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Abstract Due to the low sound propagation speed, the tradeoff between high azimuth resolution and wide

imaging swath has severely limited the application of sonar underwater target imaging. However, based on

compressed sensing (CS) technique, it is feasible to image targets with merely one pulse and thus avoid the

above tradeoff. To investigate the possible waveforms for CS-based underwater imaging, the deterministic M

sequences widely used in sonar applications are introduced in this paper. By analyzing the compressive matrix

constructed fromM sequences, the coherence parameter and the restricted isometry property (RIP) of the matrix

are derived. Also, the feasibility and advances of M sequence are demonstrated by being compared with the

existing Alltop sequence in underwater CS imaging framework. Finally, the results of numerical simulations and

a real experiment are provided to reveal the effectiveness of the proposed signal.
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1 Introduction

Since 1970s, with the first patent on synthetic aperture sonar (SAS) issued in the United State [1], it

has been developing along a similar path as synthetic aperture radar (SAR). Theoretically, both of them

employ wideband waveforms to gain high-range resolution and use the synthetic aperture technique to

obtain a large virtual aperture as well as a high azimuth resolution for far-range targets imaging [2–4].

Nevertheless, it is known that there is a tradeoff between high azimuth resolution and wide swath for

synthetic aperture based imaging methods. Specifically, to obtain a high azimuth resolution and avoid

Doppler ambiguity, the pulse repetition frequency (PRF) should be larger than the Doppler bandwidth.

On the other hand, the PRF cannot be too large in order to obtain a wide swath and avoid the range

ambiguity. With the increasing demands of both azimuth resolution and imaging swath, this tradeoff

becomes more and more serious for modern SAS/SAR. Furthermore, this problem is even more severe for

underwater SAS than SAR because the underwater sound wave propagation speed is much lower than
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that of electromagnetic wave in space. As a consequence, the imaging results are much too blurred due

to the long-period uncompensated random motion between successive pulses. For example, to image a

target with only 75 m range spread, i.e., imaging swath, the PRF should be set 10 Hz approximately,

which may obviously affect the Doppler imaging as well as the ultimate azimuth resolution. Hence the set

of PRF is crucial there. On the other hand, the slow sound speed also reduces the efficiency of imaging.

This problem has long been noticed, and since the illuminative work in early 1970s [5,6], along-track

sensor array is adopted to increase the PRF physically. Motion compensation techniques [7] and phase

gradient algorithm (PGA) [8], are applied to the raw data.

Compressed sensing (CS) [9–11] is a widely discussed technique for processing sparse signals. Despite

few literature specifying CS imaging in sonar [12], CS based radar imaging methods have been proposed

in many studies [13–19]. Among them, Ref. [13] proposed seminal work for one-dimensional imaging

on range profiles, and CS was embedded into the convolution of the transmitted signal and the point

targets. By designing the transmitted signal and subsampling the convolution result, the compressive

matrix is built and an underdetermined equation is constructed. The follow-up work in SAR [14,15],

inverse SAR (ISAR) [16], SAR tomography [17], ground penetrating radar (GPR) [18], through-wall

radar imaging [19] and micro-Doppler analysis [20] is all based on this convolution framework. Adopting

convolution-based CS approach, Ref. [21] extends to leverage direct recovery of the two-dimensional

range-Doppler image. Also, the design of compressive matrix has been widely discussed in [22–27] with

different waveforms. Furthermore, many effective CS reconstruction methods have been proposed for

different scenarios [28–30].

In [21], CS provides a way to deal with the above tradeoff by forming the imaging problem into a

linear equation when a target is formulated with a set of sparse scattering points. By meticulously

transmitting the Alltop sequence as single probe signal, the compressive matrix is optimized for radar

CS imaging and high-resolution target image can be reconstructed via single pulse. In real applications,

diverse waveforms are necessary in military counter-surveillance, reconnaissance, anti-jamming, secret

observations applications, etc. Therefore, in this paper the deterministic M sequence is introduced for

CS-based sonar imaging based on the two-dimensional imaging scheme of [21]. Also, the advances of M

sequence on the recovering errors are demonstrated by being compared with the Alltop sequence. In this

paper, M sequences are adopted for CS two-dimensional imaging and the performance of M sequences is

analyzed from the view of compressive matrix. In Section 2, the two-dimensional CS imaging is reviewed.

In Section 3, the performance of M sequences is discussed in terms of compressive matrix. Numerical

simulations and a real experiment are provided to demonstrate the effectiveness of the proposed method

in Section 4. In Section 5, conclusion is drawn.

2 Two-dimensional CS imaging

The CS method is used to solve the linear problem,

y = Ax, (1)

where x ∈ C
n is a sparse unknown vector, A ∈ C

m×n (m ≪ n) is called the compressive matrix and

y ∈ Cm is the observation vector. If A is considered as a redundant basis, y is then the weighted sum of

basis with weights x.

In CS imaging framework, assume an imaging area of interest with N × N (N is a prime number)

resolvable pixels in range Doppler plane with sparse point scatterers to be imaged. Each pixel represents a

scatterer with certain range away from the sonar and Doppler caused by its radial velocity. This working

mode resembles the inverse synthetic aperture (ISA) sonar. There the Doppler relates directly to the

scatterer’s azimuth position when a target is rotating around a specified axis uniformly. Therefore, the

range-Doppler distribution may provide scatterers’ strengths and positions in two-dimensional space in

certain cases. The image can be written as a vector of x of length N2 as in (1). To resolve N pixels

in each dimension of the plane, we transmit an Alltop sequence of length N . For each of the N2 pixels
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with unit strength point scatterers, a unique echo will be generated. These normalized echoes, acting as

columns, form an N ×N2 basis as A. With N samples as y, a linear equation as (1) is thus constructed.

We define the coherence parameter µ(A) of A as the maximum of the off-diagonal coefficient of the Gram

matrix G = AHA, or

µ (A) = max
16i<j6N2

|G (i, j)| . (2)

In this case µ(A) approaches the Welch bound 1
/√

N + 1 [31], which optimizes the CS reconstruction

performance. The restricted isometry property (RIP) [10] of A follows with an overwhelming probability.

3 CS imaging with M sequence

In the above N × N range-Doppler plane, let N = 2γ − 1, γ is an integer. A periodic M sequence s(n)

with a cycle of N is transmitted with a modulation frequency fc as

f (t) =
1√
N

h (t) exp(j2πfct),

for h(t) = s(n), (n− 1)∆ < t 6 n∆, n = 1, 2, . . . , N, (3)

in one cycle, where ∆ is the bit width of the M sequence, j =
√
−1. Sound wave speed and wavelength

are represented as c and λ, respectively. Suppose targets are sparsely distributed on the plane. By

transmitting (3) for one cycle, for one particular scatterer as an example in the scene, we denote its range

R = pc∆/2, Doppler fd = q (fc/N) (p, q = 1, 2, . . . , N), and backscattering strength as g̃p,q. Its echo is

demodulated and sampled with a frequency fs = 1/∆. With 2N − 1 samples obtained, we shift and add

the last N − 1 samples with the first N − 1 samples, and then we can rewrite the first N samples of this

scatterer’s echo as

rp,q (n) = gp,q ·
1√
N

s (n− p) exp
(

j2π
q

N
n
)

, n = 1, 2, . . . , N, (4)

where gp,q = g̃p,q exp (j4πR/λ) is a complex strength. Noticeably, to avoid disturbance, in the above

process, it is assumed in this paper that all the scatterers of interest are sparsely distributed in the range of

1, 2, . . . , N and no other strong scatterers are distributed in the range of−N+1,−N+2, . . . , 0 orN+1, N+

2, . . . , 2N−1, which is fit for the imaging of an isolated underwater target. An alternative way to obtain (4)

is to modulate multiple periods of M sequence, for example s(1), s(2), . . . , s(N), s(1), s(2), . . . , s(N), . . .,

on the continuous wave for transmission. Then Eq. (4) can be directly obtained from the second N

samples of the received signal without the proposed shifting and adding operations. Eq. (4) shows one

example of the echoes, and with the different combinations of p and q, there are N2 such echoes in total.

Just as Section 2, the backscattered signal y is the weighted summation of rp,q, weighted by scatterers’

strengths. Here we denote the compressive matrix as Φ. Matrix Φ ∈ CN×N2

can be divided into N

square submatrices Φ(k) ∈ CN×N (k = 1, 2, . . . , N) as

Φ =
[

Φ(1)
∣

∣

∣
Φ(2)

∣

∣

∣
· · · |Φ(N)

]

. (5)

Each submatrix in (5) tracks N different echoes of targets with different Dopplers and the same range,

Φ(p) (n, q) =
1√
N

s (n− p) exp
(

j2π
q

N
n
)

. (6)

The strengths gp,q of the N × N pixels as (4) can be reshaped as a vector x ∈ CN2×1, where many

entries are zeros for a target with sparse scatterers. Then the sampled echo y can be rewritten as

y = Φx+ v, (7)

where v ∈ CN×1 is the noise vector caused by thermal noise, basis mismatch and external interference, etc.

Now the imaging problem is converted to the problem of reconstructing x by solving an underdetermined

linear equation. To apply the CS-based method in (7), it is shown next in the theorem that matrix

satisfies the requirements of CS.
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Theorem 1. The coherence parameter µ(Φ) satisfies

µ (Φ) = max |G (i, j)| =
√
N + 1/N, (8)

for 1 6 i 6 N2, 1 6 j 6 N2, and N = 2γ − 1.

Before proving Theorem 1, two lemmas are necessary to be introduced first.

Lemma 1. The number of −1 in an M sequence s in one period N is (N + 1) /2 and that of +1 is

(N − 1) /2. Its N points cyclic autocorrelation can be given as

Rs (n) =

{

N, n = kN,

−1, n = kN + l,
(9)

where k ∈ Z, l = 1, 2, . . . , N − 1.

Lemma 2. The XOR result of an M sequence of period N and its shift is still an M sequence of period

N [32].

Proof of Theorem 1. The proof can be divided into 3 separate cases based on the selection of i and j.

Without loss of generality, assume i < j.

Case 1. kN < i < j 6 (k + 1)N, k = 1, 2, . . . , N . It corresponds to the cases where the two columns

are picked from the same submatrix of Φ. |G (i, j)| can be simply calculated by the sum of a geometric

progression and we have |G (i, j)| = 0.

Case 2. j − i = kN, k = 1, 2, . . . , N .

|G (i, j)| = 1

N

∣

∣

∣

∣

∣

N−1
∑

n=0

s

(⌈

i

N

⌉

+ n

)

s

(⌈

j

N

⌉

+ n

)

∣

∣

∣

∣

∣

, (10)

where ⌈x⌉ represents the minimal integer that is greater or equal to x. The summation part in the

right hand side of (10) is a cyclic autocorrelation of the M sequence s(n). From Lemma 1, we have

|G (i, j)| = 1/N .

Case 3. This corresponds to the cases where the two columns are picked from different submatrices

with different Dopplers. In this case, we have

|G (i, j)| = 1

N

∣

∣

∣

∣

∣

N−1
∑

n=0

s (n+ l) s (n) exp
(

−j2πl
n

N

)

∣

∣

∣

∣

∣

. (11)

According to Lemma 2, sm (n) = s (n+ l) s (n) is another M sequence in terms of n. Then, Eq. (11) can

be reformulated as

|G (i, j)| = 1

N

∣

∣

∣

∣

∣

N−1
∑

n=0

sm (n) exp
(

−j2πl
n

N

)

∣

∣

∣

∣

∣

. (12)

Let Sm be the N -point DFT of sm. Then, for 1 6 k 6 N − 1, we have

|Sm (k)|2 =

∣

∣

∣

∣

∣

N
∑

n=1

R (n) exp

(

−j2π
k

N
n

)

∣

∣

∣

∣

∣

= |(N + 1) exp (−j2πk)| = N + 1. (13)

Consequently,

|G (i, j)| = 1

N
|Sm (k)| =

√
N + 1

N
. (14)

It is shown that the coherence parameter of Φ cannot approach Welch bound, but it can be asymptotic

to the Welch bound whenN increases. Matrices built fromM sequences present nearly the same coherence

property as Alltop sequences. It should be stated that some papers attempted to optimize the compressive

matrix [26,27], but these results may not be applied in sonar scenario directly, while M sequence is a

practically good choice. The coherence property and RIP can be tied up with Corollary 1.
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Corollary 1. Matrix Φ satisfies RIP of order K with the restricted isometry constant (RIC) δk =

(K − 1)
√
N + 1/N , for all K < N

/√
N + 1.

To prove Corollary 1, Lemma 3 is presented first.

Lemma 3. The eigenvalues of an M ×M matrix Ω, with entries ωi,j , 1 6 i, j 6 M , lie in the union of

M discs di = di (ci, ri), centred at ci = ωii, and with radius ri =
∑

i6=j |ωij | [5].
Proof of Corollary 1. Let Λ ⊆

{

1, 2, . . . , N2
}

, with |Λ| = K representing an index set, and ΦΛ is

the submatrix of Φ, composed of the columns selected by indices in Λ. Consider the Gram matrix

GΛ = ΦH
ΛΦΛ with entry denoted as GΛ (i, j), where 1 6 i 6 K, 1 6 j 6 K. From (6) and (14) we have

for i = j,

GΛ (i, i) = G (i, i) =
(

Φ(pi) (:, qi)
)H

Φ(pi) (:, qi)

=

N−1
∑

n=0

1√
N

s (n− pi) exp

(

− j2π
qi
N

n

)

1√
N

s (n− pi) exp

(

j2π
qi
N

n

)

= 1,
(15)

and for i 6= j,

GΛ (i, j) 6 max |GΛ (i, j)| 6 max |G (i, j)| = µ (Φ) . (16)

According to Lemma 3, if K < N
/√

N + 1, (K − 1)µ (Φ) < 1 or GΛ (i, j) 6 GΛ (i, i). Matrix GΛ

is positive definite, so the columns of ΦΛ are linearly independent and the eigenvalues of GΛ are in the

range of [(1− (K − 1)µ) , (1 + (K − 1)µ)]. Hence for arbitrary x with sparsity no greater than K, we

have

(1− δK) ‖x‖22 6 ‖Φx‖22 6 (1 + δK) ‖x‖22 , (17)

with the RIC δK = (K − 1)
√
N + 1/N .

Alternatively, the coherence can directly link to the recovery conditions. Corollary 2 illuminates the

relationship between the scatterer number K, i.e., the signal sparsity, and the coherence, which is a direct

result of Theorem B in [11].

Corollary 2. To image a sparse target with K scatterers in anN×N plane, ifK <
(

1 +N
/√

N + 1
)/

2,

the target can be imaged by solving y = Φx via basis pursuit (BP) or orthogonal matching pursuit

(OMP).

In reality, noise cannot be overlooked. Corollary 3 states the relationship between the sparsity K and

the coherence under noisy environment, which follows from Theorem 3 in [30].

Corollary 3. To image a target in an N × N plane with N samples when the noise ‖v‖ < ε, if the

number of scatterers of the target

K <
(√

N + 1/N + 1
)

/
(

2
√
N + 1/N + 4ε

√
N/T

)

, (18)

the target can be imaged with L1-norm error less than T , by solving the underdetermined Eq. (7) via

basis pursuit denoising (BPDN).

Both Corollaries 2 and 3 guarantee the successful imaging of sparse scatterers by using M sequences

via CS-based methods. As a remark, it should be noticed that a CS method assumes the target can be

divided by grids in advance, while in reality, the scatterers may be distributed off the centres of the grids,

and the SNR may be relatively low. Therefore, the off-grid scatterer imaging problem in low SNR with

more diverse waveforms should be discussed in the future.

4 Numerical experiments for performance analysis

4.1 General discussion of the effectiveness of M sequence

In this section, four simulations and one experiment are made to demonstrate the effectiveness of M

sequences. In the first simulation, a matrix Φ is constructed with N = 31. The transmitted sequence is
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Figure 1 (Color online) An example of M sequence, its corresponding compressive matrix Φ and Gram matrix of Φ. (a)

An M sequence of length 31; (b) compressive matrix Φ constructed from M sequence; (c) Gram matrix of Φ.
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Figure 2 The average imaging relative errors of the two waveforms.

drawn in Figure 1(a), the real part of the matrix is shown in Figure 1(b) and its Gram matrix ΦHΦ is

in Figure 1(c). It is seen from Figure 1(b) the matrix Φ inherits the randomness of an M sequence and

Figure 1(c) is an intuitive explanation of Theorem 1.

In order to compare the imaging performances of M sequence and Alltop sequence, the relationship

between the sparsity of the target K and the imaging accuracy is shown in the subsequent simulation.

For each sparsity of K ranging from 1 to 20, scatterers with random distributions and strengths in the

range-Doppler plane are generated given N = 31 with 100 trials. The average imaging relative errors (the

imaging relative error refers to the ratio of error’s L2-norm and the ground truth’s L2-norm) of the two

waveforms are plotted in Figure 2. In this simulation, no noise is added to the system, and BP is applied

to solve the equation y = Φx. It is shown that error increases with the sparsity K. Besides, under the

conditions indicated by Corollary 2, i.e., K < 4, the error is still not approaching zero. This is caused

by outliers occurred with low probability during the recovery. It is interesting to notice that M sequence

outperforms Alltop sequence under this situation. It is conjectured that in the Alltop sequence case, the

correlations of different columns from different submatrices as (5) indicates are 1/
√
N uniformly, whereas

in the M sequence case, parts of the coherences may be as low as 1/N , thus lowing the error rate. In

addition, the imaging error increases slowly when K < 10 in the M sequence case, indicating the bound

in Corollary 2 is conservative in real applications.

4.2 Performance analysis with respect to target sparsity and dimensions

In the next simulation, the successful imaging rates are compared between the above two waveforms

under different combinations of K and N . If we define the successful imaging as the cases where the

relative L2-norm errors do not exceed 5%, in this simulation, the successful imaging rates are calculated

for N < 64. For each K-N combination, 100 Monte Carlo trials are conducted, and the average errors are
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Figure 3 (Color online) Successful imaging rates of Alltop sequences and M sequences under different combinations of K

and N . (a) Alltop sequence; (b) M sequence.

ploted. The results of M sequences and Alltop sequences are shown in Figure 3(a) and (b), respectively.

The bound proposed in Corollary 2 is drawn in bold lines in the figures. It is seen that the bound is a

conservative estimation. Furthermore, the successful imaging rate of the two waveforms performs almost

the same. Alltop sequence drops dramatically when K increases. On the other hand, M sequence drops

more slowly.

4.3 Performance analysis in noisy situations

In the next simulation, a sonar imaging scenario is simulated under different signal to noise ratios (SNR).

In this case, SNRs are the ratios of the average signal energy to the average noise energy. An underwater

target is generated with K = 10 scatterers in N × N square grids. An M sequence is transmitted

with ∆ = 0.1 ms and N = 31. The sampling frequency is 10 kHz, and the imaging swath is around

4.65 m. The range resolution is 0.15 m with c =1500 m/s. The sample matrix is constructed as (5)

and (6). According to Corollary 3, K < 4 is required for a successful imaging. However in the last

experiment, Figure 3 indicates that it is possible under noisy situations to image the area with a greater

K. In this experiment, the target is imaged by BPDN algorithm. Figure 4(a) shows the target of interest

and Figure 4(b)–(d) gives the imaging result via CS with SNR ranging from 10 dB to 30 dB.

From Figure 4, it can be observed that the scatterers of target are composed of both strong and

weak scatterers. When SNR=10 dB, the strong scatterers may be imaged successfully, whereas the weak

scatterers are missing, and fake scatterers are generated. When SNR=20 dB, the phenomenon of fake

scatterers and missing scatterers vanishes, yet the imaging result is still not accurate as amplitude error

is obvious. When SNR=30 dB, the imaging result perfectly recoveries the target itself.

4.4 Real underwater experiment

In the last subsection, a real experiment is carried out to demonstrate the effectiveness of the proposed

CS-based method. A ship model with length 1.2 m is rotating with a uniform angle velocity π/2 rad/s

around a fixed spiale in the pool. The spiale is at the physical center of the model. Hence when the model

is rotating, different parts on the model will have different speeds as well as Doppler frequencies. The

further the point is with the center, the greater the speed. An M sequence with N = 127 is transmitted

with signal bandwidth 100 kHz, modulated on a 5 MHz monotonic wave. The picture of the experiment

is shown in Figure 5. The transducer is set in the upper right in the picture and the model is set in the

lower left in the picture. The SNR of received echo is about 34 dB and the CS imaging result via the

proposed method is shown in Figure 6. It is shown that the outline of the model can be recovered and

the dense scatters can be recovered along the model. The picture shows a moment when the ship model’s

head is pointing to the sonar. Hence it spreads along the range direction. A bright point can be seen in

the figure as the spiale in the middle of the model is made of medal, and it contributes to the result.
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Figure 4 (Color online) A sonar imaging example. (a) Real target in the area; (b) imaging result (SNR=10 dB); (c)

imaging result (SNR=20 dB); (d) imaging result (SNR=30 dB).

Figure 5 (Color online) The experiment layout.

5 Conclusion

Single pulse CS underwater imaging can provide a solution to the PRF design dilemma in synthetic

aperture imaging and obtain high resolution and a wide swath, simultaneously. With the increase of

code length of transmitting sequence, the imaging swath can be increased and the azimuth resolution

can be improved accordingly. It is proven in this paper that an M sequence can be a candidate waveform

for CS-based imaging, and it outperforms Alltop sequence with respect to the recovery errors. Finally,

numerical simulation and an experiment are provided to demonstrate the effectiveness of the proposed

method.
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Figure 6 (Color online) The real experiment setup and result. (a) The ship model; (b) imaging result of the ship model.
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