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Abstract A serious problem in cloud computing is privacy information protection. This study proposes a new

private comparison protocol using Einstein-Podolsky-Rosen (EPR) pairs. This protocol allows two parties to

secretly compare their classical information. Quantum dense coding enables the comparison task to be completed

with the help of a classical semi-honest center. A one-step transmission scheme and designed decoy photons can

be used against various quantum attacks. The new protocol can ensure fairness, efficiency, and security. The

classical semi-honest center cannot learn any information about the private inputs of the players. Moreover, this

scheme can be easily generalized using the general EPR pairs in order to improve the transmission efficiency.
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1 Introduction

Privacy information protection has become a very essential requirement, specially using the cloud com-

puting technology. The widespread employment of the cloud computing may be hindered due to various

reasons including the privacy information leakage, malicious attacks, unauthorized access, and foraged

message [1–4]. To protect private information, sensitive data may be encrypted by the data owner. How-

ever, the distribution of the key is very difficult. Quantum states, as special information carriers, have

been used to construct various protocols. The first important application is the quantum key distribution

(QKD) protocol [5–8] with unconditional security. This great scheme has initiated various kinds of cryp-

tographic protocols such as secure transmission of quantum state [9–12], quantum secret sharing [13–19],

quantum direction communication [20–26], and quantum steganography protocols [27–29]; these schemes

have been explored for various security systems.
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Recently, quantum private comparison (QPC) has attracted great attention because of its special

applications in quantum secure computations. QPC protocol aims to securely compare classical secret

information of two parties. The classical case has already been discussed in modern cryptography. The

first example is the millionaires’ problem, which was proposed by Yao [30, 31]. It aims to compare the

amount of money of millionaires without revealing their actual wealth. This scheme is slightly changed

into general case, where the equality of only two series is compared [32]. Unfortunately, Lo [33] shows

that all one-sided two-party computations, which allow only one of the two parties to learn the result,

are essentially insecure [33]. To address this problem, special restrictions such as the trust center may be

required to perform the private comparison.

The classical private comparison scheme may be extended to the quantum case using quantum entan-

glement [34, 35]. Until now, many QPC schemes [36–47] have been proposed to improve the security and

comparison efficiency. Most of these protocols use the trust or semi-honest center, which can implement

the quantum operations, to complete the comparison task. Such legitimate trust centers should execute

the protocol faithfully and preserve a record of all intermediate operations. Although this record may be

used to infer secret information, it cannot be corrupted by any external attack.

Motivated by the ideas presented in [34–47], a secure QPC protocol should have the following features.

First, the secret information is compared by blocks instead of bits to avoid leaking the actual content and

reducing the comparison efficiency. Second, the secret information should be encrypted well to prevent

the trust center from recognizing the values. Third, any player cannot learn the secret information of

another player in case the comparison results is unequal. It means that an inside attacker cannot learn

additional information during the comparison procedure compared with the random guess. Finally, the

trust center should only send the comparison result (i.e., identical or different) instead of other details to

the participants.

With the advancement of quantum theory with respect to quantum entanglement swapping [48, 49]

and dense coding [50–52], we can construct a two-party QPC with a classical semi-honest center, which

can only implement classical cryptography operations. In order to complete the private comparison,

we use quantum dense coding based on the Einstein-Podolsky-Rosen (EPR) pairs and its general forms.

From the quantum entanglement swapping, the secret comparison is equivalent to comparing two random

quantum measurement outcomes. Because these quantum measurement outcomes are random for secret

information, they can provide the necessary security from any internal and external attackers. A classical

semi-honest center is used to authorize two participants using the classical cryptography techniques, and

cannot recover any secret messages. On the other hand, because of the one-time quantum exchanges, our

schemes are immune to Trojan horse attacks [53–57] without installing any optical filter devices.

The rest part of this paper is organized as follows. Section 2 describes the entanglement swapping of

two EPR pairs and presents the proposed QPC protocol. Section 3 analyzes the security of the proposed

scheme with respect to all aspects of attacks. The last section present a simplified general scheme for a

qudit case and concludes this paper.

2 QPC protocol using EPR dense coding

This section presents a two-party QPC protocol using EPR pairs.

2.1 Quantum entanglement swapping of Bell states

The entanglement swapping [48, 49] as special quantum phenomenon allows remote parties to generate

new entangling systems. The entanglement swapping of two EPR pairs is presented in this section for

the convenience of correctness proof in the following section.

In detail, suppose that Alice and Bob prepare an EPR pair of (σi ⊗ I2)|Φ〉 with |φ〉 = 1√
2
(|00〉+ |11〉).

Here, (A1, A2) denote particles owned by Alice while (B1, B2) denote particles owned by Bob. By

exchanging the particle A1 with B1, a new entanglement is generated between Alice and Bob after

performing Bell measurement on particle pair (B1, A2) or (A1, B2). Their relationships are displayed in
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Table 1 The entanglement swapping of Bell states (0 � i �= j � 3 and 0 � k � 3)

Two initial Bell states The resultant

(σi ⊗ I2)|Φ〉(σi ⊗ I2)|Φ〉 (σk ⊗ I2)|Φ〉(σk ⊗ I2)|Φ〉
(σi ⊗ I2)|Φ〉(σj ⊗ I2)|Φ〉 (σk ⊗ I2)|Φ〉(σk+i+j mod 4 ⊗ I2)|Φ〉

Table 2 The entanglement swapping of general Bell states (0 � i �= j � d− 1 and 0 � l, k � d− 1)

Two initial Bell states The resultant

(Ui ⊗ Id)|Φ〉(Ui ⊗ Id)|Φ〉 (Ui+k ⊗ Ul)|Φ〉(Ui−k ⊗ U−l)|Φ〉
(Ui ⊗ Id)|Φ〉(Uj ⊗ Id)|Φ〉 (Ui+k ⊗ Ul)|Φ〉(Uj−kmod d ⊗ U−l)|Φ〉

Table 1. Pauli matrices σi are defined by

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 1

−1 0

)
, σ3 =

(
1 0

0 −1

)
. (1)

This result may be extended to arbitrary d-level system with normal computation basis {|0〉, |1〉, . . . , |d−
1〉}. General Bell states, a set of d2 maximally entangled states, form an orthogonal basis of the space

Cd2

. The explicit forms of d-level Bell states are defined by |ϕ(s, t)〉 = 1√
d

∑d−1
j=0 e

i2jsπ/d|j, j + t〉 for

s, t = 0, . . . , d − 1. Suppose that Alice has Bell state |ϕ(s1, t2)〉12, and Bob has Bell state |ϕ(s2, t2)〉34.
The entanglement swapping of two d-level Bell states is defined by the following formula

|ϕ(s1, t1)〉12|ϕ(s2, t2)〉34 =
1

d

d−1∑
k=0

d−1∑
l=0

e−i2klπ/d2 |ϕ(s1 + k, t2 + l)〉14|ϕ(s2 − k, t1 − l)〉32, (2)

where Uj =
∑d−1

k=0 |k + j mod d〉〈k|. The relationship of two general Bell states and two measurement

outcomes after the entanglement swapping is shown in Table 2.

2.2 QPC protocol progress

Assume that the secretes are of the same length n, otherwise, the result can easily obtained.

All situps are defined as follows.

Goal: Two parties (Alice and Bob) will compare their documents for equivalence with the help of a

classical semi-honest center.

Classical semi-honest center: Here, one can only implement classical cryptography operations such

as encryption or decryption and does not need to own quantum operation abilities. It also reliably

transmits classical messages. A classical computer is a typical example of semi-honest center. It owns

the unique identities of all legitimate parties for authentication.

Participant privileges: Both parties can generate EPR pairs |Φ〉 and single qubit state set D,

and also perform Pauli operations σi. The details of D are explained in the following subsection. The

participants can implement an asymmetric encryption function Ep1(·) satisfying

Ep1(Ep1(·)K1)K2 �= Ep1(Ep1(·)K2)K1 (3)

with any two keys K1 and K2, and a symmetric encryption function En2(·) such as the Advanced

Encryption Standard (AES). Alice has a public-secret key pair (KA,K
−1
A ) and Bob has a public-secret

key pair (KB,K
−1
B ). Alice has shared key KAS with the classical semi-honest center while Bob has shared

a key KBS with the classical semi-honest center. Both have unique identity information IdentityA(B).

Information encoding: All the Pauli operations σi are encoded with two bits i1i2.

The proposed protocol can be explained as follows.

S1. This step is used to prepare the physical particles for encoding the information, which is named as

“Preparing the EPR” step as shown in Figure 1. Specially, Alice (Bob) prepares an EPR pair sequence

SA(SB) with |Φ〉. She (he) divides these states into two subsequences SA1 and SA2 (SB1 and SB2), which
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Alice                              Bob                                                
Alice                              Bob

S1: Preparing the EPR

S3: Detecting the attacker

S2: Preparing 
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S4: Hiding the message

Encoding their  
messages

Alice                            Bob                                                   Alice                  Bob

Alice                   Bob                                            Alice                  Bob
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*
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…

…
…
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…

(pA,bA)
Bob                  Alice

(pB,bB)
Alice                  Bob

Figure 1 Schematic quantum process of private comparison protocol. ε denotes the error threshold. Red dots and blue

dots denote the decoy photons randomly chosen from D for detecting Eve. σia and σib denote Pauli operations according

to bit encodings of massages MA and MB, respectively. eA(B) is the error ratio while ε is the error threshold. ra1 , . . . , r
a
n

and rb1, . . . , r
b
n are the encoding information of measurement outcomes.

include the 1st and the 2nd particles of all states, respectively. These are schematically shown in Figure 1,

where the two black dots connected by a line denote an EPR pair.

S2. This step is used to prepare the physical particles for detection, which is named as “Preparing for

the detection” step, as shown in Figure 1. Specially, Alice and Bob insert many randomly chosen decoy

photons, DA (shown as red dots in Figure 1) and DB (shown as blue dots in Figure 1), into SA2 and SB2

respectively; these are used to form new sequences S∗
A2 and S∗

B2, respectively. They send these random

sequences to each other via a physical channel. Here, all the positions at which insertion are made, are

also random and recorded.
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Classical semi-
honesty centerS5: Against 

      dispute
{Alice,Ep2(Ep1(IdentityA)KS

,Ep1(CA)KB
)KAS

}

{Bob,Ep2(Ep1(IdentityB)KS
,Ep1(CB)KA

)KBS
}

S6: Comparing 
      message

Ep2(Ep1(CB)KA
)KAS                                 

Ep2(Ep1(CA)KB
)KBS

Ep1(CA)KA 
⊕Ep1(CB)KA

?=0 0?=Ep1(CB)KB 
⊕Ep1(CA)KBMA ≠ MB

MA = MB

No                              No

Yes                                                                                    Yes

Alice                                                                                                                     Bob

Alice                                                                                                                           Bob

CA=ca
1,…,ca

2n                                                                                                                                        CB=cb
1,…,cb

2n

Figure 2 Classical process of private comparison protocol. IdentityA and IdentityB denote the single identity of Alice

and Bob respectively. Ep1() denotes the asymmetric encrypt function such as RSA while Ep2() denotes the symmetric

encrypt function such as AES.

S3. This step is used to detect the attackers, which is named as “Detecting the attacker” step, as

shown in Figure 1. In detail, Bob (or Alice) first ensures that S∗
A2 (or S∗

B2) has been received by Alice

(or Bob) by sending a classical checking message mA (or mB) via a classical communication channel, as

shown in Figure 1. And then, Alice (or Bob) states the positions (pA (or pB), as shown in Figure 1)

and the preparation bases (bA (bB), as shown in Figure 1) of the decoy states DA (or DB) via a classical

communication channel. Next, she (he) extracts the other party’s particlesDB (orDA) from S∗
B2 (or S

∗
A2)

and measures them using the bases bB (bA) to obtain the check results RDB (or RDA). If there is an

attacker, he/she may be detected by Alice or Bob by the comparison of the error rates Pe of RDA and

RDB to an ideal error threshold ε. If there is no eavesdropper, then the protocol continues; otherwise,

they should abort these particles and restart from the step S1.

S4. This step is used to hide the context, which is named as “Hiding the message” step as shown

in Figure 1. In detail, note that after the detection step, the two received particle series S∗
B2 and S∗

A2

are reduced to SB2 and SA2, respectively. The Pauli operations, σia and σib , are performed on the

photon series SB1 and SA1 based on each of the two bits ia = ia1i
a
2 (ib = ib1i

b
2) of the secret message

MA (MB) to obtain new series S′
B1 and S′

A1, respectively, as shown in Figure 1. After these operations

they tell each other from classical communication with massage mA (mB). Now, Alice and Bob perform

Bell measurement on each pair of the two-particle series (S′
A1, SB2) and (S′

B1, SA2), respectively. Their

measurement outcomes are denoted by ra1 , . . . , r
a
n and rb1, . . . , r

b
n, which are encoded by the information

series CA = ca1 , . . . , c
a
2n and CB = cb1, . . . , c

b
2n, respectively. Here, ca2j−1 = raj,1 ⊕ ja1 , ca2j = raj,2 ⊕ ja2 ,

cb2j−1 = rbj,1 ⊕ jb1, cb2j = rbj,2 ⊕ jb2, r
a
j = raj,1r

a
j,2, r

b
j = rbj,1r

b
j,2, and i represents the ith set of the EPR pair,

as shown in Figure 1.

S5. This step is used to against dispute with the help of a classical semi-honest center, which is

named as “Against the dispute” step in Figure 2. In detail, Alice sends the ordered messages {Alice,
Ep2(Ep1(IdentityA)KS , Ep1(CA)KB )KAS} to a classical semi-honest center. Here, Alice denotes the name,

and Ep1(IdentityA)KS denotes the encrypted unique identity of Alice using the public key of the classical

semi-honesty center, Ep1(CA)KB denotes the encrypted measurement results using the public key of

Bob. These two ciphertexts are re-encrypted using a symmetric system with secret key KAS shared by

Alice and the classical semi-honest center. Bob sends the ordered messages {Bob, Ep2(Ep1(IdentityB)KS ,

Ep1(CB)KA)KBS} to the same classical semi-honest center.

S6. This step is used to compare the messages with the help of a classical semi-honest center, which is

named as “Comparing the messages” step, as shown in Figure 2. The classical semi-honest center firstly
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authorize the identities of the participants by using IdentityA and IdentityB. Then, Ep2(Ep1(CB)KA)KAS

and Ep2(Ep1(CA)KB )KBS are computed by using the shared keys KAS and KBS , respectively. Now, the

participants ends the encapsulated message Ep2(Ep1(CB)KA)KAS to Alice and Ep2(Ep1(CA)KA)KBS to

Bob. Finally, Alice computes the exclusive-OR E1 = Ep1(CB)KA⊕Ep1(CA)KA whereas Bob computes

the exclusive-OR E2 = Ep1(CA)KB⊕Ep1(CB)KB . If E1 and E2 are consist of only zero bits, the secrets

are identical. Otherwise, the secrets are different (i.e., one or more classical bits are 1).

2.3 Correctness

In this QPC protocol, if secrets MA and MB satisfy MA = MB, then by using the entanglement swap-

ping shown in Table 1 it can be easily seen that the measurement results are CA = CB in step S4.

Moreover, the classical semi-honest center can decrypt Alice’s messages {Alice,Ep2(Ep1(IdentityA)KS ,

Ep1(CA)KB )KAS} to obtain IdentityA and Ep1(CA)KB by using the shared key KAS and secret key K−1
S .

Moreover, the classical semi-honest center can decrypt Bob’s messages {Bob,Ep2(Ep1(CB, IdentityB)KS ,

Ep1(CB)KA)KBS} to get IdentityB and Ep1(CB)KA by using her/his shared keyKBS and secret key K−1
S .

Now, the classical semi-honest center can encrypt the messages Ep1(CB)KA and Ep1(CA)KB to obtain

Ep2(Ep1(CB)KA)KAS and Ep2(Ep1(CA)KB )KBS by using another symmetric encryption; these messages

are then sent to Alice and Bob, respectively. Thus, Alice can obtain Ep1(CB)KA while Bob can obtain

Ep1(CA)KB by decrypting the received cyphertext with their shared key. Furthermore, they can use their

public keys to obtain cyphertext Ep1(CA)KB and Ep1(CB)KA , respectively. Therefore, they can compare

their secrets using this protocol.

According to [34, 35], ηE = qs
qt

is used to compare the efficiency, where qs denotes the compared classical

bits, and qt denotes the qubits generated without considering the decoy qubits. Because two EPR pairs

can be used to compare the two bits of secret information between two parties, the qubit efficiency is

50% (i.e., ηE = 50%). The proposed QPC protocol requires only a classical semi-honest center and not

a quantum semi-honest center [39–53] to complete the task.

3 Security analysis

3.1 Inside attack

In our scheme, the compared secrets may be recovered for an insider (Alice or Bob) iff their final eval-

uations are zero, which is an essential property for all private comparison schemes. Thus, our scheme

exhibits fairness.

Dishonest participant—Assume that one participant, e.g., Alice is dishonest and wants to recover

Bob’s message MB without foraging the EPRs. First, Alice has to honestly follow from step S1 through

S3 in order to avoid star stopping the scheme by Bob. Otherwise, an attack would be detected at step

S3 with a nontrivial error probability. Second, in step S4, Alice may perform false Pauli operations σj

(or no operation that is equivalent to σ0) on her received particles. After these operations, Bob receives

the measurement outcomes C′
B while Alice may forge her measurement outcomes C′

A. Third, because

the unique identity (such as the certificate or ID card information) cannot be forged by the assumption,

Alice has to use her real identity IdentityA, public keys KS and KB, and shared key KAS to complete

step S5 with the message {Alice,Ep2(Ep1(IdentityA)KS ,Ep1(CA)KB )KAS}. Finally, even if Alice obtains

Ep2(Ep1(CB)KB )KAS from the classical semi-honest center, she cannot obtain the original measurement

outcomes CB or the secret MB. This is because there are four possible measurement outcomes for each

measurement under the Bell basis. Thus, the measurement outcomes are random for each Alice’s Pauli

operation σj . Alice cannot recover the Pauli operation σj from the measurement outcomes. Based on the

explanation above, if one participant wants to recover the other’s secret, he/she may choose a random

message of length n to complete this scheme honestly. The success probability in this case is only 1/2n.

This is equivalent to attacking using the random guesses. Thus, our scheme is secure for the dishonest

insider attacks. Evidently, the right result can be derived from honest operations.
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By contrast, Alice may be dishonest when implementing this scheme by forging the EPR. Specially,

assume that Alice uses single particles in the state α|0〉 + β|1〉 to replace her EPR pairs in step S1.

Steps S2 and S3 are performed honestly. Thus, Alice can avoid detection. Now, Alice has only one

particle in hand and she may avoid detection by not performing the measurement until Bob announces

the completion of measurement. Note that

1√
2
(|00〉 ± |11〉)(α|0〉+ β|1〉) = 1√

2
[α|0〉|00〉 ± β|1〉|11〉+ β|0〉|01〉 ± α|1〉|10〉], (4)

1√
2
(|01〉 ± |10〉)(α|0〉+ β|1〉) = 1√

2
[α|0〉|10〉 ± β|1〉|01〉+ β|0〉|11〉 ± α|1〉|00〉]. (5)

Thus, by using the Bell basis, four different measurement outcomes can be obtained with equal probability.

This means that Bob’s measurement outcomes are random in terms of Alice’s Pauli operations even if

Alice forges her EPRs. The followed analysis is easy.

Dishonest classical center—Assume that the classical center has been overpowered by an attacker,

thus he/she can falsely recover Alice’s or Bob’s message. In our scheme, the attacker can only receive

Alice’s message {Alice,Ep2(Ep1(IdentityA)KS , Ep1(CA)KB )KAS} and Bob’s message {Bob,Ep2(Ep1(CB,

IdentityB)KS ,Ep1(CB)KA)KBS}. Thus by using keys K−1
S ,KAS and KBS , the attacker can recover

IdentityA, IdentityB, Ep1(CA)KB and Ep1(CB)KA . The identity information IdentityA and IdentityB
are trivial if the classical center has been captured by attacker. Moreover, without secret keys K−1

A and

K−1
B , dishonest classical center cannot obtained measurement outcomes CA and CB. Hence, he/she can

recover the secret MA or MB. Furthermore, because the classical center can only obtain Ep1(CB)KA

from Bob, and Ep1(CA)KB from Alice, he/she cannot compare their messages with Ep1(Ep1(·)KA)KB �=
Ep1(Ep1(·)KB )KA . These encrypted messages may be used to solve the disagreement between Alice and

Bob.

Conspiracy attacking—Assume that one participant, e.g., Alice and the classical center are con-

spiring to recover Bob’s message. First, by performing the first three steps, S1–S3, correctly, Alice can

avoid the stopping of the scheme by Bob. If Alice forges her Pauli operations in step S4, she obtains fake

measurement outcomes C′
A, moreover, Bob can also obtain fake measurement outcomes C′

B. The classical

center obtains Bob’s identity information IdentityB and encrypted measurement outcomes Ep1(C
′
B)KA .

By cooperating with each other, they can decrypt Ep1(C
′
B)KA and obtain C′

B, which is useless for recov-

ering Bob’s secret MB. Similarly, if Alice forges her EPRs, they can jointly obtain random measurement

outcomes C′
B, which are useless.

Dispute—If two participants disagree regarding their comparison results, the classical semi-honest

center first authorizes their identities by using IdentityA and IdentityB . Then, the participants can

announce their messages {Ep1(CA)KB , IdentityA} and {Ep1(CB)KA , IdentityB}. They can obtain the

final judgement by using their private keys. However, there is an issue that if one participant wants to

cheat the other participant using a forged message, they can complete all steps. All of them may obtain

an incorrect result and the dishonest participant can avoid disagreement. This is also unavoidable for all

privacy comparison schemes.

3.2 Entangle-measuring attack

Assume that Eve wants to retrieve useful information from the transmitted qubit sequences by perform-

ing entangle-measuring attack. She first prepares ancillary qubits L = {|L1〉, |L2〉, . . . , |L2n〉} and then

entangles them into the transmitted sequences through an appropriate unitary operation UE. However,

any nontrivial operations on decoy qubits for Eve will lead to different results. Take D = {| ± i〉 :=
1√
2
(|0〉 ± i|1〉), |±〉 := 1√

2
(|0〉 ± |1〉)} as an example. Here, the entangled operation is defined by

UE| ± i〉|Li〉 =
1

2
[|+ i〉(a|e00〉+ b|e01〉 ± c|e10〉 ± d|e11〉) + | − i〉(a|e00〉 − b|e01〉 ± c|e10〉 ∓ d|e11〉), (6)

UE |±〉|Li〉 =
1

2
[|+〉(a|e00〉+ b|e01〉 ± c|e10〉 ± d|e11〉) + |−〉(a|e00〉 − b|e01〉 ± c|e10〉 ∓ d|e11〉). (7)
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Here, |Li〉 is an initial state of Eve’s ancillary qubit, and |e00〉, |e01〉, |e10〉 and |e11〉 are four distinguishable
quantum states, where the coefficients satisfy |a2|+ |b2| = |c2|+ |d2| = 1. If the decoy photon is | ± i〉 or
|±〉, Eve has to let (a|e00〉 + b|e01〉 ± c|e10〉 ± d|e11〉) = (a|e00〉 − b|e01〉 ± c|e10〉 ∓ d|e11〉) = 0|0〉 to pass

through the eavesdropping check. If these situations are all conformed, we have a = b = c = d = 0, which

is impossible. Thus, Eve’s attack will be successfully detected during the public discussion.

Generally, to successfully detect an attacker in this case, the participants should choose different basis

states from at least two different bases to generate the decoy state set D.

Of course, if a dishonest participant wants to disturb their scheme, this is easy to complete by using

incorrect Pauli operations or forging EPRs with right decoy photons. However, this attack is meaningless

for them because the same goal may be completed by no reply of the dishonest participant. The secret

information remains secure under this case.

3.3 Disturb-attack

This attack is designed to disturb the progress without being detected. In the following, we will evaluate

the success probability for Eve if he/she only takes special quantum operations on the transmitted qubits.

If D = {|0〉, |1〉, |±〉} is used as the decoy state set, Eve may implement special operations on the

transmitted qubits to disturb the progress. Note that the computation basis |0〉, |1〉 is unchanged under

the Pauli matrix σ3. Thus, if Eve performs σ = diag(1,±i) on the transmitted qubits originating from

Alice or Bob, she can obtain the following qubit set {|0〉, |1〉, | ± i〉}, which can be detected with a

probability of 1/2 × 1/2 = 1/4 per qubit. If the attack on the decoy state is not detected fortunately,

we need to determine the effect on the transmitted particles of EPRs. From Table 1, it can be seen that

Eve has performed this attacking operation on the transmitted qubits, two legitimate parties may obtain

different measurement results from the same input states or they may obtain the same result for different

input states. It means that an attacker may affect the correctness of this comparison scheme.

Similarly, if D = {| ± i〉, |±〉} is used, in general, Eve can obtain

1

2
((a∓ a∗ + (b± b∗)i)|+ i〉+ (a± a∗ − (b ∓ b∗)i)| − i〉), (8)

1

2
((a∓ a∗ + b± b∗)|+〉+ (a± a∗ − b ± b∗)|−〉) (9)

by using a general qubit operation (
a b

b∗ −a∗

)
. (10)

Under the assumption of the uniform distribution of decoy states, the total error probability is

Pe =
1

4
× 1

4
(4(Re(a) + Im(b))2) +

1

4
× 1

4
(4(Re(a)− Im(b))2)

+
1

4
× 1

4
(4(Re(a)2 + Im(b)2)) +

1

4
× 1

4
(4(Im(a)2 +Re(b)2))

=
1

4
+

1

2
a2 +

1

2
Im(b)2 +

1

2
aIm(b) � 1

4
(11)

from general assumptions Im(a) = 0 and a2+ |b|2 = 1, as shown in Figure 3. Here, Re and Im denote the

real and imagine parts respectively. From this figure, Pe is monotonously increasing along a2 and Im(b).

The lower bound is achieved when a = Im(b) = 0, i.e., b = 1. Thus, this decoy state set is similar to the

first case D = {|0〉, |1〉, |±〉}.
Generally, Eve can perform one unitary (not-identity) operation such that any state of one basis is

unchanged up to a global phase (in geometry she can choose another basis such that each initial state

and its changed state have the same inner product). Hence, to improve the security against this attack,

legitimate parties need to generate a larger decoy set with more than two different quantum bases.
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Figure 3 The total error probability Pe. Here we assume a ∈ R and a2 + |b|2 = 1.

3.4 Other attacks

Trojan horse attack. There are two kinds of Trojan horse attacks that have been widely discussed in

quantum photonic protocols, i.e., the invisible photon eavesdropping (IPE) attack [43–45] and the delay-

photon attack [46, 47]. In general, the first one can be prevented by filtering the invisible photons using

wavelength optical device. The second attack can be prevented by using a photon number splitters. Thus,

the delay-photon attack is equivalent to an unreasonably high rate of the multi-photon signal. However,

these quantum operations can be completed within the decoy photons. Therefore, the detection of the

Trojan horse attack does not reduce the transmission efficiency.

Intercept-resend attack. In our QPC protocol, many random chosen decoy qubits are hidden at random

positions of the EPR sequences SA2 and SB2. Eve cannot obtain the preparation bases of these decoy

states and the position information before her announcement in step S3. Thus, if a wrong basis is

used to measure and resend these particles by Eve, an error will be introduced in the detection step

with a nontrivial error probability of 1/|D|. Hence, the error ratio from the detection measurement is

1− (1/|D|)k ≈ 1 for k → ∞ and |D| > 1, where k is the total number of decoy states.

If a classical attacker wants to recover the secrets MA and MB, he/she can obtain the transmitted

classical messages

{Alice,Ep2(Ep1(CA, IdentityA)KS ,Ep1(CA)KB )KAS}
and

{Bob,Ep2(Ep1(CB , IdentityB)KS ,Ep1(CB)KA)KBS}.
Because KAS and KBS are secret keys, the classical attacker can not decrypt these ciphertexts. Even

if these secret keys are revealed to the attacker, he/she can obtain Ep1(IdentityA)KS , Ep1(CA)KB ,

Ep1(IdentityB)KS , and Ep1(CB)KA . Because the attacker does not know private keys K−1
S ,K−1

A and

K−1
B , he/she cannot obtain the measurement results CA and CB. Thus, the attacker cannot compare

their secrets or recover the secrets of Alice and Bob.

4 Discussion and conclusion

The proposed QPC protocol can be easily extended with general EPR pairs |ϕ(0, 0)〉 and single qudit

state set D, and qudit operations U(j). In fact, using the d-dimensional representation (dit) of the secrets
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MA(MB) and general Bell measurement basis {|ϕ(s, t)〉}d−1
s,t=0, the secrets can be encoded in the first dit

of each measurement outcome t1t2 from (2). Thus, only the first dit subseries can be used to encode

information series CA = ca1 , . . . , c
a
n and CB = cb1, . . . , c

b
n respectively, where caj = raj + ja mod d and

cbj = d − rbj − jb mod d are used in step S4 of the generalized scheme. The following steps are easily

extended. The main differences from the qubit case are the information transformation in step S4 and the

different comparison (using minus operation) in step S6. Because two dits may be exchanged using one

qudit’ transmission, the comparison efficiency is 1
2 log2 d bits/qudit. The proof of the security is similar

to the qubit case. In practice, the qudit scheme is more difficult to implement even if its efficiency is

higher. There may be a trade-off with the experimental equipment.

The efficiency of the theoretical scheme in Section 2 may be reduced if the experimental conditions

are considered. In fact, the ideal EPR pair may be become a mixed state or a less-entangled state

with the effect of various noises. Thus, the ideal detection error ratio should be ensured by recovering

the maximally entangled EPR pairs from mixed states or less-entangled states. Different methods have

been explored for addressing these problems. One is the entanglement purification [58] that can be

used to distill the high quality mixed state from the low quality mixed states [59–61]. The other is the

entanglement concentration [62] in which the maximally entangled state may be probabilistically recovered

from the less-entangled state [63–70]. If photons are used in our scheme and are lost, the quantum state

amplification should be considered to increase the probability of the single photon state [71–74].

To sum up, based on the quantum dense coding of two EPR pairs, we show that two legitimate

parties can successfully compare the classical secrets with a classical semi-honest center. From the

entanglement swapping of the EPR pairs, the secrets are hidden within the random measurement results.

Thus the followed transmission scheme may provide necessary security for internal or external attackers.

Furthermore, the qubit scheme is extended to general qudit case. In this case, the encryption is different

from the qubit case because of the different entanglement swapping. The new scheme is more efficient

than the qubit case with the same security while it is more difficult to implement in experiment. Thus

one may trade off them in practice. Compared with previous QPC schemes [34, 35], two participants

have no shared secrets. Different from the QPC with triplet entanglements [37], W state [38, 43] or

χ state [41, 42], our scheme is based on Bell states. In our schemes, the semi-honest center has no

information about the secret and the comparison result [37]. In recent protocol [38, 39], two participants

and the trust center need to prepare Bell states, and the private comparison task is fulfilled by utilizing

the entanglement swapping between Bell states of the participants and semi-honest center. This scheme

has a loophole that the trust center could launch the measurement attack to obtain all secrets without

being detected [40]. Since the quantum part is uninvolved the semi-honest center, our schemes can

avoid this attack. Compared with the QPC based on the quantum operation discrimination [43] or

the combination of decoherence-free states and error-correcting code [45], our schemes are based on the

entanglement swapping of Bell states. Different from previous quantum trust center [24–32] or quantum

semi-honest center [43–47], our schemes take use of the classical semi-honest center, which is more flexible

in implementation. These schemes can be used to justify their disagreements by the semi-honest center.

Of course, since we have used the classical asymmetric encryptions, the powerful attacker may obtain the

measurement outcomes CA and CB if these classical cryptography systems are cracked. Thus, they know

the comparison result. However, from the randomness of the CA and CB in terms of the secrets MA and

MB, the powerful attacker cannot know the secret messages. Under this assumptions, our schemes are

secure in terms of the secrets.
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