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Abstract Network measures are useful for predicting fault-prone modules. However, existing work has not

distinguished faults according to their severity. In practice, high severity faults cause serious problems and

require further attention. In this study, we explored the utility of network measures in high severity fault-

proneness prediction. We constructed software source code networks for four open-source projects by extracting

the dependencies between modules. We then used univariate logistic regression to investigate the associations

between each network measure and fault-proneness at a high severity level. We built multivariate prediction

models to examine their explanatory ability for fault-proneness, as well as evaluated their predictive effectiveness

compared to code metrics under forward-release and cross-project predictions. The results revealed the following:

(1) most network measures are significantly related to high severity fault-proneness; (2) network measures

generally have comparable explanatory abilities and predictive powers to those of code metrics; and (3) network

measures are very unstable for cross-project predictions. These results indicate that network measures are of

practical value in high severity fault-proneness prediction.
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1 Introduction

As software systems become larger and increasingly complex, it is becoming more difficult and costly to

test source code and to produce high-quality products. In practice, testing resources are often limited.

Therefore, it is important to allocate testing resources to higher risk modules that may contain severe

faults before delivery. Many prediction models have been proposed to prioritize modules in terms of the

number of potential faults. However, few studies have considered the severity of faults [1,2], which defines

the impact that a given fault has on software.

Severe faults can result in major function loss, extensive data corruption, and even termination of the

entire system. During software development, leaving a module with many undetected trivial bugs will
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not seriously affect the quality. In contrast, leaving a module with a few undetected severe faults can

lead to disaster. Thus, classes with highly severe faults should be tested and fixed before classes with low

severity faults. Categorizing faults according to different severity levels helps prioritize the sequence in

which faults are fixed. A high severity fault prediction model would help software engineers focus testing

resources on the most severe faults to reduce and assess the most influential failures and improve quality

prior to deploying the software.

In the literature, various metrics to characterize software entities and build prediction models have

been reported, such as code metrics (CMs) [3–6], process metrics [7–9], and previous defects [10, 11].

More recently, network measures derived using concepts from the social network analysis field [12] have

been employed in fault-proneness prediction [13–19]. Network-based analysis treats modules as nodes

and extracts the dependencies between them as edges to construct software source code network. Then,

the obtained network measures are used to build prediction models. By considering the interactions

between modules, network measures characterize the information flow and overall topology of a software

system, which cannot be captured by code metrics. However, existing work on network measures has not

examined their fault severity predictive capabilities. In this study, we investigated the actual usefulness

of network measures for predicting high severity faults.

We conducted our study using multiple releases of four projects: Mozilla Firefox, Eclipse, Apache Ant,

and Apache Hbase. By extracting the data and call dependencies between modules (files or classes),

source code networks were constructed at the module level. We then empirically investigated most

network measures proposed in the literature to determine how they characterized high severity fault-

proneness. We also evaluated their predictive effectiveness compared to that of traditional code metrics

in the context of forward-release and cross-project prediction. Specifically, we aimed to answer the

following research questions:

• RQ1: Is there a significant association between each network measure and high severity

fault-proneness? To analyze the effect of each network measure on fault-proneness, the purpose of RQ1

was to determine whether each of the network measures is a potentially useful predictor for high severity

fault-proneness.

• RQ2: How effective is the explanatory ability of network measures for high severity

fault-proneness? After analyzing each network measure, we further investigated the effects of the

network measures when used together. By considering the correlation between network measures, RQ2

selected metrics to construct models that could optimize the explanation of high severity fault-proneness

and evaluate their explanatory abilities.

• RQ3: How effective is the predictive power of network measures for high severity fault-

proneness? The models obtained in RQ2 were used to predict the high severity fault-proneness of

modules. In industrial use, historical project data are often exploited to estimate the quality of a newly

released version of the same project. The association between network measures and high severity fault-

proneness of past releases can be used to predict high severity faults in the next release. For RQ3, we

evaluated the forward-release predictive power of network measures.

• RQ4: How effective is the portability of network measures for high severity fault-

proneness? In addition to intra-project prediction, we were also interested in how well network measures

perform in cross-project fault prediction since it is useful to transfer prediction models of other projects

to projects without historical data. For RQ4, we investigated the portability of network measures across

different projects.

This paper makes a number of contributions. First, we validated the association between each network

measure and high severity fault-proneness. Second, we compared the effectiveness of network measures

in high severity fault-proneness prediction to four categories of the most commonly used code metrics

including size, structural complexity, Halstead’s software science metrics, and object-oriented design

metrics. Third, most publicly available fault data sets, including Promise 1) , do not contain information

about fault severity, possibly because it is time consuming and expensive to collect qualitative data [20].

1) http://openscience.us/repo/.
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Table 1 The statistics of the studied projects

Project #releases Language
#modules kLOC #faults

First release Last release First release Last release All High

Firefox 6 C/C++ 11431 12721 2613 2881 4490 752

Eclipse 5 Java 6014 12936 815 1979 13073 2072

Ant 4 Java 412 1053 41 116 833 137

Hbase 8 Java 513 1889 104 571 2861 538

Therefore, our experimental data 2) are a valuable supplement to such data sets.

The remainder of this paper is organized as follows. Section 2 describes the design of our study,

including the research questions, data sources, method used to collect experimental data sets, construction

of source code networks, and network measures together with the most commonly used code metrics.

Section 3 introduces the dependent and independent variables, presents the employed modeling technique,

and describes our data analysis methods. The experimental results and the answers to our research

questions are reported in Section 4. Section 5 discusses the results and threats to the validity of our

study. Section 6 provides related work. Section 7 concludes the paper and outlines directions for future

work.

2 Study design

In this section, we introduce the subject projects investigated in our study, the manner by which we

collected and processed fault data, the construction of source code networks, the network measures and

the code metrics we employed.

2.1 Studied projects

We performed our study using four well-known open source projects: Firefox 3), Eclipse 4), Ant 5), and

Hbase 6). The projects vary in their application domains, size, and programming languages. Firefox

is a popular web browser developed by the Mozilla Foundation. Eclipse is a well-known integrated

development environment from the Eclipse Foundation. The last two projects are parts of the Apache

Software Foundation. Specifically, Ant is a software tool for automating software build processes, and

Hbase is a non-relational, distributed database. With respect to software size, Firefox and Eclipse are

large-scale projects, while the two Apache projects are relatively small. Apart from Firefox which is

primarily written in C/C++, the other projects are all Java applications.

Table 1 lists some properties of these software systems. The second column shows the number of releases

we analyzed. The third column presents the main programming language(s) used in each project. The

columns entitled #modules and kLOC indicate the project size in terms of the total number of files (for

C/C++ projects)/classes (for Java projects) and total number of lines of code, respectively.

2.2 Fault data collection and processing

In this study, we investigated the predictive power of network metrics with regard to fault severity.

Thus, we were interested in the fault-proneness of each module at high severity level. To collect fault

data for these projects, we first extracted the change logs with key words (e.g., “bug” for Firefox) that

were found in commits from the version control system (GIT 7) or SVN 8)). Then, the bug reports with

2) https://github.com/xiaobena/network-measures/tree/master/with%20severity.
3) ttp://www.firefox.com/.
4) https://www.eclipse.org/.
5) http://ant.apache.org/.
6) http://hbase.apache.org/.
7) http://git-scm.com/.
8) http://subversion.apache.org/.
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corresponding bug IDs were obtained from the bug tracking system (Bugzilla 9) or Jira 10)). We only

retained the faults for which the Resolution field was set to “FIXED” or the Status field was set to

“CLOSED”. We parsed the change logs and bug reports to obtain the following bug information: bug

ID, severity (for Bugzilla)/priority (for Jira), and a list of files modified to fix the faults.

In Bugzilla, there are seven levels in the Severity field: blocker, critical, major, normal, minor, trivial,

and enhancement (from most to least severe). We excluded bug reports with the enhancement severity

because they are not real bugs. Faults labeled major, critical or blocker are classified as high severity. In

Jira, the Priority field indicates the severity of faults. Five levels of priority are defined in Jira: blocker,

critical, major, minor, and trivial (from most to least severe). Faults labeled blocker or critical are

classified as high severity.

In addition, when collecting fault data, we did not distinguish between security bugs and ordinary

bugs. The severity of each security bug was identified based on the severity or priority field of its bug

report. However, we are not authorized to access some of the latest security bugs; thus, they are excluded

from our study.

The last four columns of Table 1 show the total number of faults and the number of high severity faults

collected for the four projects. As can be seen, Eclipse has the most high severity faults, while Ant has

the fewest. For each project, high severity faults account for 15.8%–18.8% of all faults.

2.3 Construction of the source code network

We generated the source code network at the module level and considered a single file (for C/C++

projects) or class (for Java projects) as a module. Each module was considered a single node in the

network, and the dependencies between modules were extracted as edges. A program dependence is a

direct relationship between two pieces of code [13]. We collected two types of dependencies, namely, data

dependence between the use of a variable and its definition and call dependence from the sites where a

function is called to its declaration. The two types of dependencies were rolled up to the module level.

Note that Firefox is C/C++ software. We combined each .cpp/.c file with the corresponding header file

(.h) as a single node and merged their dependencies. Even though self-dependencies exist, we did not

consider them in this study.

To construct the source code network, we used the Understand 11) program-understanding tool. For

each project version, we first generated an Understand database to store information about the entities

(e.g., files and classes) and references (e.g., function calls and variable references). Then a Perl script

was used to track the information dependencies between modules and to generate the software network

at the module level.

2.4 Network measures

Each node in the source code network was evaluated from two perspectives, namely, local and global.

To view a given node locally, we considered an ego network, which consists of the node itself and every

other node that connects to it directly. Ego network measures (ENs) capture the importance of the node

within its neighborhood. A global network contains all nodes, and global network measures (GNs) weight

the importance of the nodes within the entire network. For each module in the software system, the ego

network only considers the direct dependencies between modules, while the global network considers the

indirect uses of data and methods.

We employed Ucinet 12) to obtain the ENs and GNs. Table 2 summarizes these network measures.

For each node, we computed three types of ego network: in ( in), out ( out), and undirected ( un). The

in (out) ego network only considers incoming (outgoing) directed dependencies between an ego module

and its neighboring modules, while the undirected ego network contains both types of dependencies.

9) https://bugzilla.mozilla.org/, https://bugs.eclipse.org/bugs/.
10) https://issues.apache.org/jira/secure/Dashboard.jspa.
11) http://www.scitools.com/.
12) https://sites.google.com/site/ucinetsoftware/home/.
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Table 2 The network measures in this study

Category Metric Description

Ego network measures

Size # nodes that ego is directly connected to

Ties # directed ties corresponds to the number of edges

Pairs # unique pairs of nodes, i.e., Size × (Size − 1)

Density % of possible ties that are actually present, i.e., Ties/Pairs

nWeakComp # weak components in the ego network

pWeakComp # weak components normalized by size

2StepReach # nodes ego can reach within two steps normalized by Size

ReachEffic 2StepReach normalized by the sum of the size of the ego’s every neighbor’s

ego network

Broker # pairs not directly connected to each other

nBroker Broker normalized by the number of pairs

EgoBetween % shortest paths between neighbors that pass through ego

Global network measures

Degree # nodes adjacent to a given node

Clus Coef measures the density of an node’s open neighborhood

Closeness sum of the lengths of the shortest paths from a node to all other nodes

Reachability # nodes that can be reached from a given node

Eigenvector assigns relative scores to all nodes in the dependency graphs

Betweenness measures how many shortest paths between other entities it occurs

Power measures the connections of the nodes in one’s neighborhood

EffSize # nodes that are connected to a node minus the average number of ties

between these nodes

Efficiency normalizes EffiSize to the total size of the network

Constraint measures how strongly an node is constrained

Hierarchy measures the extent to which constraint a node is concentrated in the network

In addition, some global metrics were computed using only the incoming or outgoing edges, which are

indicated as IN and OUT respectively. In total, we explored the usefulness of 53 network measures

(36 ENs and 17 GNs) in high severity fault-proneness prediction.

2.5 Code metrics

In this study, code metrics are used to provide a performance baseline for our prediction models. We

applied three types of widely used code metrics: size metrics, structural complexity metrics, and Hal-

stead metrics [21]. A set of object-oriented metrics given by Chidamber and Kemerer [22] (CK metrics)

including CBO, RFC, LCOM, NOC, DIT, and WMC were applied to the Java projects. Thus, 17 and

22 code metrics were computed for all versions of the C/C++ projects and Java projects, respectively.

Table 3 summarizes these code metrics.

We collected these code metrics using the above-mentioned Understand databases and a Perl script.

The size and structural complexity metrics were calculated at the module (file or class) level, while the

Halstead metrics were generated for each single function and rolled up to the module level. Since Firefox

is primarily written in the C language, and most of its files contain no classes; thus, we did not compute

CK metrics for these files. CK metrics were collected for classes in the three Java projects.

3 Analysis approach

In this section, we first introduce the dependent and independent variables investigated in our study.

We then describe the research hypotheses corresponding to the four research questions, the employed

modeling technique, and the data analysis methods.
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Table 3 The baseline code metrics in this study

Category Metric Description

CL Number of all lines of a module

Size metrics LOC Number of lines containing source code of a module

LOCE Number of lines containing executable source code of a module

CCMax Maximum cyclomatic complexity of all nested functions in a module

Structural complexity metrics CCSum Sum of cyclomatic complexity of all nested functions in a module

NMax Maximum nesting level of control constructs in a module

Structural complexity metrics

n1 Total number of distinct operators of a function

n2 Total number of distinct operands of a function

n Total number of vocabulary of a function, n = n1 + n2

N1 Total number of operators of a function

N2 Total number of operands of a function

N Halstead program length, N = N1 +N2

V Halstead program volume, V = N × log
2
n

D Halstead program difficulty, D = n1/2×N2/n2

L Halstead program level, L = 1/D

E Halstead programming effort, E = V ×D

T Programming time, T = E/18 s

Chidamber and Kemerer metrics

WMC The number of methods implemented within a given class.

DIT The length of the longest path from a given class to the root in

the inheritance hierarchy.

NOC The number of classes that directly inherit from a given class.

CBO The number of distinct non-inheritance-related classes on which a given

class is coupled. A class is said to be coupled to another class if it uses

methods or attributes of the other.

RFC The number of methods that can potentially be executed in response to a

message being received by an object of a given class.

LCOM For each attribute in a given class, calculate the percentage of the methods

in the class using that attribute.

3.1 Variable description

The goal of our study was to explore the relationship between network measures and high severity fault-

proneness of modules. The binary dependent variable in this study is fault-proneness, whose definition

must take into account the context in which a module is used. When investigating the fault-proneness

prediction capabilities of the metrics in the context of high severity faults, a module was considered

fault-prone if it had at least one high severity fault, while a module was not fault-prone if it had no high

severity fault.

The independent variables in this study consisted of two sets, specifically, 53 network measures and

22/17 most commonly used code metrics. All of the metrics were collected at the module level. In

this study, the classification of modules into fault-prone and not fault-prone was performed using logistic

regression (described in Subsection 3.3). We compared models built with the ENs, the GNs, both types of

network measures (NMs), the CMs, and all metrics (CNs). That is, for each version of the four projects,

we built five prediction models.

3.2 Research hypotheses

The purpose of RQ1 was to investigate whether significant association between each network measure

and high severity fault-proneness exists. Taking into consideration interactions between modules, each

type of network measure captures the topology of a software system from a certain perspective, and

evaluates the importance of each module relative to a given network characteristic. In addition, software

structure is supposed to correlate with fault-proneness. Thus, we conject network measures, which
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describe dimensions of the software structure, were related to fault-proneness. We put up a hypothesis

testing for each single network measure for RQ1. A generic form of the null hypothesis H10 and its

alternative hypothesis H1A are stated as follows.

• H10: There is no significant association between network measure x and fault-proneness at high

severity level.

• H1A: There is a significant association between network measure x and fault-proneness at high

severity level.

The purpose of RQ2 was to analyze the explanatory ability of network measures for high fault-

proneness. When used together, network measures correlate and describe the software structure from

multiple perspectives. Here, code metrics were used as a baseline to evaluate the goodness of the ex-

planatory ability of network measures. We formulated the following null hypothesis H20 and alternative

hypothesis H2A.

• H20: Network measures do not have better explanatory ability than code metrics for fault-proneness

at a high severity level .

• H2A: Network measures have a better explanatory ability than code metrics for fault-proneness at

a high severity level.

The purpose of RQ3 was to evaluate the predictive power of network measures for high severity fault-

proneness. There are no universal standards to determine whether predictive power is good; therefore,

for RQ3, code metrics were used as a baseline. We formulated the following null hypothesis H30 and

alternative hypothesis H3A.

• H30: Network measures do not have a better predictive power for fault-proneness at high severity

level than code metrics.

• H3A: Network measures have a better predictive power for fault-proneness at high severity level

than code metrics.

The purpose of RQ4 was to evaluate the portability of network measures for fault-proneness at a high

severity level. Here, code metrics were still used to compare the portability of network measures. We

formulated the following null hypothesis H40 and alternative hypothesis H4A.

• H40: Network measures do not have a better portability than code metrics for fault-proneness at

high severity level.

• H4A: Network measures have a better portability than code metrics for fault-proneness at high

severity level.

3.3 Modeling technique

Logistic regression was used to predict the dependent variable (fault-proneness) from a set of independent

variables (network measures and code metrics) to determine the percent of the variance in the dependent

variable that could be explained by the independent variables [3]. Logistic regression is a type of proba-

bilistic statistical classification model in which the dependent variable can take two different values. Since

modules in this study are divided into two categories, namely, fault-prone and not fault-prone, logistic

regression is suitable for building the fault-proneness prediction models. There are two types of logistic

regression, univariate and multivariate logistic regression. The univariate analysis was used to find the

individual effect of the independent variable on the dependent variable, while the multivariate analysis

was used to find the combined effect of the independent variables on the dependent variable.

Odds ratio is the most commonly used measure to quantify the magnitude of an association between

independent and dependent variables in logistic regression models. When a logistic regression is calcu-

lated, the regression coefficient is the estimated increase in the log odds of the dependent variable per

unit increase in the value of the independent variable [23]. An odds ratio 1 means that the independent

variable does not affect the dependent variable. An odds ratio greater than 1 indicates that the indepen-

dent variable positively associates with the dependent variable, while an odds ratio less than 1 indicates

that the independent variable negatively associates with the dependent variable.
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3.4 Data analysis methods

In this section, we describe the data analysis methods used to answer the research questions.

3.4.1 Univariate logistic regression analysis for RQ1

We employed univariate logistic regression to determine whether there was a significant association be-

tween each network measure and fault-proneness at a high severity level. Univariate regression analysis is

used to examine the effect of each metric separately, identifying which metrics were significantly related to

the fault-proneness of modules to determine which network measures are potentially useful high severity

fault-proneness predictors.

Regression can be significantly affected by influential observations. When performing univariate anal-

ysis, we checked for the presence of influential observations using Cook’s distance [24]. Cook’s distance

is a measure of how much the residuals of all observations would change if a particular observation

were excluded from the calculation of the regression coefficients. A large Cook’s distance indicates that

excluding an observation from computation of the regression statistics would change the coefficients sub-

stantially. An observation with a Cook’s distance equal to or greater than 1 is considered as an influential

observation [24] and is thus excluded from analysis.

The following statistics were evaluated for each single network measure.

• Coefficient: The estimated regression coefficient that represents the change in the logit for each unit

change in the independent variable. A larger absolute value of the coefficient indicates a stronger impact

of the independent variable (a given network measure) on the possibility of a module being fault-prone.

• P-value: This statistic relates to the statistical hypothesis and indicates whether the corresponding

coefficient is significant or not. In this study, the Wald test [25] was used to assess the significance of an

individual metric. We set the significance level α = 0.05 to assess the obtained p-value.

• Odds ratio: Similar to coefficient, this statistic quantifies the effect of a given network measure on

fault-proneness and enables comparison of the effects of individual measures.

For each metric, the null hypothesis H10 corresponding to RQ1 was rejected if the p-value of univariate

logistic regression was less than 0.05.

3.4.2 Multivariate logistic regression analysis for RQ2

To analyze the explanatory ability of network measures for fault-proneness at high severity level, we

used multivariate logistic regression to construct regression models that could optimize the explanation

of fault-proneness and analyze the effect of the network measures when used together. A multivariate

logistic regression model was used to indicate how well the network measures interpreted fault-proneness.

To choose which network measures to include in the regression model, we adopted a backward step-

wise regression variable selection technique, which involved starting with all of the candidate variables,

testing the deletion of each variable using a chosen model comparison criterion, deleting the variable that

improved the model the most by being deleted, and repeating this process until no further improvement

was possible.

In addition, one common problem in logistic regression analysis is multicollinearity which refers to a

situation in which two or more independent variables are related in a highly manner. In the presence

of multicollinearity, the estimated regression coefficients may be inaccurate and unreliable, which can

adversely affect the determination of how individual independent variables contribute to the understand-

ing of the dependent variable. In this study, we computed the variance inflation factors (VIFs) of each

metric to examine the multicollinearity between the variables of the model. We removed all variables

with VIFs greater than 10, which is the recommended cut-off value when dealing with multicollinearity

in a regression model [26].

Furthermore, all of the results were checked for the presence of influential observations using Cook’s

distance. Observations with Cook’s distances equal to or greater than 1 were considered influential

observations and were thus excluded from analysis.
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The prediction models were built with five metric sets: ENs, GNs, NMs, CMs, and CNs. The construc-

tion of these models involved three main steps: (1) metric selection using backward stepwise regression;

(2) eliminating metrics with VIF > 10; and (3) removing observations with Cook’s distance > 1.

The goodness of fit of a statistical model describes how well it fits a set of observations and evaluates

how well the independent variables explain the dependent variable. Thus, to evaluate the explanatory

ability of network measures for fault-proneness at a high severity level, we only needed to analyze the

goodness of the fit of the regression models built with network measure. The goodness of fit in linear

regression models is generally measured using the R squared value. This value has no direct analog

in logistic regression; therefore, the following statistics were used to evaluate the fit of each prediction

model.

• -2-Log-likelihood: A measure based on deviance that represents the lack of fit to the data in a logistic

regression model [26]. A smaller value indicates a better fit.

• Cox&Snell-R2: An alternative index of goodness of fit related to the R squared value from linear

regression. It ranges from 0 to 0.75 [27].

• Nagelkerke-R2: A correction to the Cox and Snell R Squared value that is used to ensure that the

maximum value is equal to 1 [28].

To answer RQ2, we compared the goodness of fits of regression models built with network measures

and code metrics using Wilcoxon signed-rank tests. Note that we distinguished three sets of network

measures: the ENs, the GNs, and the NMs. The Wilcoxon tests were employed to compare each of the

above statistics obtained from the models built with three pairs of metric sets: (I) ENs vs. CMs; (II)

GNs vs. CMs; and (III) NMs vs. CMs. In particular, we used Benjamini-Hochberg (BH) [29] corrected

p-values to examine whether a difference is significant at the significance level of 0.05.

3.4.3 Forward-release prediction for RQ3

Forward-release prediction is considered more suitable and practical for industrial use when past project

data is exploited to predict fault-prone modules in future releases. In our study, we evaluated the

predictive power of network measures under this most common case where data from one release were

trained to test the next immediate release. For example, we build the logistic regression model with

release 0.92 of Hbase to test against release 0.94 of the same project.

Note that our goal was to classify each module of the next release into one of two categories, namely,

fault-prone or not fault-prone, while logistic regression model were used to generate a predicted probability

surface. Therefore, the choice of a threshold above which a given module would be predicted to be fault-

prone was required. The traditional default is to simply use a threshold of 0.5 as the cut-off; however, this

threshold does not necessarily result in the highest prediction accuracy, especially for highly unbalanced

data sets [30]. Thus, we employed a receiver operating characteristic (ROC) curve to determine the

classification threshold.

An ROC curve graphically illustrates the performance of a binary classifier at various discrimination

thresholds, with the true positive rate (TPR = fraction of true positives out of the total actual positives)

as the vertical axis and false positive rate (FPR = fraction of false positives out of the total actual

negatives) as the horizontal axis. A good model will achieve a high TPR with a relatively small FPR.

Thus, an ROC plot will rise steeply at the origin; and level off at a value near the maximum of 1. As a

model with TPR = 1 and FPR = 0 can be considered ideal, the threshold that minimizes the distance

between the point of the ROC curve and the point (0, 1) can be used as an optimization criteria [30].

For forward-release prediction, we first used each regression model obtained for RQ2 to run self-

prediction on the training set to obtain the probabilities of fault-proneness, which were then used to obtain

the classification threshold according to the ROC curve. These models and corresponding thresholds were

employed to predict the fault-proneness of the modules in the next release. In addition, we adopted the

following indicators to evaluate the prediction accuracy.

• Sensitivity: The percentage of modules correctly predicted to be fault-prone. According to the

confusion matrix (Table 4), Sensitivity can be calculated as follows: Sensitivity = tp/(tp + fn). The
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Table 4 Confusion matrix

Acutal

Fault-prone Not fault-prone

Predicted
Fault-prone tp: true positives fp: false positives

Not fault-prone fn: false negatives tn: true negatives

value of Sensitivity ranges from 0 to 1; higher value indicates better performance.

• Specificity: The percentage of modules correctly predicted as fault-prone. According to the confusion

matrix, Specificity can be calculated as follows: Specificity = tn/(tn+fp). The value of Specificity ranges

from 0 to 1; higher value indicates better performance.

• Area under the ROC curve (AUC): The AUC is suitable for evaluating the performance of a classifica-

tion model with unbalanced data sets. Unlike Sensitivity and Specificity, AUC is a threshold-independent

accuracy measure for a binary classifier. A random classification has an AUC value of 0.5 while the per-

fect one has an AUC of 1.0, which signifies that the classifier correctly predicts the fault-proneness of all

the modules. Therefore, higher AUC values indicate better classification model performance.

The above three indicators were used to represent the predictive powers of the network measures. As

in RQ2, we used the Wilcoxon signed-rank tests to compare Sensitivity, Specificity, and AUC using three

pairs of metric sets: (I) ENs vs. CMs; (II) GNs vs. CMs; and (III) NMs vs. CMs. In particular, we used

BH corrected p-values to examine whether a difference was significant at a significance level of 0.05.

3.4.4 Cross-project prediction for RQ4

To analyze the portability of the network measures, we transferred the models built for one project to

another and calculated the possibility of fault-proneness for each module in the new project.

Our goal was to classify each module of the new project into one of two categories, namely, fault-

prone or not fault-prone; thus, the thresholds determined for RQ3 were used for RQ4. In other words,

the models obtained for RQ2 and their corresponding thresholds were employed to predict the fault-

proneness of modules in other projects. In addition, to evaluate the prediction accuracy, we adopted the

three commonly used indicators: Sensitivity, Specificity and AUC. The Wilcoxon signed-rank tests were

used to compare each of them using three pairs of metric sets: (I) ENs vs. CMs; (II) GNs vs. CMs; and

(III) NMs vs. CMs. In particular, we use BH corrected p-values to examine whether a difference was

significant at a significance level of 0.05.

4 Results

This section presents the results of our empirical study with respect to each research question.

4.1 Association (RQ1)

Tables 5 and 6 summarize the numbers of projects for which individual network measure has significantly

positive or negative effect on high severity fault-proneness in at least 50% releases. A total number of 53

tests were run on each version of the four studied projects because there are 53 network measures. Since

multiple tests on the same data set may result in spurious statistically significant results, we use the BH

corrected p-values to control false discovery.

From the results, we see that most of the investigated network measures have significant correlations

with fault-proneness at a high severity level. In addition, most network measures are positively related to

fault-proneness because their estimated regression coefficients are positive. Thus, larger values of these

network measures for a module indicate increased likelihood that the corresponding module is prone to

high severity faults. However, only a few odds ratios are markedly greater than 1, specifically, nBroker,

nBroker in, nBroker out, InCloseness, and Efficiency, which indicates that only a few network measures

make outstanding contributions to the estimated probability of fault-proneness.
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Table 5 The number of projects for which individual network has significantly positive effects on fault-proneness in at

least 50% releases

Number of projects Network measures

4 Size, Ties, 2StepReach, nBroker, 2StepReach in, Size out, Ties out, Pairs out, 2StepReach out,

Broker out, nBroker out, nEgoBetween out, Degree, OutDegree, InCloseness, OutdwReach,

IndwReach, Betweenness, EffSize

3 EgoBetween, nEgoBetween in, n Broker in, nWeakComp out, EgoBetween out, InDegree,

OutCloseness, Eigenvec, Indirects

2 Pairs, Broker, Size in, Ties in, nWeakComp in, ReachEffic in, Density out, UnBetweenness,

Efficiency

1 Density, nWeakComp, pWeakComp in, nEgoBetween, Pairs in, Density in, Broker in,

EgoBetween in

Table 6 The number of projects for which individual network has significantly negative effect on fault-proneness in at

least 50% releases

Number of projects Network measures

4 ClusCoef, Constraint

3 pWeakComp, pWeakComp out, ReachEffic out

2 ReachEffic, Power, Hierarchy

1 Density, Size in, pWeakComp in, ReachEffic in, nBroker in, Eigenvec, Indirects

Table 7 Results of Wilcoxon tests

Project
-2-Log-likelihood Cox&Snell-R2 Nagelkerke-R2

ENs GNs EMs ENs GNs NMs ENs GNs NMs

Firefox
√ √ √ √ √ √ √ √ √

Eclipse
√

– –
√

–
√

– –
√

Hbase
√ √ √

–
√ √

– –
√

Ant – – – – – – – – –

Response to hypothesis H10: “There is no significant correlation between network measure x and

fault-proneness at a high severity level.” Partially reject. For most network measures, but not all, our

univariate logistic regression analysis results, obtained from 23 data sets of four projects, reject the null

hypothesis H10 for RQ1.

4.2 Explanatory ability (RQ2)

We used the multiple logistic regression analysis described in Subsection 3.4.2 to answer RQ2. Here, we

will introduce and describe the prediction model for high severity faults, namely, the high severity fault

prediction model (HSF model). We compared the HSF model built with the ENs, the GNs, the NMs,

the CMs, and the CNs.

We first computed -2-Log-likelihood, Cox&Snell-R2 and Nagelkerke-R2 for each model with the CMs,

ENs, GNs, NMs, and CNs for Firefox, Eclipse, Hbase, and Ant. We then used the Wilcoxon signed-rank

sum tests to evaluate the differences between three compared pairs of metric sets: (I) ENs vs. CMs; (II)

GNs vs. CMs; and (III) NMs vs. CMs at a significant level of 0.05.

Table 7 lists the outcomes of the Wilcoxon tests for high severity faults. The columns entitled ENs,

GNs, and NMs show the results of comparing the ENs, GNs, and NMs, respectively, with the CMs.

Here,
√

indicates refusal of the null hypothesis, while a “–” indicates that the null hypothesis cannot

be rejected. With respect to -2-Log-likelihood, Cox&Snell-R2, and Nagelkerke-R2, the p-values of the

Wilcoxon tests show that the differences between each of the three compared pairs of metric sets are

significant for Firefox, but not significant for Ant. However, for Eclipse and Hbase, we could not obtain

consistent comparison results for the three statistics.

Since -2-Log-likelihood, Cox&Snell-R2, and Nagelkerke-R2 are indicators of the goodness of fit of the

regression models, which in turn indicate the explanatory power of the independent variables (metric
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sets) for the dependent variable (fault-proneness) at a high severity level, the results show that the ENs,

GNs, and NMs are better than the CMs at interpreting fault-proneness for only some projects.

Response to hypothesis H20: “Network measures do not have a better explanatory ability than CMs

for fault-proneness at a high severity level.” Partially reject. Network measures have better explanatory

ability in Firefox. However, the Wilcoxon test results are mixed for the other projects.

4.3 Predictive power (RQ3)

To answer RQ3, we used the multivariable logistic regression models built in Subsection 4.2 to predict the

fault-proneness of modules at high severity level in the next release of the same project. Here Sensitivity,

Specificity, and AUC were employed to evaluate the predictive effectiveness of these models. In addition,

the Wilcoxon signed-rank test was used to compare the predictive power of three pairs of metric sets: (I)

ENs vs. CMs; (II) GNs vs. CMs; and (III) NMs vs. CMs.

Figure 1 shows the distributions of Sensitivity, Specificity, and AUC obtained from the forward-release

predictions for Firefox, Eclipse, Hbase, and Ant. Each box in the boxplot corresponds to the performance

of an HSF model built with one of the five metric sets: CMs, ENs, GNs, NMs, and CNs.

For Firefox, the ENs, GNs, and NMs all have lower mean/median Sensitivity, and AUC value but higher

mean/median Specificity values than the CMs. However, the results of the Wilcoxon tests indicate that

only the Specificity of the GNs is significantly higher than that of the CMs.

For Eclipse, the ENs have higher mean/median Sensitivity values but lower mean/median Specificity

values than the CMs have. The GNs and NMs both have higher mean/median Specificity values but

lower mean/median Sensitivity values than the CMs have. The mean/median AUC values of the ENs,

GNs, and NMs are all greater than those of the CMs. However, the p-values in the Wilcoxon tests are

not significant for the three compared pairs of metric sets.

For Hbase, the ENs have lower mean/median Sensitivity, Specificity, and AUC values than the CMs.

The GNs have higher mean/median Sensitivity and AUC values but lower Specificity values than the

CMs have. The NMs have lower mean/median Specificity and AUC values but higher Sensitivity values

than the CMs have. However, the results of the Wilcoxon tests do not show significant differences in the

three compared pairs of metric sets.

For Ant, the ENs, GNs, and NMs all have lower mean/median Sensitivity, Specificity, and AUC values

than the CMs have. Again, their differences are not statistically significant according to the BH corrected

p-values.

Response to hypothesis H30: “Network measures do not have better predictive power than code

metrics for fault-proneness at a high severity level”. Partially reject. Combining the results for the four

studied projects, we found that most p-values obtained from the Wilcoxon tests were not significant.

That is, we cannot prove that network measures are more effective for predicting high severity faults

than code metrics are. More specifically, in most cases, the predictive powers of the network measures

were equal to that of the code metrics.

4.4 Portability (RQ4)

To answer RQ4, we employed the multivariable logistic regression models (Subsection 4.2) to predict

fault-proneness at a high severity level across different projects. For each of the five metric sets (CMs,

ENs, GNs, NMs, and CNs), we selected the HSF model built with the earliest version of one project to

predict fault-prone modules in all studied versions of the other projects. Sensitivity, Specificity, and AUC

were used to evaluate the cross-project predictive effectiveness of these models, similar to the process used

to address RQ3. In addition, the Wilcoxon signed-rank test was used to compare Sensitivity, Specificity,

and AUC of the three pairs of metric sets: (I) ENs vs. CMs; (II) GNs vs. CMs; and (III) NMs vs. CMs.

Figure 2 shows the distributions of the Sensitivity, Specificity, and AUC that were obtained from the

cross-project predictions. Each box in the boxplot corresponds to the performance of an HSF model built

with one of the five metric sets: CMs, ENs, GNs, NMs, and CNs.
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Figure 1 The performance of forward-release predictions for fault-proneness at high severity level.

The HSF models for Firefox 4.0 were transferred to a total number of 17 versions of the other projects

to predict the fault-prone modules at a high severity level. The results show that in the cases of the

NMs and CNs, all of the modules were classified as fault-prone in most predictions, while the GNs could

identify none of the actual faulty modules. This poor performance of the three models is possibly due to

the thresholds being inappropriate for use in new projects to determine whether a module was fault-prone

at a high severity. The CMs obviously have significantly higher AUC values than the GNs and NMs have.

When comparing the ENs with the CMs, the ENs have lower median/mean Sensitivity and AUC values

but higher Specificity values. However, the results of the Wilcoxon tests indicate that only the difference

in Specificity between the three compared pairs is significant.

The HSF models of Eclipse 2.0 were then used to predict the fault-prone modules at a high severity

in 18 versions of the other projects. The three sets of network measures (ENs, GNs and NMs) all show

higher mean/median Sensitivity values but lower Specificity values than the CMs show. These metric sets

have comparable mean/median AUC values. For Sensitivity and Specificity, the p-values of the Wilcoxon
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Figure 2 The performance of cross-project predictions for fault-proneness at high severity level.

tests are significant all three compared pairs of metric sets.

Fifteen versions of the other three projects were tested using the HSF models of Hbase 0.20. Compared

with the CMs, the ENs have higher mean/median Sensitivity and AUC values but lower Specificity

values, while the GNs have lower mean/median Sensitivity and AUC values but higher Specificity vallues.

However, the Wilcoxon tests show that only the differences between the ENs and CMs are significant for

the three indicators.

The cross-project prediction performance of the HSF models of Ant 1.4 is evaluated on 19 versions

of the other projects. Compared to the corresponding values of the CMs, the mean/median Specificity

and AUC values of the three sets of network measures are all lower. The ENs show higher mean/median

Sensitivity values than the CMs show, while the mean/median Sensitivity values of the GNs and NMs

are lower. The differences between the ENs/GNs and CMs are all significant because all of the indicators

demonstrate p-values less than 0.05.

Response to hypothesis H40: “Network measures do not have better portability than code metrics
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for fault-proneness at a high severity level.” Partially reject. Overall, by combining the results from the

four studied projects, we found that most p-values obtained from the Wilcoxon tests were significant.

However, the network measures were observed to outperform the code metrics only in some cases.

5 Discussion

5.1 Transitive dependencies are not significantly important

We distinguish two categories of network measures, namely ENs and GNs. The ENs only consider direct

dependencies between modules, while the GNs also measure indirect, that is, transitive dependencies. As

discussed in Subsections 4.3 and 4.4, the ENs outperform the GNs with significantly higher Sensitivity

values in some cases; however, they are not inferior to the GNs in terms of the Specificity or AUC

values, and vice versa. No substantial differences in predictive capability of the ENs and GNs were

found. Thus, we conclude that direct and indirect dependencies should be treated as equally in fault-

proneness prediction. On the other hand, using the ENs and GNs together did not improve the predictive

effectiveness. Nevertheless, the combination of the ENs and GNs (i.e., NMs) can enhance the explanatory

ability compared to that of the ENs or GNs alone.

5.2 Cross-project predictions are unstable

When performing cross-project predictions, the performance of a classification model may vary signif-

icantly when it is applied to different projects. Some models cannot identify any of the fault-prone

modules. There are two possible reasons for this inability. First, network measures are more specific to

the source code structure than general code metrics. Different software systems have various structures

and features. A subset of metrics selected to build the regression model and characterize single project

may fail to capture the salient features of other projects. For example, the prediction models built with

Firefox performed extremely poorly when transplanted to Ant. This poor performance may have been

caused by differences in the source code structure, programming language, and software size. This result

provides supplement evidence for the importance of feature selection in defect prediction [31], especially

cross-project prediction [32]. However, this conjecture requires more evidence, and we plan to conduct

further studies to explore the hidden reasons. Second, software systems vary in quality. The threshold

used to determine a healthy project may be too high to identify fault-prone modules in a poor project.

Therefore, it may be more suitable to use these models to rank modules according to their predicted

probabilities of fault-proneness. Software practitioners could simply select as many potential faulty mod-

ules as available resources will allow. Thus, the ranking capability of network measures at a high severity

level will be the focus of future research.

5.3 Threats to validity

In this section, we discuss the most important threats to the construct, internal, and external validity of

our study following common guidelines for empirical studies [33].

The first threat concerns the manner in which we collected faults and linked them with versioning

files. We only selected faults with references in change logs, such as “#623441”, which may have led to

false negatives in the fault data set because some developers do not leave references for faults in change

logs. In addition, we classified each fault by the release corresponding to the date on which the fault

was reported. We cannot determine whether this fault was introduced in previous versions, which may

result in false negatives. Furthermore, since we are not authorized to access some of the latest security

bugs, and thus cannot identify their root causes, we excluded such security bugs from our study. This

exclusion may also have increased the number of false negatives. The fault severities in bug reports are

not necessarily assessed properly. Users who reported faults may have little professional knowledge; thus,

they evaluate the fault severity based on their understanding and experience, which may not comply with
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the guidelines. However, Kim et al. [34] discovered that false negatives in fault data do not affect fault

prediction performance in a significant manner.

The second threat is that the degree of network construction accuracy depends on the tool used.

Although Understand is a mature commercial tool that has been used to collect metric data in many

previous studies [35–38], some features of C/C++ cannot be handled perfectly by Understand, such

as function calls via pointers. Understand associates dependence between a function and its address.

However, table or array-driven setups may take the address of a location other than that where the

function is actually used. Nonetheless, Understand can still work fairly well with other types of code.

In future, other static tools will be adopted to compare and validate the construction of source code

networks.

The third threat to the validity of our study is the unknown effect of deviation of the independent

variables from a normal distribution. In logistic regression, there is no assumption related to normal

distribution. Therefore, we did not consider whether or not the independent variables followed a normal

distribution, and the raw data were used to build the logistic regression models. However, previous studies

have suggested that applying a log transformation to the independent variables causes their distributions

to approach a normal distribution and may lead to a better model [39]. To eliminate this threat, we

applied a log transformation to the network measures and the code metrics of Firefox and reran the

analyses. We found that the conclusions for RQ3 and RQ4 did not change significantly before and after

the log transformation.

The fourth threat concerns the possibility of generalizing our findings to other systems. We studied

multiple versions of four long-lived and popular projects that vary in size, programming language, and

application domain. The data sets collected from these systems were large enough to draw statistically

meaningful conclusions. We believe that the results of our study significant contribute to empirical soft-

ware engineering knowledge regarding the usefulness of network measures in fault-proneness predictions

that consider severity. Nevertheless, we cannot assume that our results can be generalized beyond the

specific environments examined in this study. Therefore, further validation using a larger set of software

systems is required.

6 Related work

Zimmermann and Nagappan [13, 14] proposed that network measures on the dependency relationships

between binaries of Window Server 2003 were able to predict bug occurrence and numbers. Network

measures could identify 60% critical binaries twice as complexity metrics. Tosun et al. [16] reproduced

their work on three small scale software systems and Eclipse at function level and source file level. Their

results revealed that network measures were effective indicators of defective modules for large and complex

systems, but did not provide significant predictive power on small scale projects. In addition, Premraj

et al. [17] found that network measures provided no advantage over code metrics for forward-release and

cross-project prediction. Nguyen et al. [18] explored the rational behind the better performance using

network measures. They also demonstrated that predicting bugs at class level was more useful than at

higher level concerning the effort involved. These studies are all about predicting whether there is a bug

or not, while our work focuses on the criticality of bugs.

Zhou and Leung [1] made an empirical study on the relationship between object-oriented design metrics

and fault proneness of class with fault severity taken into account. They used logistic regression and

machine learning methods to investigate the ability of a subset of the Chidamber and Kemerer metrics

suite in predicting high and low severity faults of a NASA project. They found these metrics had better

prediction capability of low severity faults than high severity ones. Singh et al. [40] conducted a study

similar to Zhou and Leung on the same dataset. They studied the effect of object-oriented metrics on

fault proneness at three severity levels: high, middle and low. They concluded that the model predicted

with respect to middle severity faults had the best performance. Shatnawi and Li [41] also used object-

oriented metrics to identify fault-prone classes in Eclipse at high, middle and low severity levels. Chhillar
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and Nisha [2] predicted the number of faults at three severity categories based on a NASA dataset. Our

study is different from their work where we are interested in the capability of network measures, rather

than object-oriented metrics, in predicting fault proneness at high severity level with logistic regression.

7 Conclusion and future work

In this paper, we discussed effectiveness of network measures in fault-proneness prediction at high severity

level. By examining four open-source projects, we concluded the paper.

• Most of the network measures are significantly correlated with high severity fault-proneness.

• Generally, when used together, network measures can predict high severity faults effectively as the

selected code metrics can, and their predictive powers are comparable to those of the selected code metrics

for forward-release high severity fault-proneness prediction.

• Network measures are very unstable for cross-project predictions of high severity faults.

These results indicate, that network measures are of practical use in high severity fault-proneness

predictions. Furthermore, the results of our study provide valuable information in an important area

with limited experimental data. Our findings could help improve understanding of network measures and

guide the development of improved fault-proneness prediction models in practice.

However, in this study we only investigated the actual usefulness of network measures in the context of

classifying modules as fault-prone or not fault-prone. Thus, further examination of their ability to rank

modules according to the probability of fault-proneness is desired. In addition, the unstable cross-project

predictions inspire further research to investigate the underlying causes and to explore how to use network

measures to improve the prediction performance.
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