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Abstract A novel approach, which can handle ambiguous data from weak targets, is proposed within the

randomized Hough transform track-before-detect (RHT-TBD) framework. The main idea is that, without the

pre-detection and ambiguity resolution step at each time step, the ambiguous measurements are mapped by

the multiple hypothesis ranging (MHR) procedure. In this way, all the information, based on the relativity in

time and pulse repetition frequency (PRF) domains, can be gathered among different PRFs and integrated over

time via a batch procedure. The final step is to perform the RHT with all the extended measurements, and

the ambiguous data is unfolded while the detection decision is confirmed at the end of the processing chain.

Unlike classic methods, the new approach resolves the problem of range ambiguity and detects the true track

for targets. Finally, its application is illustrated to analyze and compare the performance between the proposed

approach and the existing approach. Simulation results exhibit the effectiveness of this approach.
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1 Introduction

In airborne radars, high pulse repetition frequency (HPRF) mode is widely used to provide an accurate

velocity measurement against the clutter environment. However, with HPRF mode, radars may suffer

from range ambiguity [1–3]. With the great development of stealthy technology, the newly available weak

objects also bring new challenges to the target detection and tracking methods.

There are many classical techniques available for resolving range ambiguity, such as signal process-

ing methods [4, 5], Remainder Theorem method (RT) [6, 7], Residues Difference Lookup Table method

(RDT) [8] and hybrid filter method [9,10]. However, these methods have various drawbacks, as they rely

on either the lower measurement error in the case of the signal method, or the higher signal-noise-ratio

(SNR) in the case of the other methods. In [11, 12], the track before detect (TBD) approach is applied

to process the data in HPRF radar, and a particle filter based TBD method (PF-TBD) is proposed to

deal with ambiguous data for weak target. Although this is proved to perform well for weak targets

with lower SNR, there exist two fundamental issues. Particle filter is so computationally expensive that
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this approach is not practically achievable. The other drawback is that the spread measurements of high

resolution may be required in order to suit the algorithm model, which, however, is unavailable for those

commonly used medium/low resolution radar.

To address the above limitations, a randomized Hough transform based track before detect (RHT-

TBD) approach is presented within the framework of multiple hypothesis mapping. In this method, the

ambiguous measurements are adopted to offer spatial-temporal information for the implementation of

TBD, which could be very valuable in helping tracking and detecting weak targets via HPRF radar.

The major advantages of this novel RHT-TBD method are profoundly manifested in its better tracking

performance and lower computational complexity compared to the PF-TBD method.

The content of this paper is organized in five sections as follows. Section 1 introduces the background

and aim of this paper. In Section 2, the system dynamics model, system ranging model and system

observation model are set up in a general scenario, and the tracking and detection problem in HPRF

radar is described. The principle of our proposed method is presented in Section 3, along with its

implementation. The simulation results are given in Section 4 and conclusion is finally summarized in

Section 5.

2 System model and problem description

Before presenting our approach, let us review some basic concepts. For convenience, consider a general

dynamic system as follows:
{

Xk = f(k,Xk−1) + Vk−1,

Zk = h(k,Xk) +Wk,
(1)

where Xk ∈ R
n denotes the state of the target at time scan k with transition function f , Zk ∈ R

m

denotes the measurement with observation function h. The state noise Vk−1 and the measurement noise

Wk are assumed to be independent and identically distributed processes.

2.1 System dynamics model

For the sake of simplicity, a single target moves with constant velocity in the X-Y plane is considered for

a TBD scenario. At time scan k, the target state is defined as

Xk = [xk, ẋk, yk, ẏk, εk]
T, (2)

where (xk, yk), (ẋk, ẏk) and εk denote the position, velocity and the radar cross section (RCS) of the

target, respectively. In general, it is assumed that the target RCS is not fluctuating. To model the

moving dynamics of this target, we use the Newtonian equations of motion, whose discrete form can be

written as follows:

Xk+1 = FXk +Gvk, (3)

where F is the state transition matrix, G is the process noise distribution matrix:

F =
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where T is the sensor sampling period, and vk denotes the zero-mean white Gaussian process noise with

zero mean and diagonal covariance matrix Q :

Q =









σ2
x 0 0

0 σ2
y 0

0 0 σ2
ε









, (6)

where σ2
x and σ2

y are the acceleration process noise variance in X and Y direction, respectively, and σ2
ε

is the RCS variance.

2.2 System ranging model

Ranging is one of the basic functions for radar, which is realized based on the time delay between the

transmission of a radar pulse and the reception of the corresponding echo. If the measured time delay

from transmission to the received target echo pulse is tR, the target range can be written as

R =
1

2
ctR, (7)

where c is the velocity of light. According to (7), the maximum accuracy range one can determine is

Ru = 0.5cTr, given the radar pulse repetition interval (PRI) Tr, where Ru is normally called the maximum

unambiguous range (MUR).

In HPRF radar, the PRI is so low that the target echo of interest may arrive at the radar with delay

greater than the PRI, leading to a possible ambiguous time delay:

tamb ≡ ttrue mod (Tr), (8)

where ttrue is the true delay time between the transmission pulse and the corresponding target echo and

mod(·) implies modulo of the true delay time. In this situation, an ambiguous range r̃ may be derived

from the function (7), giving a smaller range reading than the true range rtrue:

r̃ =
1

2
ctamb = rtrue mod (Ru). (9)

2.3 System observation model

Let us assume that there is a two-coordinate radar located at the origin of the system coordinate, which

observes a region in the X-Y plane. A useful mode of radar operation is used in our scenario, in which

three PRFs switch in sequence among different scans. It is assumed that the set of PRFs is denoted by

Frf , f = 1, 2, 3. Suppose the fth PRF, Frf among the above set, is selected, then the corresponding PRI

and MUR can be written as

Trf =
1

Frf
, (10)

Ruf =
1

2
cTrf . (11)

At each time scan k, the radar provides a set of measurements Zk = {z
(i,j)
k }. The element z

(i,j)
k

indicates the echo intensity value of the (i, j) pixel in the observation image, where i = 1, 2, . . . , Nx and

j = 1, 2, . . . , Ny j = 1, 2, . . . , Ny. Each pixel represents a region in the plane of size ∆x × ∆y. Let

xmin, ymin represent the minimum detection range in the corresponding direction, thus the (i, j) pixel is

centered in [xmin + (i− 0.5)∆x, ymin + (j − 0.5)∆y].

If a point target Xk = [xk, ẋk, yk, ẏk, εk]
T is present in the observation region, the sensor will receive

a target return echo and pass it to the signal processing component, producing a reading. However, in

HPRF radar, the target will appear to be much near than the true position, when its distance exceeds
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the MUR of radar. According to (8), the relationship between the measurement space and the target

state can be established as follows.

Apparent target range:

r̃k =
√

x2
k + y2k mod (Ruf ) + wr. (12)

Target azimuth:

αk = arctan

(

yk
xk

)

+ wα, (13)

where wr and wa are the measurement range error with variance σ2
r and the measurement azimuth error

with variance σ2
a, respectively, then by a coordinate transformation from polar coordinates to Cartesian

coordinates, one can get the apparent target position (χk, γk):

{

χk = r̃k sin(αk),

γk = r̃k cos(αk),
(14)

and its corresponding pixel (Ik, Jk) in the echo image:















Ik = Int

(

χk − xmin

∆x

)

,

Jk = Int

(

γk − ymin

∆y

)

,

(15)

where the function Int(·) means to take the closest integer of the variable. Therefore, the measurement

of the (i, j) pixel can be written as

z
(i,j)
k =

{

h
(i,j)
k (Xk, εk) +w

(i,j)
k , if i = Ik and j = Jk,

w
(i,j)
k , else,

(16)

where h
(i,j)
k (Xk, εk) denotes the reflection power at pixel (i, j) from the target Xk, and w

(i,j)
k is the

complex Gaussian noise sequences with variance σ2
w. Hence, the signal to noise ratio (SNR) can be

written as

SNR = 10 log
h
(i,j)
k (Xk, εk)

σ2
w

. (17)

According to [13], h
(i,j)
k (Xk, εk) will be

h
(i,j)
k (Xk, εk) =

PtG
2
t εkλ

2

(4π)3 r4true
, (18)

where Pt is the radar transmitting power, Gt is the antenna gain, εk is the RCS of target and λ is the

wavelength of the radar signal.

2.4 Problem analysis

Based on the above assumption, the tracking problem can be formulated as determining the trajectories

according to the measurements set. However, the classical tracking methods cannot perform efficiently

here, because the measuring position of targets, in HPRF radar, will be different from its true position.

Additionally, the difficulty will increase significantly in the case of weak targets, for the false alarm or

miss detection caused by low SNR. For high SNR, the problem can be decomposed into a three-stage

process, the detection step, the ambiguity resolution step and the track forming step. In the first step,

a detection threshold is used to eliminate undesired interference (like clutter or jamming), where the

output are the ambiguous measurements. The next step is to resolve the measurement ambiguity with

some classical method, such as the RT and the RDT. Finally, tracks are made from these unambiguous

measurements by means of data association and filtering. Unfortunately, the above approach does not
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comply in the case of lower SNR, where the decision of the detection threshold fails to find an acceptable

compromise between false alarm and miss detection.

For low SNR targets, an alternative approach, referred to as TBD, is usually used to improve detection

performance and tracking accuracy. Different to the classical approaches which may result in information

loss, TBD makes the detection decision using the track results over time, in which the information is

integrated over multiple scans [14,15]. This is acceptable in general low PRF system. However, in HPRF

radar, which provides ambiguous measurements, there will be some difficulty in implementation of TBD.

The reason is that the ambiguous measurements may destroy the continuity of target plots along the

trajectory, which is essential for accumulating information in the frame of TBD.

Therefore, tracking weak targets with ambiguous measurements will be of great difficulty since the

trajectory is folded in the measurement space, and the classical tracking strategy must be redesigned to

suit the weak target in HPRF radar.

3 Proposed algorithm introduction

In this section, a RHT-TBD approach within the framework of multiple hypothesis mapping will be used

to solve our problem. In this method, a multiple hypothesis ranging process (MHR) is firstly used to

extract the spatial-temporal information from the ambiguous measurements. Then the RHT approach

is applied into the framework of TBD, which tracks and detects weak targets via HPRF radar. Further

details are given in the next section.

3.1 Multiple hypothesis ranging

For convenience, consider a target trajectory wholly in the first quadrant of the radar observation region.

Given the minimum detectable signal of the radar, Smin, the maximum detection rang Rm can be written

as [13]

Rm =

[

PtG
2
t εkλ

2

(4π)
3
Smin

]1/4

. (19)

Thus, according to the assumption in Section 2, the ranging region of radar can be divided into several

range ambiguity intervals (RAI), Sl
f , l ∈ [0, . . . , Lf ] (see Figure 1). And Sl

f represents a torus between

two circles, of which the radiuses are (l− 1) ·Ruf and l ·Ruf , respectively. The set of integers [0, . . . , Lf ]

is referred to as the pulse interval numbers (PIN), with Lf determined by the maximum detection rang

Rm:

Lf = Int(Rm/Ruf ). (20)

Let the sequence of A,B,C and D, marked with red asterisks, be the true target position, which is ap-

parently continuous in the real-world space. However, in the measurement space, the apparent trajectory

becomes the discontinuous sequence of a, b, c and d, due to the range folded effect in HPRF radar [11].

Thus, the traditional TBD method must be modified to deal with those discontinuous measurements. To

extract the spatial-temporal information from the discontinuous measurements, the multiple hypothesis

idea [16] is incorporated into our method, which is called the multiple hypothesis ranging (MHR) proce-

dure. Consider the apparent plot a for example, of which the apparent range, azimuth and echo intensity

are r̃fk , αk and ϕk, respectively. Since, in practical application, the true position of plot a is unknown,

it may come from every RAI. In our method, a vector of possible ranges can be created by mapping the

apparent position into each of the RAI area as follows:

r̄fk (lf ) = (lf − 1)×Ruf + r̃fk , lf = 1, . . . , Lf . (21)

Considering the unambiguous azimuth αk, the possible positions [x̄f
k(lf ), ȳ

f
k (lf )] of plot a, can be

written as follows:
{

x̄f
k(lf ) = r̄fk (lf ) · cosαk,

ȳfk (lf ) = r̄fk (lf ) · sinαk,
lf = 1, . . . , Lf . (22)
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Figure 1 Illustration of MHR mapping. Figure 2 Measurements after MHR processing.

Similarly, all of the four plots a, b, c and d can be mapped into the MHR space as marked by hollowed

circles in Figure 1. The number at the bottom of each circle denotes the PIN to the corresponding

possible position of each plot.

From Figure 1, one can see that there surely exist such a set of PINs enabling the possible positions

of a, b, c and d to coincide with the true positions A,B,C and D in the coordinate. From this point of

view, the problem of ambiguity resolving can be reduced to the simple tracking problem, i.e. extraction

of the target position from the possible positions.

3.2 Randomized Hough transform based TBD

Considering the low SNR of weak targets, where clutter or noise may cause strong interference, the

measurement environment must be far more complex than that in Figure 1. According to the system

observation model in Subsection 2.3, measurements of the target with low SNR (3 dB, for example)

exceeding a primary threshold can be mapped by the MHR method into the possible RAI spaces as

shown in Figure 2.

In Figure 2, the brightness of each pixel location corresponds to the intensity resulting at that location,

originating from either targets or undesired interference. The panel on the top right is the original

ambiguous measurements within a scanned sector of radius Ruf . After MHR processing, the original

data are mapped into all the possible RAI space, illustrated by the bottom-left panel in the figure, where

the cross indicates target true position. In this way, the discontinuous measurements of our interest

become linear in the MHR space, making possible the echo intensity integration over time by TBD.

Hence, the complex problem of HPRF radar weak targets detection and tracking can be simplified to the

general TBD problem.

To extract the desired target position, the randomized Hough transform (RHT) is applied to accumu-

lating the target information in each bin of the MHR measurements. Before presenting the RHT method,

let us review the standard Hough transform (HT), in which the difficulty of global detection in data space

can be reduced to the much simpler peak detection in parameter space [17]. As illustrated in Figure 3,

each measurement point (x, y) in the Cartesian coordinates can be mapped to a sine curve via

ρ = x cos θ + y sin θ, θ ∈ [0,π]. (23)

By discretizing the HT parameter space with resolution ∆ρ and ∆θ, a set of accumulators is generated

with each cell corresponding to a belt in the measurement space. From Figure 3, we can see that for a set

of points (xi, yi) , i = 1, 2, 3 lying in a straight-line, there is surely a pair of parameters (ρ0, θ0), satisfying

yi =
ρ0

sin θ0
−

1

tan θ0
xi, (24)



Yu H B, et al. Sci China Inf Sci December 2016 Vol. 59 122304:7

θ

ρ

00

HT

x

y
( )0 0
ρ ,θ

( )1 1
x ,y

( )2 2
x ,y

( )3 3
x ,y

( )4 4
x ,y

0

0

Figure 3 Sketch map of Hough transform.

and the points without this straight-line cannot be mapped into (ρ0, θ0), such as the point (x4, y4).

In other words, a set of points can be accumulated in a parameter cell by HT, if and only if they

belong to the same straight-line. Hence, if one detects the peak cell in HT space, the corresponding

straight-line can be estimated by inverse HT transformation. Unfortunately, the implementation of

HT is rather computationally involved, which prevents it from practical application in our approach. For

processing the great number of measurements in MHR space, the RHT is used to reduce the computational

complexity [18, 19]. The RHT is an improved algorithm for the standard HT. Unlike the standard HT,

which can be viewed as a one-to-many mapping, RHT defines a many-to-one mapping from a set of

measurement points to some parameter cell. In the RHT, points in the Cartesian coordinates are mapped

to the most possible parameter cell rather than all the possible cells as in the standard HT, which will

greatly reduce the computational requirements. Let D = {di}, i = 1, 2, . . . , I be the set of all points in

MHR space, where di = {(xi, yi, ϕi)} denotes the center of the resolution cell in X and Y direction, and

the corresponding echo intensity, respectively. We randomly choose two points di and dj out of the set

and a parameter pair (ρu, θv) can be written by solving the following equation:

{

ρu = xi cos θv + yi sin θv,

ρu = xj cos θv + yj sin θv.
(25)

Such that, the two point’s intensity can be accumulated in the parameter cell (ρu, θv):

(ϕm + ϕn) → H(u, v), (26)

where H(u, v) indicates the intensity accumulator array with respect to the parameter cell (ρu, θv).

Assuming that the undesired interference is distributed randomly across the observation region, MHR

measurements originating from the same target will be mapped into the same parameter space accumu-

lator, while measurements from the strong interference will be mapped randomly across the parameter

space. After a certain number of sampling, one can get the histograms of accumulation intensity, in which

the accumulator cell defining the target trajectory will contain more intensity than others. Consequently,

the unambiguous track can be detected by searching peaks in the parameter space. Finally, the corre-

sponding PIN of original measurement can be achieved by reverse mapping from the detected trajectory

to the MHR space.

3.3 Implementation of the algorithm

By combining the RHT method with a MHR procedure, we obtain the proposed RHT-TBD approach

for tracking and detecting weak targets in HPRF radar, which consists of 7 steps, see Figure 4. Given

the system model as described in Section 2, the proposed algorithm proceeds as follows:

Step 1. Primary threshold

At each time scan, a lower primary threshold is set in the measurement space, against which the

raw data is compared. The output of this function is the ambiguous measurements. Since the main

objective of this step is to reduce the computation load, the primary threshold must allow most of the
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Figure 4 System block diagram.

radar returns. In this way, all of the target information can be preserved while much of the clutter is

eliminated. Generally, the primary threshold is given in the form of the desired value of the primary

probability of false alarm [14]:

η1 = − ln(Pfa), (27)

where Pfa denotes the desired probability of false alarm.

Step 2. MHR processing

In this step, measurement pixels exceeding the primary threshold are mapped into all the possible RAI

spaces by the MHR procedure, generating the MHR readings. Since the RHT method uses data over a

batch of measurements, we apply sliding window storage (length m) to improve the real-time property

of the algorithm. Each entry in the window represents a complete MHR scan necessary for performing

the RHT-TBD processing. When a new scan is inserted into the window, the oldest scan is shifted out.

Hence, the column size of the sliding window is kept constant to m scans.

Step 3. RHT mapping

We are now ready for performing the RHT in the framework of TBD, and this step is comprised of

three procedures.

First, initialize the parameter space, and let all the bins in the accumulation array H(u, v) be zero;

Second, let D denote the set of all the MHR measurements from MHR window. Randomly pick n-point

pairs (di, dj) from D, and solve the parameter point (u, v) using the curve equation (28) with (di, dj);

Third, accumulate the corresponding accumulator cell H(u, v) in parameter space and continue with

the second procedure.

Step 4. Peak detection

The RHT mapping step must run long enough to get a global peak detection in the parameter space.

Then each accumulator cell is normalized to unit power before comparing to a preset threshold Nη. The

cell reaching Nη describes the parameter of a detected target, as a peak H(up, vp).

Step 5. Track estimate

By the inverse RHT mapping, those higher peaks are transformed to a set of potential target pots

in the MHR image. However, these pots are not the actual target track, since there are some false

measurements. Therefore, a data association procedure is needed to make best use of the sequence order

and the prior knowledge, which finally establishes the correct track estimate.

Step 6. Ambiguity resolving

Finally, the corresponding PIN of each PRF can be achieved by the reverse mapping from the detected

trajectory to the raw data. Thus, we succeeded in solving the range ambiguity problem.
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Table 1 Parameter set

Parameter Value

Radar sampling period (s) T = 2

Total simulation scans K = 25

Radar transmit power (km) Pt = 10

Radar Wavelength (m) λ = 0.1

Radar antenna gain G = 104

Radar maximum detection range (km) Rm = 150

Range measurement error standard deviation (m) σr = 100

Azimuth measurement standard deviation σb = 0.5◦

Pulse repetition frequency (PRF) (kHz) Fr1 = 119, Fr2 = 114, Fr3 = 194

Target RCS (m2) σ = 10

4 Simulations and discussion

In order to test the performance of this novel method, a generalized scenario is applied in this section.

4.1 Simulation scenario

A two-dimensional coordinate example is presented in our simulation. It is assumed that a target moves

towards the sensor with a constant velocity of (0.12 km/s, 0.33 km/s), and the initial position is at

(27 km, 38 km) in the X-Y plane. Data is simulated according to the models given in Section 2, and the

measurement plots comprise range, azimuth and echo intensity. The target azimuth is measured relative

to the true north at the radar location and the radar is at the origin of the coordinate system. Other

parameters used in this simulation are listed in Table 1.

Substituting the above PRF value into (10) and (11) yields the corresponding PRI and MUR, Tr1

= 8.4 µs, Tr2 = 8.8 µs, Tr3 = 5.2 µs, and Ru1 = 1.26 km, Ru2 = 1.31 km, Ru3 = 0.77 km. Based on

the above scenario, the proposed RHT-TBD method and the PF-TBD method from [11] are separately

used to track and detect weak targets in HPRF radar. The simulation lasts 25 time steps and 100 runs

of Monte Carlo simulation are performed to compare the performance between the two methods. To test

the detection performance, simulations are made with respect to different SNR conditions (9 dB, 6 dB,

3 dB).

The simulated scenarios are given in Figure 5(a)–(c), where the peaks indicate the target echo in the

presence of Rayleigh noises with different SNRs. In Figure 5(a), the SNR is higher and it is easy to discern

the target plots with high peaks, while in Figure 5(c) with lower SNR, it is not possible to distinguish the

target from the noise. And in Figure 5(b), where the SNR is a compromise between Figure 5(a) and (c),

only a part of target plots can be extracted from the image. Since the sensor is located at the origin of

the system coordinate in our scenarios, the distance between the sensor and target exceeds the MUR of

three PRFs, which will result in ambiguous measurements. Figure 5(d)–(f) illustrate the corresponding

measurements with three SNRs, where the brightness of each pixel location indicates to the intensity

at that location, originating from either targets (marked with white circle) or undesired interference.

Figure 5 shows that the target plots, in the case of HPRF, become discontinuous in comparison with the

real trajectory as in the simulated scenario. Furthermore, the lower SNR will increase the difficulty of

target detection.

4.2 Effectiveness analysis

Generally, the TBD algorithm is used to track and detect weak targets with lower SNR. The traditional

TBD, however, is unsatisfactory in this situation, since the discontinuous measurements prevent the target

information from accumulating over time and position. Owing to the MHR procedure, the proposed

approach can convert the discontinuous measurements into the normal state, which can be used in the

framework of TBD.
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Figure 5 The simulated scenarios and the associated ambiguous measurements with different SNRs. Simulated scenario

with (a) SNR = 9 dB; (b) SNR = 6 dB; (c) SNR = 3 dB; and measurements with (d) SNR = 9 dB; (e) SNR = 6 dB;

(f) SNR = 3 dB.
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Figure 6 The MHR measurements with different SNRs. (a) SNR = 9 dB; (b) SNR = 6 dB; (c) SNR = 3 dB.
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Figure 7 RHT parameter space mesh plot. (a) SNR = 9 dB; (b) SNR = 6 dB; (c) SNR = 3 dB.

Figure 6 shows the processed measurement results after the MHR procedure, where the major data in

each of the three diagrams is a zoom-in version of the associated lower-right boxed region. From Figure

6, we can see that the measurement outputs from HPRF radar, which are discontinuous and ambiguous

(see Figure 5(d)–(e)), have been restructured to provide a location near its real position (marketed with

white circle). With the MHR procedure, the weak target can be tracked and detected. Next, the RHT

approach is applied into the framework of TBD.

Figure 7 shows the RHT parameter space based accumulated power with different SNRs, corresponding
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Figure 8 Potential target tracks detected with threshold Nη = 0.9. (a) SNR = 9 dB; (b) SNR = 6 dB; (c) SNR = 3 dB.
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Figure 9 RHT-TBD estimated target track with different SNRs. (a) SNR = 9 dB; (b) SNR = 6 dB; (c) SNR = 3 dB.

to the MHR measurements in Figure 6. Note that, the accumulated array here has been normalized to

unity. To declare target detections, the parameter cells must be compared against a preset threshold Nη.

The choice of Nη is a significant issue to the implementation of the TBD, since a higher threshold may

filter out the actual target track while a lower threshold lead to a great number of potential target paths.

In this paper, Nη = 0.9 is used as an acceptable compromise between these contradictory requirements,

which is denoted by a gray surface in each mesh plot. Higher peaks that exceed the threshold are declared

as potential targets, which correspond to a set of plots in the MHR image. By an inverse RHT process,

those higher peaks are mapped to a set of potential target tracks, see Figure 8. From Figures 7 and 8,

we can see that, with a higher SNR, only one peak cell exceeds the detection threshold, which produces

a potential target tracks with few false plots, while a lower SNR results in many potential target tracks

and thus leading to a large number of false plots.

Now, we get a set of possible tracks after a threshold process, by which almost all the undesired

interferences are eliminated. However, the actual target track is not achieved, since there are some false

plots in the potential target tracks. This may be realized by a data association approach in relation to the

sequence order of measurements and the prior knowledge of targets. Finally, we arrive at the estimated

track as shown in Figure 9.

Next, let us consider the detection performance of the proposed method. The RHT-TBD is imple-

mented in the data domain of radar measurements, where the main idea is to realize the non-coherent

integration of target intensity along the potential trajectory. Based on the correlation of the signal’s

amplitude regardless of the phase information [20], the application of RHT-TBD must meet the foun-

dational premise where the mean amplitude of the target is higher than that of the noise. Therefore,

the lower limit of SNR for the RHT-TBD method is 0 dB in theory. For lower SNR below 0 dB, the

target peaks might be submerged by the powerful noise peaks, which will invalidate the non-coherent

integration of RHT-TBD. To further improve the SNR of weak target, the focus before detect (FBD)

approach is proposed in [20–22], in which both the amplitude and phase information can be used to

realize the coherent integration of target intensity. With the Doppler compensation function, the FBD

provides a new way to further improve the SNR for weak target detection, and it can be applied in case

where the simple integration of TBD would be inefficient because of the lower SNR. In future work, we
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Figure 10 Comparison in detection performance between two approaches with different SNRs.

would consider the combination of FBD and the proposed method in this paper, and gain insights about

this problem.

4.3 Performance comparisons

To further illustrate the performance of our proposed RHT-TBD approach, a comparison to the PF-TBD

approach in [11] is given based on the above scenario, under the condition that the number of particles

is set to NPF = 3000 and the target survival probability is pexist = 0.95 as in [11]. The results for the

experiments are depicted in Figures 10 and 11, and they were obtained by averaging over 100 runs of

simulations.

Figure 10 shows the average probability of correct detection for different SNRs with the primary

probability of false alarm as Pfa = 10−3. It can be seen that the detection probability of both methods

decreases with the decreasing SNRs. The proposed approach, of which the detection probability exceeds

90% with three SNRs, is much less sensitive to SNR than the PF-TBD algorithm. For the high SNR, the

RHT-TBD method provides a much lower performance in detection than that of the PF-TBD approach,

while for the low SNR, it is vice versa. The reason is that, with lower SNR, the relatively high noise

may produce a much more uniform distribution of the particle weights in PF-TBD, which leads to an

inaccurate particle model in the resampling stage, and thus resulting in a lower detection performance.

However, as a patch process, the RHT-TBD may reduce the high noise effect of lower SNR, since the

position cell of the noise spikes are uncorrelated from scan to scan. If only the mean amplitude of the

target is higher than that of the noise, the target peaks resulting from the non-coherent integration

along the target true trajectory would exceed that along the false trajectory. Therefore, the detection of

RHT-TBD outperforms that of PF-TBD in lower SNR.

Figure 11 compares the tracking results of two methods in the form of tracking position root mean

square errors (RMSE). Simulation result shows that, based on the correct detection, both of the two

approaches may accurately estimate the target track. During the first several steps, the track estimation

of is a bit indecisive with fluctuating RMSE, however it converges to the true trajectory after some scans.

With the SNR increasing, the RMSE for both methods gradually reduces, thereby the smaller the RMSE,

the more accurate the track estimate. It can also be seen that the tracking accuracy of the proposed

method is superior to that of the PF-TBD.

Finally, let us consider the computational complexity of the above two methods. Being an iterative

method comprising of seven steps, the PF-TBD approach is computationally extensive, which is its main

drawback. At each iteration, the computational complexity of this multiple-step processing algorithm

can be expressed as the sum complexity of all steps. The PF-TBD approach has 4 major computational

units: sampling period, particle prediction, weight computation, and state estimate, of which the particle

prediction step and the weight computation step take the most calculations among the whole process. If

n is the number of particles, then the time complexity of the particle prediction step is O(n2) [23]. In

order to accumulate all the information of the weak target, the measurement in the PF-TBD algorithm is

extended to the form of point spread function. Thus, the weight computation operation is of complexity

O(nmmx), where m,mx denote the number of measurement pixels and the dimension of the measurement
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Figure 11 Comparison in tracking performance between two approaches with different SNRs. (a) SNR = 9 dB; (b) SNR

= 6 dB; (c) SNR = 3 dB.

Table 2 Average time used for two methods with different SNRs

SNR 3 dB 6 dB 9 dB

PF-TBD 2.177 s 2.175 s 2.125 s

RHT-TBD 1.386 s 1.162 s 0.800 s

vector respectively. The whole procedure of PF-TBD has time complexity at least O(n2) + O(nmmx),

where mx = 3 according to [11]. As a batch procedure, the proposed RHT-TBD method is much less

complex. According to [24], its computational complexity is of the order much lower than O(rtm
px),

where rt is a small number, and px represents the dimension of the parameter space, in this paper px = 2.

Overall, the proposed RHT-TBD approach has a great advantage in the computational complexity over

the PF-TBD approach. To validate this, experiments on the same scenario with different SNRs have been

carried out. The time reported is for a standard computer running Matlab 7.0 under the Windows XP

operating system. The platform is a microcomputer consisting of four Intel(R) Core(TM) Quad CPUs

(2.33 GHz). Table 2 shows the average time from 100 trials of simulations, from which, we can reach the

following conclusion:

1. The proposed RHT-TBD approach has a great advantage in the computational complexity over the

PF-TBD approach;

2. The lower the SNR, the longer would be the processing time. Since the low SNR will result in

more false measurements exceeding the primary threshold, the average running time, for both of the two

methods, grows linearly with the decreasing SNR;

3. With increasing SNR, the average time for PF-TBD drops slowly while that for RHT-TBD drops

much more quickly. The reason is that the computational complexity of RHT-TBD depends largely on the

amount of current measurements. However, the main factor which affects the computational complexity

of PF-TBD is the number of sampling particles.

5 Conclusion

A novel RHT-TBD based approach, which can handle ambiguous data of weak targets, is proposed

and evaluated in this paper. To make best use of the relative information hidden in the ambiguous

measurements, a multiple hypothesis ranging procedure is incorporated into the TBD framework for

the first time, which is capable of integrating the data energy along potential target trajectory. The

ambiguous data is revaluated while the track detection is made at the end of the processing chain, which

directly estimates the target position, avoiding the loss tracking of the weak target. Different to classic

methods, the proposed approach transforms the problem of range ambiguity resolution into the decision of

the real track for targets, which provides a new outlook to such problem. Finally, illustrative simulations

are given to compare the performance between the proposed approach and the PF-TBD, with respect

to different SNR. The results demonstrate that the proposed algorithm provides great advantage in the

detection and tracking of the weak targets in HPRF radar. Besides, its computational complexity is
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much less than that of the PF-TBD method.
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