
. INSIGHT .

SCIENCE CHINA
Information Sciences

November 2016, Vol. 59 118101:1–118101:3

doi: 10.1007/s11432-015-0882-6

c© Science China Press and Springer-Verlag Berlin Heidelberg 2016 info.scichina.com link.springer.com

Model checking concurrent systems with MSVL

Nan ZHANG, Zhenhua DUAN* & Cong TIAN*

Institute of Computing Theory and Technology, Xidian University, Xi’an 710071, China

Received March 3, 2016; accepted April 22, 2016; published online October 10, 2016

Citation Zhang N, Duan Z H, Tian C. Model checking concurrent systems with MSVL. Sci China Inf Sci, 2016,

59(11): 118101, doi: 10.1007/s11432-015-0882-6

Model checking, proposed by Clarke and Emer-
son [1] as well as Queille and Sifakis [2], is an auto-
matic verification approach for hardware and soft-
ware systems. However, as Clarke pointed out [3],
model checking suffers from (1) the state explo-
sion problem, which is typically caused by mod-
els growing exponentially in the number of paral-
lel components or data elements of an argument
system; (2) different notations used to model a
system and required properties; (3) the expressive
power of most often used temporal logics such as
Linear Temporal Logic (LTL) and Computation
Tree Logic (CTL) being weak. To conquer these
problems, computer scientists have made signifi-
cant progress to the original model checking. The
most significant improvements are compositional,
partial order [4], symbolic [5], bounded [6] and ab-
stract model checking [7, 8].

The Unified Model Checking (UMC) approach
proposed in [9] is based on Projection Temporal
Logic (PTL) [10]. An outline of the algorithm
is shown in Figure 1(a). With this approach,
both system models and desired properties are
described by the same formal language, namely,
Modeling, Simulation and Verification Language
(MSVL) [10] which is a subset of PTL. To verify
whether or not a system satisfies a property, the
system is modeled as an MSVL program P and
the property is specified by a formula φ of Propo-
sitional PTL (PPTL) which is the propositional

subset of PTL [10] or an MSVL program. To check
whether P satisfies φ amounts to proving whether
P → φ is valid (|= P → φ), which is equivalent to
proving unsatisfiability of P∧¬φ. Thus, the model
checking problem is equivalent to the satisfiability
problem in PPTL since any finite state program
in MSVL such as a hardware system description is
equivalent to a PPTL formula [11]. However, the
current version of MSVL has been extended with
plenty of complex types such as float. As a re-
sult, an MSVL program may not be a finite state
program. That is the state space of an MSVL
program may be infinite. To abstract an MSVL
program as a finite state program, Counter Exam-
ple Guarded Abstract Refinement (CEGAR) [12]
and Dynamic Symbolic Execution (DSE) methods
are employed. Furthermore, in [13, 14], we have
proved that PPTL is decidable and given decision
procedures. With these procedures, a PPTL for-
mula is satisfiable if and only if there is a valid
path in its Labeled Normal Form Graph (LNFG).
Therefore, the problem of checking whether or not
P satisfies φ is eventually turned to the problem
of checking whether or not the LNFG of P ∧ ¬φ
contains a valid finite or infinite path. If not, the
property is valid otherwise an acceptable path of
the LNFG determines a counter example.

C programming language is popular in the
world. However, C programs are complicated and
error prone. How to verify C programs is a big

*Corresponding author (email: zhhduan@mail.xidian.edu.cn, ctian@mail.xidian.edu.cn)

The authors declare that they have no conflict of interest.

Zhang N, et al. Sci China Inf Sci November 2016 Vol. 59 118101:2

challenge to computer scientists and engineers. Al-
though some verification tools such as CBMC,
BLAST and SLAM, etc. [15–17] for C programs
are available, their effectiveness and efficiency are
limited. This encourages us to develop a technique
and a translator for transforming a C program into
an MSVL program. Thus, verification of a C pro-
gram can be done by means of verifying an MSVL
program.

Furthermore, Verilog and VHDL languages
dominate hardware designs and descriptions. How
to verify Verilog/VHDL programs is also a chal-
lenge since a lot of embedded real time systems are
realized using Verilog/VHDL. To guarantee the
correctness and reliability of these systems, lots of
simulations and tests have to be conducted since
very few verification tools are available. Therefore,
we are motivated to formalize a mechanism and
develop a translator to transform a Verilog/VHDL
program to an MSVL program so that the verifi-
cation of Verilog/VHDL programs can be done by
meas of verifying MSVL programs.

In addition, we have proved that the expres-
siveness of PPTL is full regular [18], hence it sub-
sumes LTL and CTL. As a result, two kinds of
properties can now be specified and proved using
PPTL which cannot be defined by LTL or CTL:
(1) interval sensitive properties; for instance, a
property R holding after 100 time units and be-
fore 200 time units over an interval can be de-
fined by len(100),3R, len(200); (2) periodically re-
peated properties; for example, even order prop-
erty, that is, an atomic proposition Q holding at
each even state ignoring odd ones over an interval
can be defined by (Q∧©2(Q∧ε))∗. Since a PPTL
formula can be transformed to an LNFG which
can further be transformed to a Büchi Automaton
(BA) [19], thus, this facilitates us to formalize and
develop a partial order model checker PMC4PPTL
based on SPIN [4], symbolic and bounded model
checkers SMC4PPTL and BMC4PPTL based on
SMV [5, 6], and 1-safe Petri Nets model checker
PNMC4PPTL based on Reachability Graph (RG).
Our method has some advantages. For instance,
(1) the model and property of a system can be
described in the same logic; (2) the model check-
ing algorithm relies on constructing the LNFG of
a PPTL formula and stops as soon as a valid fi-
nite or infinite path is constructed if we do not
expect to have all counterexamples; (3) the exist-
ing SAT/SMT algorithms [20] can be reused to
check the satisfaction of the state formulas with
the present components of a normal form; (4) the
expressiveness of PPTL is full regular [18] and
more powerful than LTL and CTL.

The arithmetic and boolean expressions of

MSVL can be inductively defined as follows [10,
21]:

e ::= c | x | © x | -©x | e0 op e1,

b ::= true | false | ¬b | b0 ∧ b1 | e0 = e1 | e0 < e1,

where op ::= +| − | × |mod, c is a constant in
the domain and x is a static or dynamic vari-
able. One may refer to the value of a variable at
the previous state or the next state. MSVL pro-
grams can be inductively defined by sixteen ba-
sic statements given in [10, 21]. A synchroniza-

tion construct, await(c) is defined as await(c)
def
=

halt(c) ∧ frame(x1, x2, . . . , xn). The await(c) does
not change any variables, but waits until the con-
dition c becomes true, at which point it termi-
nates. Here, x1, x2, . . . , xn are dynamic variables
appeared in c.

Some common data types are included in
MSVL. They are (unsigned) int, float, (unsigned)
char, string, list, array, pointer, struct and union
[22]. Moreover, typed functions and predicates can
be defined [22]. There are two kinds of function
callings in MSVL programs [23]: one is internal
calling, in which the execution interval of the callee
is inserted into the execution interval of the caller;
the other is external calling, in which the execu-
tion interval of the callee is not inserted into the
execution interval of the caller.

To support modeling, simulation and verifica-
tion of a system using MSVL, we have developed
a tool kit called MSV. The architecture of MSV
is shown in Figure 1(b). MSV integrates four
kinds of tools: (1) a modeling tool, used to con-
struct an LNFG of a program; (2) a simulation
tool, used to execute a program; (3) a group of
model checkers consisting of unified, partial or-
der, symbolic, bounded and abstraction model
checkers (the common feature of these model
checkers is that PPTL is employed to describe
the desired properties); (4) several translators in-
cluding C2MSVL, Veri2MSVL, VHDL2MSVL and
PN2MSVL as shown in Figure 1(b). The MSV
tool kit has successfully been used to verify sev-
eral practical applications.

Basically, PTL is also a kind of interval based
TLs. It extends both original interval temporal
logic (ITL) proposed by Moszkowski and Choppy
logic proposed by Barringer, Kuiper and Pnueli
[24] in the following aspects as summarised by
Bowman and Thompson [25]: Duan’s work ex-
tends Moszkowszki’s interval temporal logic in a
number of respects: (1) past operators are added;
(2) a new projection operator is defined; (3) fram-
ing of variables is investigated; (4) infinite models

Zhang N, et al. Sci China Inf Sci November 2016 Vol. 59 118101:3

Figure 1 (Color online) (a) MSVL unified model check-
ing; (b) MSV toolkit.

are incorporated and (5) concurrency and com-
munication primitives are considered. However,
as far as we know, their work is focused on theo-
rem proving rather than model checking. MSVL is
a temporal logic programming language which is
closely related to XYZ/E [26] and Tempura [27].
Tang first proposed the idea of temporal logic pro-
gramming and designed XYZ/E system based on
LTL [26]. Tempura is an executable subset of ITL
and designed by Moszkowski [27]. Both XYZ/E
and Tempura are mainly used for the purpose of
programming and theorem proving rather than
model checking. Compared with Tempura, MSVL
creates several useful techniques including fram-
ing, data types such as pointer, struct and union,
as well as external function calling mechanism in
order to make MSVL effective in practice.

Acknowledgements This work was supported by

National Natural Science Foundation of China (Grant

Nos. 61133001, 61420106004, 91418201).

References

1 Clarke E M, Emerson E A. Design and synthesis of
synchronization skeletons using branching time tem-
poral logic. In: Proceedings of the Workshop on Logic
of Programs, New York, 1981. 52–71

2 Queille J, Sifakis J. Specification and verification of
concurrent systems in CESAR. In: Proceedings of the
Colloquium on International Symposium on Program-
ming, Turin, 1982. 337–351

3 Clarke E M, Emerson E A, Sifakis J. Model check-
ing: algorithmic verification and debugging. Commun
ACM, 2009, 52: 74–84

4 Valmari A. A stubborn attack on state explosion.
Form Method Syst Des, 1992, 1: 297–322

5 Burch J R, Clarke E M, McMillan K L, et al. Sym-
bolic model checking: 1020 states and beyond. Inform

Comput, 1992, 98: 142–170
6 Biere A, Cimati A, Clarke E M, et al. Bounded model

checking. Adv Comput, 2003, 58: 117–148
7 Clarke E M, Grumberg O, Long D E. Model checking

and abstraction. ACM Trans Progr Lang Syst, 1992,
16: 1512–1542

8 Tian C, Duan Z H, Duan Z. Making CEGAR more ef-
ficient in software model checking. IEEE Trans Softw
Eng, 2014, 40: 1206–1223

9 Duan Z H, Tian C. A unified model checking approach
with projection temporal logic. In: Proceedings of
the International Conference on Formal Engineering
Methods, Kitakyushu-City, 2008. 167–186

10 Duan Z H. Temporal Logic and Temporal Logic Pro-
gramming. Beijing: Science Press, 2005

11 Godefroid P, Wolper P. A partial approach to model
checking. Inform Comput, 1994, 110: 305–326

12 Clarke E M, Grumberg O, Jha S, et al. Counter-
example-guided abstraction refinement for symbolic
model checking. J ACM, 2003, 50: 752–794

13 Duan Z H, Tian C, Zhang N. A canonical form based
decision procedure and model checking approach for
propositional projection temporal logic. Theor Com-
put Sci, 2016, 609: 544–560

14 Duan Z H, Tian C. A practical decision procedure for
propositional projection temporal logic with infinite
models. Theor Comput Sci, 2014, 554: 169–190

15 Kroening D, Tautschnig M. CBMC — C bounded
model checker. In: Proceedings of the International
Conference Tools and Algorithms for the Construction
and Analysis of Systems, Grenoble, 2014. 389–391

16 Henzinger T A, Jhala R, Majumdar R, et al. Soft-
ware verification with Blast. In: Proceedings of the
International SPIN Workshop on Model Checking of
Software, Portland, 2003. 235–239

17 Ball T, Bounimova E, Kumar R, et al. SLAM2: static
driver verification with under 4% false alarms. In:
Proceedings of the International Conference on Formal
Methods in Computer-Aided Design, Lugano, 2010.
35–42

18 Tian C, Duan Z H. Expressiveness of propositional
projection temporal logic with star. Theor Comput
Sci, 2011, 412: 1729–1744

19 Büchi J R. Symposium on decision problems: on a
decision method in restricted second order arithmetic.
Stud Logic Found Math, 1966, 44: 1–11

20 Gomes C P, Kautz H, Sabharwal A, et al. Satisfiability
solvers. Found Artif Intell, 2008, 3: 89–134

21 Duan Z H, Yang X X, Koutny M. Framed temporal
logic programming. Sci Comput Program, 2008, 70:
31–61

22 Wang X B, Duan Z H, Zhao L. Formalizing and imple-
menting types in MSVL. In: Proceedings of the Inter-
national Workshop of Structured Object-Oriented For-
mal Language and Method, Queenstown, 2013. 62–75

23 Zhang N, Duan Z H, Tian C. A mechanism of func-
tion calls in MSVL. Theor Comput Sci, in press. doi:
10.1016/j.tcs.2016.02.037

24 Rosner R, Pnueli A. A choppy logic. In: Proceed-
ings of the Symposium on Logic in Computer Science,
Cambridge, 1986. 306–313

25 Bowman H, Thompson S J. A decision procedure and
complete axiomatization of finite interval temporal
logic with projection. J Logic Comput, 2003, 13: 195–
239

26 Tang C S. Toward a Unified Logical Basis for Program-
ming Languages. Technology Report, No. STAN-CS-
81-865. 1981

27 Moszkowski B C. Executing Temporal Logic Pro-
grams. Cambridge: Cambridge University Press, 1986

