s influence on page fault reduction, hugepage allocation

ratio, and physical memory consumption. Then, we measure its TLB performance, which includes the

TLB miss count and page walk time. Next, we show its performance improvement over TPH and make

comparison on virtualization environments. The system configuration is described in Section 2.

5.1 Memory evaluation

Figure 6 shows the Alloc.Ratio improvement by ABH compared to the default transparent hugepage im-

plementation, i.e., THP. ABH significantly improves the hugepage allocation ratio in page fault handling

process. Almost all of memory is allocated in hugepage with ABH. Figure 7 shows the changes on page

fault count. The percentage on each bar shows the page fault reduction by ABH. The results show that

page faults are substantially reduced. For those page fault intensive benchmarks such as 403.gcc, 433.milc

and dedup, ABH reduces page fault numbers by more than 98%.

Our optimization will slightly increase the demand of physical memory. Firstly, we request more mem-

ory to make VMA aligned. Secondly, compared to regular pages, hugepages will naturally consume more

memory if only a few addresses are accessed in the hugepage. Table 2 shows the memory consumption

THP and ABH compared to the system using regular pages only. The second, fourth and sixth columns

are the total memory consumption of that without THP (REG), with THP, and with ABH, respectively,

in megabytes. The third and fifth columns are the ratio of extra memory introduced by THP and ABH,

respectively. Those benchmarks which have no obvious changes in memory cost are not listed in the table.

Wang X L, et al. Sci China Inf Sci January 2017 Vol. 60 012103:11

Native with THP Native with ABH

KVMHAP with THP KVMHAP with ABH

KVMShadow with THP KVMShadow with ABH

40
3.

gc
c

42
9.

m
cf

47
3.

as
ta

r

47
1.

om
ne

tp
p

48
3.

xa
la

nc
bm

k

43
3.

m
ilc

43
4.

ze
us

m
p

43
6.

ca
ct

us
A

D
M

45
0.

so
pl

ex

45
9.

G
em

sF
D

TD

de
du

p

ca
nn

ea
l

st
re

am
cl

us
te

r

×109

25

20

15

10

5

0

T
h
e

n
u
m

b
er

 o
f

T
L

B
 m

is
se

s

Figure 8 TLB misses on Intel i7-3770.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

R
at

io
 o

f
p
ag

e
w

al
k
 c

y
cl

es
 w

it
h

re
sp

ec
t

to
 t

h
e

w
h
o
le

 r
u
n
ti

m
e

(%
)

Native with THP Native with ABH

KVMHAP with THP KVMHAP with ABH

KVMShadow with THP KVMShadow with ABH

40
3.

gc
c

42
9.

m
cf

47
3.

as
ta

r

47
1.

om
ne

tp
p

48
3.

xa
la

nc
bm

k

43
3.

m
ilc

43
4.

ze
us

m
p

43
6.

ca
ct

us
A

D
M

45
0.

so
pl

ex

45
9.

G
em

sF
D

TD

de
du

p

ca
nn

ea
l

st
re

am
cl

us
te

r

Figure 9 Ratio of page walk cycles with respect to the whole

runtime on Intel i7-3770.

The result shows that large memory waste ratios come from small workloads. Their working set sizes

do not exceed 50 MB. Our optimization will increase the demand of physical memory, so does THP. The

largest memory overhead of ABH comes from 436.cactusADM and ferret, but it is still tolerable when

compared to the extra memory cost by THP.

5.2 Evaluation on TLB misses and page walk time

Figure 8 shows the number of TLB misses with THP and ABH. We measure the TLB performance in

three environments: native, KVMHAP and KVMShadow. Figure 9 shows the ratio of page walk cycles

with TPH and ABH with respect to the total execution time. Comparing these two figures, we have

made the following observations.

• ABH can reduce the time for page walk by increasing Alloc.Ratio. The benchmarks with significant

Alloc.Ratio improvement in Figure 6 also show a noticeable reduction on page walk time. For those

benchmarks that page walk time is not reduced by ABH, such as 429.mcf, 433.mile, 434.zeusmp and

streamcluster, their Alloc.Ratio with THP is already high. There is not much space for ABH to improve.

• Some benchmarks show reduction on page walk time even though their TLB misses are not reduced,

such as 483.xalancbmk, dedup and canneal. This is because the number of TLB misses is not the only

factor that influences page walk time. Page walk time may be affected by the depth of a page table and

whether the page table is cached.

• When comparing across virtualization environments, the difference of TLB miss count is small, but

the page walk time in HAP is longer than native and shadow.

• Some benchmarks still have a significant overhead on TLB, such as 429.mcf, 436.cactusADM,

483.xalancbmk, and canneal, although hugepages almost fully occupy the page tables in these bench-

marks. These workloads are too big to be cached by TLB in the test machine. These benchmarks can be

improved by introducing more TLB entries and sharing TLB entries between regular page and hugepage.

5.3 Evaluation on performance

Figure 10 shows the overall performance improvement by ABH. In most cases, the performance improve-

ment is highly correlated to the page walk time reduction. It proves that by reducing page walk time,

we can receive better performance. A special case is dedup, the improvement by ABH is 24% in native,

28% in KVMHAP and 54% in KVMShadow, which is much larger than the improvement on page walk.

dedup has an excessive number of page faults. ABH significantly reduces its page fault count, so the

performance is improved. In shadow mode, an additional benefit comes from the avoidance of page de-

motion or promotion. Some benchmarks show a slight performance degradation, such as streamcluster

and 429.mcf. Since ABH increases the allocation of hugepage, it may increase the pressure on hugepage

TLB. A further discussion about TLB overhead is made in Subsection 6.1.

Wang X L, et al. Sci China Inf Sci January 2017 Vol. 60 012103:12

24%

28%
54%

−1.00

1.00

3.00

5.00

7.00

9.00

Native KVMHAP KVMShadow

40
3.

gc
c

42
9.

m
cf

47
3.

as
ta

r

47
1.

om
ne

tp
p

48
3.

xa
la

nc
bm

k

43
3.

m
ilc

43
4.

ze
us

m
p

43
6.

ca
ct

us
A

D
M

45
0.

so
pl

ex

45
9.

G
em

sF
D

TD

de
du

p

ca
nn

ea
l

st
re

am
cl

us
te

r

T
h
e

p
er

fo
rm

an
ce

 i
m

p
ro

v
em

en
t

b
y

A
B

H
 (

%
)

Figure 10 Performance improvement by ABH.

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

40
3.

gc
c

42
9.

m
cf

47
3.

as
ta

r

47
1.

om
ne

tp
p

48
3.

xa
la

nc
bm

k

43
3.

m
ilc

43
4.

ze
us

m
p

43
6.

ca
ct

us
A

D
M

45
0.

so
pl

ex

45
9.

G
em

sF
D

TD
de

du
p

ca
nn

ea
l

st
re

am
cl

us
te

r

N
o
rm

al
iz

ae
d
 p

er
fo

rm
an

ce
 c

o
m

p
ar

in
g

to

T

H
P

 i
n
 n

at
iv

e
m

o
d
e

Native Para-virt XenHAP XenShadow KVMHAP KVMShadow

Figure 11 Performance on different virtualization environments

after optimization.

We also test other benchmarks in SPEC CPU2006 and Parsec. They are neither TLB intensive nor page

fault intensive. Our optimization dose not show much improvement for them. Since we have carefully

tuned the memory allocation scheme for hugepage to minimize the potential overhead, our approach does

not cause any noticeable performance degradation either.

5.4 Impact of different virtualization environments

We make comparison among the native and several virtualization environments. The base line is native

mode with THP. Native mode with ABH, Xen’s para-virtualization, HAP and shadow paging with ABH

in Xen and KVM are included for our comparison4). Figure 11 shows the result.

When comparing HAP and shadow paging within KVM, shadow paging has better performance on

big workloads, such as 429.mcf, 436.cactusADM, 483.xalancbmk, and canneal. Those benchmarks still

have notable overhead on page walk. In all cases, KVMShadow is not slower than KVMHAP. It suggests

that shadow wins the page mode comparison against HAP. But when comparing HAP between Xen and

KVM, Xen is better. It seems Xen has little overhead on system virtualization with HAP. Unfortunately,

Xen does not support shadow paging well. Currently, KVM’s shadow paging mode still shows better

performance on big workloads when compared to Xen. para-virt and XenShadow are still the slowest

virtualization environments, as they do not use hugepage as the gap between regular page and hugepage

is significant. The comparison shows the need of supporting hugepage in shadow paging for Xen.

6 Discussion

The goal of ABH is to provide a general purpose solution to reduce TLB pressure using hugepage. We not

only improve the hugepage ratio and TLB performance, but also carefully tailor the memory allocator

to avoid excessive memory consumption and take care of the potential overhead that THP or ABH may

have. In this section, we discuss some complexities that THP or ABH brings in.

6.1 The overhead on separated TLB and hugepage

The Intel i7-3770 processor has 512 4KB-page TLB entries for regular pages and 32 2MB-page TLB

entries for hugepages. The TLB entries are dedicated for one specific page size. If we put all memory

mappings to hugepage, it has potential to cause many more TLB misses on hugepage TLB and thus

degrade the performance. We manually create a memory access pattern that can be cached by regular

page TLB but overflows hugepage TLB. Hugepage can cause 46% performance degradation in our stress

test.

4) Although ABH have no improvement on XenShadow, it does not have noticeable degradation either. We just imple-

ment ABH in the guest OS despite that hugepage in the hypervisor will lead to performance improvement evidenced by the

results in KVM.

Wang X L, et al. Sci China Inf Sci January 2017 Vol. 60 012103:13

In real cases, we find the TLB misses on some benchmarks increase slightly after our optimization.

483.xalancbmk is an example. In Figure 8, the TLB misses increases after ABH is applied in native.

Moreover, we find that the cycle count for page walk is reduced as shown in Figure 9. It is because that

page walk on hugepage is much faster than on regular page. In addition, using hugepage means reducing

the amount of last level page table, which mitigates the pressure on page walk cache. For 483.xalancbmk,

we find that the number of L3 references is reduced by 12% in ABH. The average cycles to resolve an

L1 cache miss is reduced by 8% in ABH. When running streamcluster in KVMHAP, we find that the

number of TLB misses and the cycles of page walk increase after ABH so the performance degrades.

The benefit of hugepage may not fully coincide with the overhead on TLB misses. But this case rarely

happens (mostly in Parsec). The overhead of ABH has never exceeded 2% for all benchmarks in SPEC

and Parsec with Intel i7-3770 processor.

In a new architecture we tested where TLB entries can be shared between 4KB pages and 2MB pages,

the huge TLB overhead never increases with ABH.

6.2 Overhead on alignment in ABH

Memory alignment can cause extra address conflicts on cache and memory, which can degrade perfor-

mance. Some applications might require several memory chunks and access them with the same pattern

simultaneously. If we align those chunks to hugepage size (which is 2 MB), the memory accesses on

different chunks will be allocated into the same cache sets in all levels. This would cause cache conflicts.

In the default OS regular page allocation, chunks are aligned to regular 4KB page. They conflict only

in the L1 cache. The memory accesses will be scattered in L2 and L3 cache. If we align all memory

chunks to hugepage, this would cause conflicts on multiple levels of cache and hurt the performance. In

order to avoid conflicts, we add a random offset for memory chunks. Some benchmarks are affected by

this conflict. The worst case is 459.GemsFDTD, which shows a 60% performance degradation without

adding offset.

6.3 Overhead on page promotion and demotion

Another overhead of hugepage comes from its promotion and demotion process. In shadow paging, page

table modification is expensive. Each promotion or demotion contains lots of page table modifications.

In shadow mode (no matter in Xen or KVM), dedup shows a 40% degradation with THP. The number of

TLB FLUSH.DTLB THREAD event is increased by 100% after THP is applied in KVMShadow. With

ABH, the TLB flush events are reduced by 90% when compared with regular page allocation, and 95%

compared with THP. Our optimization can avoid page promotion and demotion and deliver an impressive

performance improvement for dedup.

7 Related work

7.1 Support for hugepages

Plenty of work is done to support hugepage in operating systems1) [5, 6]. Lu et al. [7] propose a method

to use hugepage in text region with hugetlbfs. Romer et al. [8] dynamically promote regular pages to

hugepage by trading off the penalties on page walk and hugepage promotion. Some work breaks up the

limitation of contiguous memory request for hugepage promotion, which allows us to use hugepage in

more situations [9, 10].

7.2 Optimization on TLB

Rather than utilizing hugepage, some other studies focus on improving the TLB performance. Talluri et

al. [11] propose a new TLB design, which can merge continuous TLB mappings so that one TLB entry

will cover as many addresses as a hugepage can. Similarly, entries in the page cache table can be merged

to get more coverage for each record [12]. For chip multiprocessor, shared last level TLB can increase

Wang X L, et al. Sci China Inf Sci January 2017 Vol. 60 012103:14

the capacity of entries and achieve high TLB performance on both single-threaded and multi-threaded

programs [13–15]. Barr et al. evaluate the performance of page cache with different designs [16] and

propose speculative translation to accelerate page walk [17]. Papadopoulou et al. [18] predict the page

size of a TLB entry, in order to improve TLB performance and reduce energy cost. Basu et al. [19] suggest

that we can use segment mapping to avoid page walk latency for big memory servers. Karakostas et al. [20]

use redundant memory mapping to reduce TLB overhead for big workloads. Fang et al. [21] compare the

copy-based and remapping-based page promotion in single-issue and super-scalar architectures. Other

studies focus on using hardware prefetching to reduce the TLB misses [22, 23]. In multiprocessors, TLB

accesses in one core can help prefetch for other cores [24, 25].

7.3 TLB on virtualization

Adams and Agesen make a comprehensive comparison between software VMM and hardware VMM [26].

In memory virtualization, Bhatia and Nikhil [27] evaluate the performance of Intel’s hardware-assisted

paging design, Extended Page Tables, and suggest to use hugepage to accelerate page walk.

For hardware-assisted memory virtualization, Buell et al. [28] have shown that the increased overhead

on TLB miss handling is the largest contributor to the performance gap between native and virtual

servers. Bhargava et al. find that nested page walking in guest OS and virtual machine monitor (VMM)

is the main reason that causes the performance gap. They also suggest to use page cache to accelerate

page walking [3]. Ahn et al. [29] propose to use a flat page table to perform address translation in VMM.

Gandhi et al. [30] suggest to use segment mapping to accelerate nested page walking. Gadre et al. [31]

implement the hugepage support in Xen to reduce the page walking in VMM. Speculation is also used in

HAP’s TLB to accelerate address translation in the p2m layer [32].

For software virtualization, the main performance gap comes from VMM traps (VM exits) when page

table changes. Wang et al. [33] propose a dynamic switching scheme to choose a better virtualization

paging mode dynamically based on applications’ behavior. Their another attempt is to reduce VM exits

by optimizing memory allocation [34]. In software managed TLB, Chang et al. [35] move the TLB reading

and writing operations into the guest OS to reduce the overhead on VM trapping.

8 Conclusion

In this paper, we analyze the impact of hugepage on native and virtualized systems. We find that the

current implementation of Linux transparent hugepage cannot fully exploit the benefit of hugepage due

to alignment and other limitations. We optimize the memory allocation process in Linux kernel and

the memory management library. The experiments show our optimization can reduce the number of

page faults and page walk time due to TLB misses. Our approach allocates almost 100% hugepages

in page fault handling process, almost reaching the upper bound on TLB performance with hugepage.

We evaluate our new design in various virtualized systems. The results show that shadow paging has

better performance than HAP on large workloads when hugepage can be applied in both the guest OS

and the hypervisor. We also find Xen’s shadow paging is slower than HAP due to the miss of hugepage

implementation in p2m, it would be valuable to make Xen support hugepage in its shadow paging mode.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos.

61232008, 61272158, 61328201, 61472008, 61170055), National High-tech R&D Program of China (863) (Grant

Nos. 2012AA010905, 2015AA015305), Research Fund for the Doctoral Program of Higher Education of China

(Grant No. 20110001110101). Zhenlin WANG is also supported by National Science Foundation (Grant No.

CSR1422342).

Conflict of interest The authors declare that they have no conflict of interest.

Wang X L, et al. Sci China Inf Sci January 2017 Vol. 60 012103:15

References

1 Henning J L . SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput Architect News, 2006, 34: 1–17

2 Bienia C, Kumar S, Singh J P, et al. The parsec benchmark suite: characterization and architectural implications.

In: Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques. New York:

ACM, 2008. 72–81

3 Bhargava R, Serebrin B, Spadini F, et al. Accelerating two-dimensional page walks for virtualized systems. ACM

SIGOPS Oper Syst Rev, 2008, 42: 26–35

4 Luo T W, Wang X L, Hu J Y, et al. Improving TLB performance by increasing hugepage ratio. In: Proceedings of

the 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). Washington, DC:

IEEE, 2015

5 Ganapathy N, Schimmel C. General purpose operating system support for multiple page sizes. In: Proceedings of

USENIX Annual Technical Conference. Berkeley: USENIX Association Berkeley, 1998. 8

6 Navarro J, Iyer S, Druschel P, et al. Practical, transparent operating system support for superpages. ACM SIGOPS

Oper Syst Rev, 2002, 36: 89–104

7 Lu H J, Seth R, Doshi K, et al. Using hugetlbfs for mapping application text regions. In: Proceedings of the Linux

Symposium, Ottawa, 2006. 2: 75–82

8 Romer T H, Ohlrich W H, Karlin A R, et al. Reducing tlb and memory overhead using online superpage promotion.

In: Proceedings of the 22nd Annual International Symposium on Computer Architecture. New York: ACM, 1995.

176–187

9 Du Y, Zhou M, Childers B R, et al. Supporting superpages in non-contiguous physical memory. In: Proceedings

of IEEE 21st International Symposium on High Performance Computer Architecture (HPCA), Burlingame, 2015.

223–234

10 Swanson M, Stoller L, Carter J. Increasing TLB reach using super backed by shadow memory. ACM SIGARCH

Comput Architect News, 1998, 26: 204–213

11 Talluri M, Hill M D. Surpassing the TLB performance of super with less operating system support. ACM SIGPLAN

Notices, 1994, 29: 171–182

12 Bhattacharjee A. Large-reach memory management unit caches. In: Proceedings of the 46th Annual IEEE/ACM

International Symposium on Microarchitecture. New York: ACM, 2013. 383–394

13 Bhattacharjee A, Lustig D, Martonosi M. Shared last-level tlbs for chip multiprocessors. In: Proceedings of IEEE 17th

International Symposium on High Performance Computer Architecture (HPCA). Washington, DC: IEEE, 2011. 62–63

14 Lustig D, Bhattacharjee A, Martonosi M. TLB improvements for chip multiprocessors: inter-core cooperative prefetch-

ers and shared last-level TLBs. ACM Trans Architect Code Optim, 2013, 10: 2

15 Srikantaiah S, Kandemir M. Synergistic tlbs for high performance address translation in chip multiprocessors. In: Pro-

ceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture. Washington, DC: IEEE,

2010. 313–324

16 Barr T W, Cox A L, Rixner S. Translation caching: skip, don’t walk (the page table). ACM SIGARCH Comput

Architect News, 2010, 38: 48–59

17 Barr T W, Cox A L, Rixner S. SpecTLB: a mechanism for speculative address translation. In: Proceedings of the 38th

Annual International Symposium on Computer Architecture (ISCA). New York: ACM, 2011. 307–317

18 Papadopoulou M-M, Tong X, Seznec A, et al. Prediction-based superpage-friendly TLB designs. In: Proceedings

of IEEE 21st International Symposium on High Performance Computer Architecture (HPCA), Burlingame, 2015.

210–222

19 Basu A, Gandhi J, Chang J C, et al. Efficient virtual memory for big memory servers. ACM SIGARCH Comput

Architect News, 2013, 41: 237–248

20 Karakostas V, Gandhi J, Ayar F, et al. Redundant memory mappings for fast access to large memories. In: Proceedings

of the 42nd Annual International Symposium on Computer Architecture. New York: ACM, 2015. 66–78

21 Fang Z, Zhang L X, Carter J B, et al. Reevaluating online superpage promotion with hardware support. In: Proceedings

of the 7th International Symposium on High-Performance Computer Architecture (HPCA). Washington, DC: IEEE,

2001. 63–72

22 Saulsbury A, Dahlgren F, Stenström P. Recency-based TLB preloading. ACM SIGARCH Comput Architect News,

2000, 28: 117–127

23 Kandiraju G B, Sivasubramaniam A. Going the distance for TLB prefetching: an application-driven study. ACM

SIGARCH Comput Architect News, 2002, 30: 195–206

24 Bhattacharjee A, Martonosi M. Characterizing the TLB behavior of emerging parallel workloads on chip multipro-

cessors. In: Proceedings of the 18th International Conference on Parallel Architectures and Compilation Techniques

(PACT’09). Washington, DC: IEEE, 2009. 29–40

25 Bhattacharjee A, Martonosi M. Inter-core cooperative TLB for chip multiprocessors. ACM SIGARCH Comput Archi-

tect News, 2010, 38: 359–370

26 Adams K, Agesen O. A comparison of software and hardware techniques for x86 virtualization. ACM SIGPLAN

Notices, 2006, 41: 2–13

27 Bhatia N. Performance evaluation of Intel EPT hardware assist. VMware, Inc, 2009. http://www.vmware.com/

techpapers/2009/performance-evaluation-of-intel-ept-hardware-assis-10006.html

28 Buell J, Hecht D, Heo J, et al. Methodology for performance analysis of VMware vSphere under Tier-1 applications.

VMware Technical J, 2013. 19

http://www.vmware.com/techpapers/2009/performance-evaluation-of-intel-ept-hardware-assis-10006.html
http://www.vmware.com/techpapers/2009/performance-evaluation-of-intel-ept-hardware-assis-10006.html

Wang X L, et al. Sci China Inf Sci January 2017 Vol. 60 012103:16

29 Ahn J, Jin S, Huh J. Revisiting hardware-assisted page walks for virtualized systems. ACM SIGARCH Comput

Architect News, 2012, 40: 476–487

30 Gandhi J, Basu A, Hill M D, et al. Efficient memory virtualization. In: Proceedings of the 47th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO). Washington, DC: IEEE, 2014. 178–189

31 Gadre A S, Kabra K, Vasani A, et al. X-xen: huge page support in xen. In: Proceedings of the Linux Symposium,

Ottawa, 2011. 7

32 Pham B, Vesely J, Loh G H, et al. Using TLB Speculation to Overcome Page Splintering in Virtual Machines.

Technical Report DCS-TR-7132015. Rutgers University, 2015

33 Wang X L, Zang J R, Wang Z L, et al. Selective hardware/software memory virtualization. ACM SIGPLAN Notices,

2011, 46: 217–226

34 Wang X L, Weng L M, Wang Z L, et al. Revisiting memory management on virtualized environments. ACM Trans

Architect Optim, 2013, 10: 48

35 Chang X T, Franke H, Ge Y, et al. Improving virtualization in the presence of software managed translation lookaside

buffers. In: Proceedings of the 40th Annual International Symposium on Computer Architecture. New York: ACM,

2013. 120–129

	Introduction
	Overview of transparent hugepage
	The performance of transparent hugepage
	The usage of transparent hugepage

	Overview of memory virtualization
	Workload performance on virtualization environments
	Characteristics of benchmarks
	Performance analysis on virtualization environments

	Alignment-based hugepage (ABH): design and implementation
	Memory management in Linux
	Making aligned memory area
	Other details in implementation

	Evaluation of ABH
	Memory evaluation
	Evaluation on TLB misses and page walk time
	Evaluation on performance
	Impact of different virtualization environments

	Discussion
	The overhead on separated TLB and hugepage
	Overhead on alignment in ABH
	Overhead on page promotion and demotion

	Related work
	Support for hugepages
	Optimization on TLB
	TLB on virtualization

	Conclusion

