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Abstract In this paper, an effective method for identifying the graspable components of objects with complex

geometry is proposed for grasp planning based on human experience. Instead of focusing on individual objects,

our method identifies graspable components on the category level under the assumption that geometrically alike

objects share similar graspable components. Firstly, employing a modified SHOT descriptor, a fast KNN-based

method is developed for object categorization. Then, the graspable components are identified by adopting a

learning framework based on human experience. Afterwards, a fast analytical grasp planning method is proposed

which comprises of contact points exaction and hand kinematics calculation. Finally, a regression model based

on the extreme learning method (ELM) is built which inputs the desired contact points and the wrist orientation

and outputs the wrist position. This approach is time-saving comparing with the optimization method. The

simulations and experiments demonstrate the effectiveness of the proposed approach by realizing grasps on the

graspable components of human choice for objects with complex geometry.
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1 Introduction

Humans are able to manipulate objects with various geometries [1–4]. One of the important reason is

that humans can identify graspable components on the objects for special tasks and this identification

is generalized on objects with similar shapes. Actually, many everyday objects have been designed

with components for manipulation, e.g. mug handle, screwdriver handle. This paper aims to perform

recognizing the graspable components on objects with different geometries by learning humans’ experience

and accomplish hand configuration by the kinematics way and the empirical way.

Object shape representation is the premise for graspable component identification. In [5], the authors

represent objects by superquadrics and the graspable components are predicted using a neural network to
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learn the human preference. Ref. [6] also use superquadrics for modeling objects. Ref. [7] approximates

objects by simple object primitives. However, superquadrics or shape primitives are only suitable for

describing simple object surfaces and they are susceptible to noise.

Recently, many 3D descriptors [8–11] have been developed with the development of depth camera

(Kinect). They have desired surface matching ability for complex shapes of objects. A comparative

study of descriptors in [12] demonstrates that the Signature of Histograms of OrienTations (SHOT)

performs the best in object classification in terms of accuracy and speed trade-off. However, the data

size of the SHOT descriptor for representing an object are too large to directly using for real-time object

classification. Therefore, in this paper, the original SHOT descriptor is modified for objects’ classification.

Then, the graspable components are learned on objects’ category level for generalizing the identification

of graspable components on the objects in the same category.

As for the problem of “how to grasp the object”, both analytical and empirical approaches are popular

ways for hand configuration. The analytical approach considers the stability of contact points and hand

kinematics. Generally, an iterative procedure is necessary for acquiring the optimum solution. Ref. [13]

proposes an analytical method which extracts contact points from 3D point cloud of an object and achieves

hand configuration by inverse kinematics. The advantage of this approach is that it is able to deal with

objects of arbitrary geometry and avoids computationally expensive kinematics analysis in the process of

iterative contact point search, which makes this method suitable for real-time grasping. However, in order

to extract the desired contact points, this method uses a blind search on all of the object clouds, which

is time consuming and not task-oriented. The empirical approach uses grasp experience to build a grasp

model. In [14], the shape parameters of some superquadric geometries and grasp configuration terms from

different positions and directions are trained to build an SVM (Support Vector Machine) regressor. Then,

the grasps for new superquadric are found by regression. In [15], a Gaussian Mixture Model (GMM) is

adopted for learning the distribution of stable hand postures for a specific object. However, the model is

built on the individual object level that the learned grasp model cannot be directly generalized to grasp

other objects. In addition, the grasp model also is blind and not task-oriented.

It is regraded in this paper that “blind” searching or “blind” building grasp model is exhausted and

not efficient for real-time task manipulation. Therefore, firstly, an effective method is developed in this

paper for identifying the graspable component based on objects’ shape category. Then, a fast grasp

posture planning method is proposed by considering the grasp stability, hand shape, hand size and hand

kinematics. Further, in order to empirically perform hand configuration, the multi-output regression of

extreme learning method (ELM) is utilized for building the relation among the desired contact points,

the wrist position and orientation.

The paper is laid out as follows. In Section 2, an overview of the proposed approach is displayed.

Section 3 illustrates the modification of the SHOT descriptor in detail. Based on this modified SHOT

descriptor, Section 4 develops the object classification method and the graspable component identification

approach. Section 5 proposes the analytical grasp planning method composed of desired triplet extraction

and kinematics optimization. Moreover, in this section, a regressor of extreme learning method (ELM) is

used to represent the experience of hand configuration. Section 6 demonstrates the results of the proposed

approach. Finally, the conclusions are summarized in Section 7.

2 Our approach

In this paper, an effective grasp planning method is proposed by combining analytical and empirical

approaches. Comparing with other object model based methods [5,16,17], this proposed approach is able

to represent and grasp a variety of objects with complex shapes. The contributions of this paper can be

summarized as follows:

Firstly, under the belief that many objects have handles designed for manipulating and accomplishing

tasks, the proposed method does not search the graspable points ‘blind’ on all of objects’ body, but

identifies the graspable components and searches the grasp points in the range of the graspable component.
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In addition, the representations of objects and graspable components are non-parametric and therefore

have strong capability of expressing object geometry, especially in the limit of infinite number of interest

points.

Secondly, instead of identifying the graspable components individually or defining the object handle

as some shapes such as cylindrical, the graspable component is learned on the category level of objects

by human experience based on the assumption that geometry and functionality alike objects have similar

graspable components. It is important to note that the word “category” here refers to geometrical

properties (shape but not color) rather than actual names of objects.

Thirdly, a fast analytical method is developed for extracting the desired point clouds and hand kine-

matics optimization. Further, a regressor of extreme learning method (ELM) is built for representing the

experience of hand configuration among the contact points, the wrist position and orientation.

Figure 1 illustrates the proposed approach for recognizing the graspable component diagrammatically.

For simplicity, only two categories of objects are shown.

Above of the dash line in Figure 1 demonstrates the off-line training stage and below of the dash

line demonstrates the on-line testing stage. The training data set contains object point clouds with the

graspable components labeled by a human subject. At the training stage, a suitable 3D point descriptor

are firstly applied to represent the shapes of objects. Afterwards, it is divided as two pathes: in one path

(the dot dash line), these descriptors are used directly to train a graspable component identifier for each

category; in another path (the solid line), the dimensionality of these descriptors are reduced to form

object features which are then used to train an object classifier.

At the testing stage, the testing point cloud of an unknown object goes through the same feature

extraction steps. The object is classified to a known category and at the same time, the predicted class

leads the object descriptors to the corresponding graspable component.

In Figure 1, “IP feats”, “IP desc”, “obj feats”, “dim.reduct” and “GCI” are the abbreviations of “inter-

est point features”, “interest point description”, “object features”, “dimension reduction” and “graspable

component identification”, respectively.

Then, as shown in Figure 2, the desired contact points are extracted from the graspable component,

which satisfy a set of stability and feasibility criterion. Finally, a fast hand configuration approach

utilizing kinematics is developed for planning the wrist position, orientation and joint angles.

Moreover, in Figure 3, an empirical method for hand configuration is proposed based on a multi-output

regressor of extreme leaning method (ELM). Specifically, inputting the extracted graspable points and the

wrist orientation experience, the regressor outputs the wrist position. This approach avoids the iteration

of kinematics optimization.

3 Object shape representation

We employ a modified version of the Signature of Histograms of OrienTations (SHOT) [18] descriptor to

encode object geometry at randomly selected interest points in the point cloud. The original algorithm

creates a robust local reference at each interest points based on surface normal and the two directions

that define the tangent plane. Under each local reference frame, an isotropic spherical grid centered on

the sampled point divides its neighborhood space into partitions along the radial, azimuth and elevation

axes. The SHOT descriptor of an interest point is a 352-dimensional vector that represents the 11-bin

histograms of cos(θ) at each partition, where θ is the angle between the surface normals at the interest

point and another point in its neighborhood. It has been shown that SHOT performs the best compared

with many others in terms of the trade-off between accuracy and runtime [12].

In the modification, the scale (the size) of the given point cloud d is defined as the maximum distance

between two points in the cloud. Each local reference frame is constructed using points that are within

0.05d from this interest point. To construct the SHOT, the neighborhood range is set to be within 0.5d

from each interest point, thus this long-range SHOT contains much more information about where this

interest point lies relative to the entire object as well as the surface variations within its neighborhood.
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Figure 1 The flowchart for the identification of the graspable components.

Contact point
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Figure 2 The flowchart of hand configuration.

Off-line

Kinematics model

Contact point
extraction

3 points              Wrist orientation               Wrist position

Experience

Figure 3 The flowchart for learning the kinematics model.

Using this adaptive range also makes the descriptor invariant to the scale. With the much down-sampled

point cloud, speed can still be ensured despite the significantly increased radius. It is found that 2000

randomly selected interest points are sufficient to achieve plausible results in object classification and

graspable component identification. The number of partitions in the neighborhood space is also changed

so that the final SHOT descriptor is a 594 dimensional vector after setting the number of spatial partitions

(6, 3, 3 in azimuth, elevation and radial dimensions).

In addition, the local reference at each interest point is used as features, resulting in a 603-dimensional

vector for each interest point. Hence, the entire object is described by a 2000× 603 matrix M = [S,L],

where S is the 2000× 594 SHOT features of this point cloud, and L is the 2000× 9 LR features. In the

following sections, we refer to the column-wise dimension (length 2000) of M as the point dimension,

and the row-wise dimension (length 603) of M as the feature dimension.
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4 Object classification and graspable component identification

The original features collection M is too large for either classification or storage. In our work, we treat

the 594-dimensional SHOT features S and the 9-dimensional local reference features L separately and

reduce the dimensionality along the point dimension.

SHOT features. Let si,j (i = 1, 2, . . . , 2000, j = 1, 2, . . . , 594) be the elements of S, and define

S = {sj|j = 1, 2, . . . , 594}, where sj = {si,j|i = 1, 2, . . . , 2000}. We reduce the dimensionality along the

point dimension by extracting the range, mean, standard deviation and three orders (0.5, 1 and 3) of

Rènyi entropies Hα(sj) on the normalized sj using (1),

Hα(sj) =
1

1− α
log

(∑
i

sαi,j

)
. (1)

These simple statistics (range, mean, standard deviation and entropies) capture the variation at posi-

tions along each feature dimension. Further, to capture correlations across SHOT dimensions, the first

five principle components of all the 2000 SHOT features (eigenvectors with the largest five eigenvalues of

STS) are also extracted, giving an extra five 594-dimensional vectors. S is now reduced to a 11 × 594

matrix S̃.

Local reference features. Only the standard deviations along the point dimension and three prin-

ciple components are extracted as local reference features. This gives four 9-dimensional features which

capture the surface variation of the object. Denote this 4× 9 matrix by L̃.

In this paper, we use 15 K-nearest-neighbors (KNN) classifiers constructed on the 11 rows of S̃ and 4

rows of L̃ extracted from each point cloud and adopt a voting scheme for final prediction. Each of the 15

KNN classifiers produces K nearest neighbors to the new object and the neighbors’ labels are counted

as votes, giving 15K votes in total. The category with the highest vote is predicted for this point cloud.

The multiple KNN method shares some similarities with the Random KNN [19] which has been used to

perform feature selection on high dimensional data [20]. Its advantages in accuracy as well as training

and testing speeds have been found in the object classification task.

The next step is to identify the graspable component based on human experience on the category level.

For each category, we directly train an SVM (Support Vector Machine) classifier (with quadratic kernel)

which takes the SHOT features and returns binary decision on whether an interest point belongs to the

graspable component. These training data accumulated as objects within a category are processed for

the graspable component classification. Under the assumption that graspable points are closely packed

together, a spatial median filter is used to smooth the labels over the object for eliminating isolated

misclassification. Specifically, the predicted class label lp for each interest point p are modified using

lp = 1

⎧⎨
⎩ 1

|Np|
∑

p∈Np

lp � 0.5

⎫⎬
⎭ , (2)

where 1{·} is the indicator function and is equal to 1 if its argument is true and 0 otherwise. Np is the

set of neighboring interest point within a small radius.

5 Three-finger grasping on the graspable component

This section develops grasp planning method carried out on the identified graspable component. It mainly

consists of two stages: desired contact point selection and hand configuration. The robotic hand used is a

BarrettHand with three fingers. The proposed approach directly searches the contact point candidates on

the 3D point clouds by employing the DPSO method. It dose not need to fit the shapes of the graspable

component. Therefore, this method for graspable point extraction is suitable for objects with a various

of shapes.

Two approaches are developed for hand configuration, one way is based on kinematics optimization;

and another way is based on a multi-output regressor which learns the kinematics experience.
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5.1 Desired triplet extraction

Given a set of graspable points Pg, we aim at finding a triplet PN = ({pi,ni}, {pj,nj}, {pk,nk}),
pi,pj,pk ∈ Pg that satisfies the properties of grasp stability, hand shape and hand size. Here, ni

expresses the normal vector in the point pi.

Grasp stability. Rather than estimating the contact wrenches, a simple method is adopted for force-

closure grasping analysis of three-finger robot hand, which should satisfy the following sufficient and

necessary conditions:

• The grasp matrix must be full-rank.

• Each friction cone intersects the contact plane defined by the three contact points, generating two

unit vectors that bound the intersection of the cone and this contact plane.

• The six unit vectors at the three contact points construct a 2D force-closure grasp in the contact

plane.

A large cost is assigned if any of these conditions is not satisfied, which motivates the following cost

function

FC(PN) = D × 1{PN is force closure}, (3)

where D is a large positive number and a hard finger model is used in the contact points.

Grasp shape. In [21], according to the number of counter-overlap pairs of friction cone, they demon-

strates four types of force-closure grasp shapes for hard-finger contacts. It has been shown that the grasp

shape is more likely to be stable when the number of counter-overlapping friction cone pairs is 1 or 2 [13].

Therefore, the following cost function is developed:

C(PN) =

⎧⎪⎨
⎪⎩

0, if nco is 1 or 2,

min(An), if nco is 0,

2 arctan(μ)−max(An), if nco is 3,

(4)

where nco is the number of counter-overlapping cone pairs and An = {an1, an2, an3} is the set of the

angles of the triangle formed by the three points in PN.

Area of the grasp polygon. The force-closure triplet should be reachable by the fingertips. There-

fore, the following cost function is used to satisfy BarrettHand’s geometry requirement:

A(PN) =

{
0, if amin � Area(PN) � amax,

B, if Area(PN) > amax or Area(PN) < amin,
(5)

where A(PN) is the area of the triangle defined by three points in PN, and amin and amax are the minimum

and maximum triangular areas spanned by the fingertips respectively. B is a large positive value.

Referring to the above grasp properties, a good triplet PN∗ can be found by solving the optimization

problem formulated as

PN∗ = min
PN

[wC(PN) +A(PN) + FC(PN)], (6)

where C(PN), A(PN) and FC(PN) are given by (4), (5) and (3), respectively. w is the weight to determine

the trade-off among C(PN), A(PN) and FC(PN). Empirically, we test several values of w, e.g. w = 0,

0.1, 0.2, . . . , 10, and w = 0.8 is found to be the most suitable one.

Then, the above objective function is minimized by Discrete Particle Swarm Optimization (DPSO),

which is a discrete, derivative-free, population based local optimization algorithm [22].

5.2 Hand configuration

For a given triplet PN, the hand kinematics can be used to find a feasible configuration of the robot

hand. The BH8-series BarrettHand has 10 freedoms in total, 3 for the wrist position pe, 3 for the wrist

orientation oe and 4 for finger joint angles qe (1 for each finger and 1 for the spread). Thus, the optimum

hand configuration is a numerical solution iteratively generated from the kinematics optimization. In
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Figure 4 Successful hand configuration.

this paper, an interior-point algorithm is applied for minimizing the distance from the fingertips to the

desired contact points PN,

p∗
e,o

∗
e, q

∗
e = minpe,oe,qe

∑3
m=1 ‖Tpm − Spm‖

s.t. (pe − p)TD−1(pe − p) > 1,

ln < qn < un, for n = 1, 2, 3, 4, (7)

where p and D are the mean and covariance matrix of the entire point cloud respectively, and Tpm ∈ R
3

is the position of a finger tip. The finger joint angle qn is within the lower and upper bounds ln and un.

Based on successful hand configurations, in this section, a kinematics model also is built by using the

multi-output regression of extreme learning method (ELM). The model constructs the kinematics relation

among oe, pe and PN, which includes two steps:

The first step is to collect multiple groups of successful hand configurations (p∗
e,o

∗
e,PN)i, i = 1, . . . , L.

To do that, the initial triplets are selected from different point clouds of the graspable components. For

example, as shown in Figure 4, the initial triplets are chosen from different color parts of the graspable

point clouds. The number of the initial triplets is around 30–40.

In Figure 4, the first left figure is the point cloud of a bottle on which the red clouds are the gras-

pable component. In the middle figure, the graspable component is divided as multiple parts (shown in

different colors) and the initial triplets are selected from them. Subsequently, multiple desired groups

of (p∗
e,o

∗
e,PN)i, i = 1, 2, . . . , L can be acquired by using the stable grasp evaluation in Subsection 5.1

and the optimization approach in (7). The right figure is a top view of the graspable component, around

which the blue color clouds are the positions of the wrist p∗
e.

Then, the relation among p∗
e, o

∗
e, PN is built based on the multi-output regression of extreme learning

method (ELM). ELM (extreme learning machine) [23, 24] is an effective learning algorithm of Single-

hidden Layer Feedforward Neural Network (SLFNs). Comparing with SVM, its advantages include fewer

optimization constraints, faster learning and better performance. The output function of ELM is

fL(x) =

L∑
i=1

βihi(x), (8)

where β = [β1, . . . , βL]
T is the vector of the output weights between the hidden layer of L nodes and the

output node. h(x) is the output vector of the hidden layer with respect to the input x. The extreme

learning machine (ELM) is to minimize the training error as well as the norm of the output weights. In

this paper, the multi-output regression of ELM performs modeling the following relations:

P̂ ∗
e = Fm(x), (9)

where x = {(o∗
e,PN)i}, P̂ ∗

e = {(p̂∗
e)i}, i = 1, . . . , L. Therefore, given the desired contact point PN and

the wrist orientation o∗
e, the regression function Fm can be utilized for estimating the wrist position p̂∗

e.
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Table 1 Accuracy means and standard deviations of object classification using MKNN and random forest (RandFst)

Classifier
Accuracy means and standard deviations (%)

PSB L-RGBD

MKNN 85.3± 3.2 93.4± 2.1

RandFst 76.1± 5.2 89.4± 2.2

Comparing with the analytical optimization method, this approach avoids the problem of going into local

minimum which leads to a fail of hand configuration.

6 Experiments and results

6.1 Object classification and graspable component identification

6.1.1 Object classification

The classification algorithm is tested on two publicly available datasets independently. They are PSB

(Princeton Shape Benchmark) [25] containing complete point cloud data and Large RGBD dataset [26]

containing partial point clouds recorded by Kinect depth camera. 10 categories of objects are chosen from

each dataset, which have dissimilar overall geometries (ball, coffee mug, food bag, food box, food jar,

glue stick, plate, pliers, stapler and water bottle). Six different objects are selected from each category

of which four randomly selected objects are utilized for training and the point clouds from the other two

objects form the test set.

We compare MKNN (multiple KNN) with the random forest (RandFst) classifier on both datasets.

The accuracy means and standard deviations of 10 trials are reported in Table 1. It shows that MKNN

performs better than RandFst in this task on both datasets. In fact, the MKNN consistently gives higher

accuracies than random forest on all trials. The high accuracy from the L-RGBD dataset suggests that

this object classification method can be applied to real robotic grasping scenarios where the depth camera

only records partial point clouds.

6.1.2 Graspable component identification

The same set of objects chosen from PSB (Princeton Shape Benchmark) were used in testing graspable

component identification. The interest points of each point cloud are labeled by a single human subject

to be either graspable (1) or non-graspable (0), thus the labels represent the grasp position experience

of this subject. The results in Figure 5 show that predicted graspable components agree with human

experience very well. For pistols, as an example, the handle is clearly identified while leaving points at the

bottom end as non-graspable. This method works just as well even for complex graspable components,

such as airplanes which are difficult to be identified using shape modeling.

The proposed approach also is verified on incomplete point clouds acquired directly from Kinect RGB-

D camera. Figure 6 demonstrates the experimental results about brushes and bottles. The data on the

left of the black dash line are the training set on which the red color clouds are labeled by a single human

subject. The testing results are demonstrated on the right of the dash line and the red color clouds on

the testing data are the predicted graspable components. It can be seen that even if the testing data are

different from the training ones, the proposed approach still can identify the graspable regions.

6.2 Hand configuration

Using the results in the above subsection, the grasp planning only needs to search for the best triplet

on the identified graspable component. In Subsection 5.2, two approaches for hand configuration are

developed including the kinematics optimization method and the model learning approach. They are

verified by simulations and experiments in this subsection. The hand model used is built from the real
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(a)                                                                                                                      (b)

Figure 5 Graspable component identification. (a) The training data; (b) the testing data.

Figure 6 Graspable component identification on partial clouds.
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BarrettHand by modifying the three-finger hand available in the SynGrasp package [27]. The friction

coefficient μ is set to 0.6.

It has been found that with the DPSO method, the initial triplets could quickly converge to the

stable grasp triplets in most cases about 10 iterations. Then, the optimization method is performed for

acquiring the wrist position, orientation and the configuration of hand joints (See Figure 7). The success

configuration is defined that the 3 fingertips can reach the positions of the best triplet precisely and the

fingers do not penetrate the object. Figure 7 demonstrates that the desired triplet can be found and stable

grasps can be established on the objects with complex geometry. In Figure 8, this optimization approach

is tested on incomplete clouds. The mug clouds on the above of the black dash line are the training set

selected from the Large RGBD dataset. The mug handles are labeled for distinguishing with the bodies of

the mugs. Then, under the black dash line, a new mug is tested for the graspable component identification

and hand configuration. Considering the size of the mug handle, the BarrettHand selects to grasp the

body of the mug. Figure 9 displays an experiment of grasping the mug which includes three processes from

left to right: “open”, “grasp” and “upward move”. It shows the importance of the graspable component

identification and precise hand configuration for the success of real grasp experiments.

The learned kinematics model is a multi-output regressor of ELM working by inputting the wrist ori-

entation and the desired contact points and outputting the wrist position. In order to verify the accuracy

of the model, we construct the model by three numbers of group data, 60, 120 and 180, respectively and

test the models with 20 groups of data. The prediction results are displayed in Table 2.

From Table 2, it can be seen clearly that the prediction accuracy becomes higher with the increase

of the group number. When the training number reaches 180 groups, the mean testing error reduces to

0.0105 m. The 20 groups of testing results are further utilized to grasp the object, which show that the

number of fail grasp cases are 3 and 0 for the regressors trained by 120 and 180 groups, respectively. One

of the success grasps is demonstrated in Figure 10. We can see that the predicted one is much similar

as the optimized hand postures. In summary, the regression method is time-saving that it does not need

to iteratively estimate the optimum hand configuration. Besides of the desired contact points, the wrist

orientation constraint also are required by the regression method. Therefore, it is a potential way for

combining with human experience.

7 Conclusion and future work

Many objects are designed with a component suitable for human grasping. It is assumed that geomet-

rically alike objects have similar graspable components and grasps should be designed with respect to

the geometrical category of a given object. In this work, human experience is used directly to assist

robotic grasping on the graspable components, which is achieved on a wide range of objects without

any assumptions about the shapes or relative positions of these graspable components. It also does not

require segmentation or parametrization of the sub-components.

The proposed grasping system identifies the graspable component before hand configuration. It first

uses a fast multiple KNN algorithm on a modified SHOT object descriptor to categorize a given object.

Afterwards, an SVM classifier trained on SHOT features for the predicted category is used to tell which

of the points on this object belongs to the graspable component perceived by a human subject. Fast grasp

planning is then accomplished by extracting the desired contact points from the graspable component

and applying hand kinematics to grasp onto the selected points. The grasp results are shown to resemble

human grasps very well on objects whose geometries are complex and are difficult to represent for many

object modeling techniques.

Moreover, a kinematics model with respect to the desired contact points, the wrist orientation and the

wrist position are built by employing the multi-output regression of ELM (extreme learning method).

This approach is timesaving because of no iteration and is suitable to fuse with the human experience.

In the future work, human experience will be utilized to guide the determination of the desired triplet

and the wrist orientation.
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Figure 7 Grasp on the graspable component.

Off-line

On-line

Figure 8 Graspable component identification by kinematics optimization method.

Figure 9 Real experiment for grasp planning.

Table 2 The mean error of the predicted wrist position (Unit: m)

60 groups 120 groups 180 groups

0.0376 0.0202 0.0105

(a)                                                                                           (b)

Figure 10 The predicted and the optimized hand posture. (a) The optimized hand posture; (b) the predicted hand

posture.



Liu C F, et al. Sci China Inf Sci November 2016 Vol. 59 112212:12

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos.

61210013, 61327809, 91420302, 91520201).

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Lin G D, Li Z J, Liu L, et al. Development of multi-fingered dexterous hand for grasping manipulation. Sci China Inf

Sci, 2014, 57: 120208

2 Li Z J, Deng S M, Su C Y, et al. Decentralized adaptive control of cooperating mobile manipulators with disturbance

observers. IET Control Theory Appl, 2014, 8: 515–521

3 Li Z J, Ge S S, Liu S B. Contact-force distribution optimization and control for quadruped robots using both gradient

and adaptive neural networks. IEEE Trans Neural Netw Learn Syst, 2014, 25: 1460–1473

4 Li Z J, Xiao S T, Ge S S, et al. Constrained multilegged robot system modeling and fuzzy control with uncertain

kinematics and dynamics incorporating foot force. IEEE Trans Syst Man Cybern-Syst, 2015, 99: 1–14

5 El-Khoury S, Sahbani A. A new strategy combining empirical and analytical approaches for grasping unknown 3d

objects. Robot Auton Syst, 2010, 58: 497–507

6 Guo D, Sun F C, Liu C F. A system of robotic grasping with experience acquisition. Sci China Inf Sci, 2014, 57:

120202

7 Miller A T, Knoop S, Christensen H I, et al. Automatic grasp planning using shape primitives. In: Proceedings of

IEEE International Conference on Robotics and Automation, Taipei, 2003. 1824–1829

8 Novotni M, Klein R. 3d zernike descriptors for content based shape retrieval. In: Proceedings of ACM Symposium on

Solid Modeling and Applications, Washington, 2003. 216–225

9 Johnson A E, Hebert M. Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans Patt

Anal Mach Intell, 1999, 21: 433–449
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