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Abstract In current engine controls, a number of control methods are based on the air charge estimation

in engine intake systems. Since the derivative of the air mass flow through the throttle valve goes to infinity

when the intake pressure is close to the upper stream pressure, the relatively large numerical error or oscillation

occurs near the singularity point when using common algorithms. This paper develops an effective algorithm for

calculating the air mass flow in engine intake systems. Utilizing the high-level model description (HLMD), the

system is described by mass and energy conservation laws and therefor the singularity issue at the zero pressure-

difference point is transformed into a singularity issue at the corresponding energy point. Then, the implicit

midpoint rule, a special symplectic discrete method, is selected to integrate the energy and mass conservation

system. The simulation results show that the numerical behaviour of the air mass flow is significantly improved

at the singularity point by using the proposed algorithm. The experimental results also verify that the qualitative

behaviour of the air mass flow calculated by the proposed algorithm is consistent with the actual physical system.
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1 Introduction

In automotive engine control systems, some advanced control techniques such as spark advance control,

air-fuel ratio control and variable valve timing control are effectively utilized to improve fuel economy

and reduce emissions [1–4]. Since the majority of these control techniques depend on the estimation of

air mass flows in the engine intake system, the accuracy of these estimated air mass flows significantly

influences the control effect. However, the conventional formula [5] for air mass flow through the throttle

valve, similarly the turbulent orifice flow, has an infinite derivative when the pressure difference across

the throttle valve is zero. Therefore, it can be difficult to numerically calculate air mass flow when the

pressure difference approaches zero.

When we use an automatic time-step adjustment algorithm to numerically integrate the system, this

singularity can cause the time-step adjustment algorithm to drastically reduce the time step, which
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Figure 1 Schematic of the engine intake system.

inevitably results in either time-consuming calculation or failure. Alternatively, a stiff stable integration

algorithm with a fixed time step, as developed by Bowns [6] and Krus [7], may ensure numerical stability,

but the calculation accuracy depends on the time step chosen by the user, and sometimes numerical

oscillation will appear around the singularity point. A simpler method for overcoming this problem is

to remove the singularity from the formula by assuming laminar flow while the pressure difference is

small [8]. Ellman and Piché [9] proposed a two-regime orifice formula in which an empirical polynomial

laminar flow function is used for small pressure differences. Borutzky et al. [10] provided a different

empirical flow formula to achieve the same purpose and realized a smooth transition from laminar to

turbulent regimes. Although these two-regime orifice flow methods make the formula differentiable at

the zero-pressure difference point and thus avoid the singularity, the existence of error is obvious and the

error is directly relevant to the definition of the flow function in the laminar regime.

Consequently, the numerical calculation of air mass flow near the singularity point is one of the bottle-

necks when estimating air charge in engine intake systems. In this work, we develop an algorithm to

correctly describe the qualitative behaviour of air mass flow through the throttle valve in order to estimate

the air charge of engine intake system. The air mass flow is derived using a novel high-level modeling

(HLM) approach. Using high-level model description (HLMD), we can describe the system by mass and

energy conservation laws. Therefore the singularity issue at the zero pressure-difference point can be

transformed into a singularity issue at the corresponding energy point. The implicit midpoint rule, as a

symplectic discrete method, which preserves the geometric properties of numerical flow of a differential

equation [11], is utilized to discrete the target system. The simulation results are presented and compared

with the results of several common numerical approaches and an experiment.

The rest of this paper is organized as follows: In Section 2, the physical model for air charge in engine

intake systems is derived based on the HLMD. In Section 3, an algorithm for calculating the air mass flow

is proposed. In Section 4, the simulation results based on the proposed algorithm are given and compared

with the results of two fixed time-step algorithms, an automatic time-step adjustment algorithm and an

experiment. Finally, the conclusion is drawn in Section 5.

2 HLMD of air mass flow in engine intake systems

The HLM approach provides a framework for rapidly developing physics-based models and is being applied

to vehicle systems [12–15]. The main advantages of this approach are that it can describe a multi-domain

physical system using a simple domain-neutral methodology based on considered conservation laws and

constraints, and it can clearly show the design intention at the physical level so that the model can be

efficiently understood and peer-reviewed from the physical perspective. In this section, a physical model

of the air mass flow in engine intake systems is derived based on the HLM approach.

Figure 1 shows a schematic of the engine intake system under consideration. In this figure, only one

cylinder is drawn although a six-cylinder engine is modeled in this study. The intake air is drawn from

the atmosphere to the intake chamber through the throttle valve, and the gas flows out from the cylinders

to the atmosphere through the exhaust valve.
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Figure 2 HLMD of the air portion in the engine intake system.
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Figure 3 Flow model through the throttle valve.

Figure 2 shows the HLMD of the air portion in the engine intake system, which consists of five compo-

nents, i.e., the atmosphere, the gas portions of the throttle valve, the intake chamber, the cylinder and the

rotational portion of the engine. The rectangular blocks with rounded corners denote the corresponding

components, the circles denote the storage of conserved quantities, the arrows denote the flows of the

conserved quantities and their directions indicate the mathematical sign convention. The capital E∗ ,

M∗ and P∗ denote the amounts of energy, mass and momentum, respectively, and the small ė∗ and ṁ∗
denote the energy and mass flows, respectively. p∗ denotes the momentum flow density, which represents

the momentum flow unit area. Since the momentum flow density is represented in units of Newton per

square metre, it is thus equivalent to pressure in thermodynamics. The suffixes a, t, i, c and m denote

the sources of the flows, i.e., the atmosphere, the throttle valve, the intake chamber, the cylinder and the

engine rotational portion, respectively. Iw indicates the momentum flow from the wall that corresponds

to the force acting on the surface of the throttle valve. In this study, the quasi-steady state is supposed

when the air flows through the throttle valve and the velocities of gas in the atmosphere, the intake

chamber and the cylinder are neglected. Thus Pa = 0, Pi = 0 and Pc = 0.

In order to describe the behaviour of gas flowing through the throttle valve, the control volume

method [16] is utilized. The gas portion of throttle valve corresponds to the control volume shown

in Figure 3. where vu, ρu , ṁu and pu denote the gas velocity, density, mass flow and momentum flow

density at the inlet side of the control volume, respectively, and vd, ρd, ṁd and pd denote the correspond-

ing physical parameters at the outlet side of the control volume, respectively. Au and Ad denote the

areas of the inlet and outlet, respectively. The total momentum flow from the wall can be approximately

calculated by

Iw =

∫ Au

Ad

pu dA ≈ (Au − Ad) pu. (1)

In view of the assumption of quasi-steady state flow, the mass, energy and momentum conservation

laws at the throttle valve can be expressed as

Au ρu vu = Ad ρd vd, (2)

Au ρu vu

(
f + 2

2

pu
ρu

+
1

2
v2u

)
= Ad ρd vd

(
f + 2

2

pd
ρd

+
1

2
v2d

)
, (3)

Au pu +Au ρu v
2
u − (Au −Ad) pu = Ad pd +Ad ρd v

2
d, (4)

where f is the degree of freedom of air.

Because the inlet is the atmosphere, its area Au thus can be viewed as infinite. Moreover, considering

the air mass flow ṁu and density ρu must take finite values, thus from equation ṁu = Au ρu vu we can

deduce that the gas velocity vu should tend to zero.
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Substituting (2) into (3) and considering vu = 0, the energy and momentum conservation laws (3) and

(4), respectively, can be simply rewritten as

f + 2

2

pu
ρu

=
f + 2

2

pd
ρd

+
1

2
v2d, (5)

pu = pd + ρd v
2
d. (6)

Using the momentum conversation law (6), the air mass flow at the outlet side of the control volume is

thus

ṁd = Ad · ρd · vd = Ad ·
√
ρd (pu − pd). (7)

Eliminating the gas velocity vd in (5) and (6), we obtain the gas density at the outlet side of the control

volume as

ρd =
(f + 1) pd + pu

(f + 2) pu
ρu. (8)

Then, substituting (8) into (7), we can calculate the mass flow ṁd as follows

ṁd = Ad

√
(f + 1)pd + pu

(f + 2)pu
ρu (pu − pd)

= Ad

√
(f + 1) puρu ·

√√√√ 1

f + 2

((
f + 2

2 (f + 1)

)2

−
(

f

2 (f + 1)
− pd

pu

)2
)
. (9)

Taking the sonic condition into account, namely, the sonic speed expressed by the following formula is

the highest velocity of the gas flow [15],

vs =

√
f + 2

f

pd
ρd

, (10)

one can obtain the following critical pressure pcr by substituting (10) into (6).

pcr =
f

2(f + 1)
pu. (11)

Therefore, during the intake process, pd should be replaced by pi when pi > pcr and by pcr when

pi � pcr in view of the sonic condition and the assumption that the effect of pi does not transfer to the

upper stream.

With the sonic condition, and considering that the inverse behaviour occurs when the gas pressure in

the intake chamber is greater than the atmospheric pressure, the air mass flow through the throttle valve

can be expressed by the following piecewise functions.

ṁt =

⎧⎪⎪⎨
⎪⎪⎩

A
√
(f + 1) paρa · Φ

(
pi
pa

)
, pa > pi,

A
√
(f + 1) piρi · Φ

(
pa
pi

)
, pa � pi,

(12)

with

Φ(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sign(1− x)

√√√√ 1

f + 2

((
f + 2

2(f + 1)

)2

−
(

f

2(f + 1)
− x

)2
)
, x >

f

2(f + 1)
,

sign(1− x)

√
f + 2

(2(f + 1))
2 , x � f

2(f + 1)
,

(13)

where A is the throttle valve opening area, which varies with the change in the throttle angle θ based on

a simple geometric consideration as

A (θ) = π ·
(
D

2

)2

· (1− cos θ) , (14)
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Figure 4 Nonlinear function Φ (·).

where D is the diameter of the throttle bore.

In contrast to the conventional formula [5] for air mass flow through the throttle valve, which is derived

by the thermodynamic relationship for isentropic expansion, the proposed formula is derived by the energy

and momentum conservation laws, which is the distinguishing characteristic of the HLM approach.

During the intake stroke, considering the assumption that the heat transfer from the cylinder wall is

neglected, the composition of the gas in the cylinder is constant. In addition, the cylinder pressure is

equal to the atmospheric pressure at the beginning of the intake stroke and the cylinder pressure is equal

to the intake chamber pressure during the intake stroke. Thus in one intake stroke, the energy change

ΔEc in one cylinder can be expressed as

ΔEc =
f

2
(PiVb − PaVt) + Pi (Vb − Vt) . (15)

On the right side of (15), the first and second terms represent the variation in the thermal energy and

the pressure volume work, respectively. Vb is the cylinder volume at the bottom dead centre (BDC) and

Vt is that one at the top dead centre (TDC).

For a six-cylinder/four-stroke engine, the increase in energy in the six cylinders per second is therefore

ΔEc · ω/20, where ω is the engine rotational speed.

Based on the energy conservation law, these energy increases in the cylinders are equal to the energy

of the air simultaneously induced from the intake chamber into the cylinders and can be formalized as

f + 2

2
ṁcRgTi =

ω

20
· f
2
(PiVb − PaVt) + Pi (Vb − Vt) , (16)

where Rg is the gas constant of the air and Ti is the gas temperature in the intake chamber. Therefore,

the air mass flow induced into the cylinders can be obtained as

ṁc =
ω

30
·

f+2
2 pi Vb − ( f2 pa + pi)Vt

f+2
2 Rg Ti

. (17)

Eqs. (12) and (17) describe the entire air charge in the engine intake system. In (12), it is noted that

Φ is the square root function of the pressure ratio. Moreover, the derivative of Φ with respect to the

pressure ratio is infinite at the point where the pressure ratio is one. This can be illustrated in the curve

of the nonlinear function Φ, as shown in Figure 4. In this figure, the left side of point a and the right

side of point c are the regions of critical pressure where the air flow reaches the sonic condition. Point b

is the singularity point where the derivative of Φ is infinite. Therefore, there is the numerical difficulty

at this singularity point. In addition, since the air mass flow ṁf is calculated by the piecewise function

based on the intake chamber pressure, as expressed by (12), this piecewise function results in frequent

role switching between the upper and down streams when the pressure ratio is close to one, so oscillation

will occur and persist. In order to overcome these problems, in the next section we propose an algorithm

for numerically calculating air mass flow.
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3 Algorithm for calculating air mass flow

In mechanics, symplectic integrators are a kind of effectively numerical integration method, which can

preserve the geometric properties of the numerical flow of a differential equation and thus can correctly

describe the qualitative behaviour of a target system [11, 17, 18]. In general, symplectic integrators own

implicit or semi-implicit form. The implicit midpoint rule, as typical one, may achieve an effective

trade-off between computational efficiency and accuracy. Therefore, in this study, we adopt the implicit

midpoint rule to discretize the system.

According to the presented HLMD of the engine intake system shown in Figure 2, in the intake chamber,

the air charge obeys mass and energy conservation laws, which can be expressed by

dMi

dt
= ṁt − ṁc, (18)

dEi

dt
=

f + 2

2
Rg Tu ṁt − f + 2

2
Rg Ti ṁc, (19)

where Tu is the gas temperature at the upper stream of the throttle valve. When the air flows from

the atmosphere to the intake chamber, Tu represents the atmospheric temperature Ta. In contrast, Tu

represents the temperature of the gas in the intake chamber Ti. Thus, Tu can be denoted by the following

piecewise function.

Tu =

{
Ta, pa > pi,

Ti, pa � pi.
(20)

Subsequently, only the amounts of energy and mass in the intake chamber are mentioned, thus the

suffix i in Mi and Ei is omitted to simplify the notation.

The amount of mass in the intake chamber can be written as

M = ρi Vi, (21)

where Vi denotes the volume of the intake chamber, and ρi denotes the density of the gas in the intake

chamber, which can be calculated based on the intake chamber pressure pi and temperature Ti as

ρi =
pi

Rg Ti
. (22)

The amount of energy in the intake chamber can be written as

E =
f

2
pi Vi. (23)

According to (12) and (17), the air mass flow ṁt is the function of pi and ρi, and the air mass flow

ṁc is the function of pi and Ti. Moreover, according to (21)–(23), the pi , ρi and Ti can be expressed as

the function of intake chamber mass M and energy E. Consequently, the mass and energy conservation

laws, described by (18) and (19), can be rewritten as

dM

dt
= f1 (M,E) , (24)

dE

dt
= f2 (M,E) . (25)

These two ordinary differential equations describe the changes in the mass and energy of the gas in

the intake chamber caused by the air flows. Thus, if we discretize the system represented by (24) and

(25), the numerical solutions for M and E can be obtained, and then the air flows ṁt and ṁc can be

calculated according to (12) and (17) by replacing pi, ρi and Ti with the corresponding functions of M

and E.
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In order to apply the implicit midpoint rule to discretize the system, we rewrite the piecewise ṁt and

Tu, respectively, as uniform forms using the sign function, i.e., (26) and (27). Note that in these two

equations, pi, ρi and Ti are replaced by the corresponding functions of M and E.

ṁt = sign(pa − pi)A

√
(f + 1)

(
1− sign(pa − pi)

2
piρi +

1 + sign(pa − pi)

2
paρa

)

·
⎛
⎝ 1

f + 2

⎛
⎝
(

f + 2

2(f + 1)

)2

−
(

f

2(f + 1)
−
(
1 + sign[( pi

pa
)sign(pa−pi) − f

2(f+1) ]

2

(
pi
pa

)sign(pa−pi)

+
1− sign[( pi

pa
)sign(pa−pi) − f

2(f+1) ]

2

f

2(f + 1)

))2
⎞
⎠
⎞
⎠

1
2

, (26)

Tu =
1 + sign(pa − pi)

2
Ta +

1− sign(pa − pi)

2
Ti. (27)

Next we discrete the differential equations of energy and mass by the implicit midpoint rule with fixed

time step h as

Mk+1 = Mk + hf1

(
Mk +Mk+1

2
,
Ek + Ek+1

2

)
, (28)

Ek+1 = Ek + hf2

(
Mk +Mk+1

2
,
Ek + Ek+1

2

)
. (29)

and obtain the corresponding discrete system, as shown by (30) and (31).

Mk+1 = Mk + h · sign
(
pa − Ek + Ek+1

f · Vi

)
A ·
(
f + 1

f + 2

(
1− sign(pa − Ek+Ek+1

f ·Vi
)

2
· Ek + Ek+1

f · Vi

· Mk +Mk+1

2Vi
+

1 + sign(pa − Ek+Ek+1

f ·Vi
)

2
paρa

)) 1
2

·
⎛
⎝
(

f + 2

2(f + 1)

)2

−
(

f

2(f + 1)

−
⎛
⎝1 + sign[(

Ek+Ek+1

pa·f ·Vi
)
sign(pa−Ek+Ek+1

f·Vi
) − f

2(f+1) ]

2
·
(
Ek + Ek+1

pa · f · Vi

)sign
(
pa−Ek+Ek+1

f·Vi

)

+
1− sign[(Ek+Ek+1

pa·f ·Vi
)
sign(pa−Ek+Ek+1

f·Vi
) − f

2(f+1) ]

2
· f

2(f + 1)

⎞
⎠
⎞
⎠

2⎞
⎟⎠

1
2

− h · ω

30

f+2
2 · Ek+Ek+1

f ·Vi
· Vb − ( f2 pa +

Ek+Ek+1

f ·Vi
)Vt

f+2
f

Ek+EK+1

Mk+Mk+1

, (30)

Ek+1 = Ek + h

(
f + 2

2
Rg

(
1 + sign(pa − Ek+Ek+1

f ·Vi
)

2
Ta +

1− sign(pa − Ek+Ek+1

f ·Vi
)

f · Rg

Ek + EK+1

Mk +Mk+1

))

· sign
(
pa − Ek + Ek+1

f · Vi

)
A ·
(
f + 1

f + 2

(
1− sign(pa − Ek+Ek+1

f ·Vi
)

2
· Ek + Ek+1

f · Vi
· Mk +Mk+1

2Vi

+
1 + sign(pa − Ek+Ek+1

f ·Vi
)

2
paρa

)) 1
2

·
⎛
⎝
(

f + 2

2(f + 1)

)2

−
(

f

2(f + 1)

−
⎛
⎝1 + sign((Ek+Ek+1

pa·f ·Vi
)
sign(pa−Ek+Ek+1

f·Vi
) − f

2(f+1) )

2
·
(
Ek + Ek+1

pa · f · Vi

)sign
(
pa−Ek+Ek+1

f·Vi

)
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Table 1 Model parameters used in simulation

Parameter Value

Atmospheric pressure Pa 1.0132 × 105 Pa

Atmospheric temperature Ta 298.15 K

Air density ρa 1.18 kg/m3

Gas constant of air Rg 287.1 J/kg·K
Degree of freedom of air f 5

Diameter of throttle bore D 0.094 m

Intake chamber volume Vi 0.0054 m3

Cylinder volume at BDC Vc 6.2934 × 10−4 m3

Cylinder volume at TDC Vt 5.3333 × 10−5 m3

Engine speed ω 1000 rpm

+
1− sign((

Ek+Ek+1

pa·f ·Vi
)
sign(pa−Ek+Ek+1

f·Vi
) − f

2(f+1))

2
· f

2(f + 1)

⎞
⎠
⎞
⎠

2⎞
⎟⎠

1
2

− h · ω

30

(
f + 2

2
· Ek + Ek+1

f · Vi
· Vb −

(
f

2
pa +

Ek + Ek+1

f · Vi

)
Vt

)
. (31)

By solving this implicit discrete system, we can obtain Mk and Ek (k = 1, . . . , N) and we also can

calculate the corresponding air mass flows ṁt and ṁc.

We can summarize, the algorithm for calculating the air mass flow of engine intake systems as follows:

• Express pi, ρi and Ti as functions of M and E, i.e., (21)–(23);

• Rewrite piecewise ṁt and Tu into uniform forms, i.e., (26) and (27), by utilizing the sign function,

respectively;

• Replace pi, ρi and Ti in (26), (27) and (17), respectively, by M and E according to the functions

presented in the first step;

• Discretize the mass and energy conservation laws, (18) and (19), by the implicit midpoint rule to

obtain the discrete system, i.e., (30) and (31);

• Solve the discrete system to obtain Mk and Ek (k = 1, . . . , N) and then calculate the corresponding

air mass flows ṁt and ṁc according to (26) and (17) with the third step.

4 Results and comparison

In this section, some simulations and an experiment are performed to verify the validity of the proposed

algorithm. Using the algorithm presented in Section 3, the simulations are performed in MATLAB. For

comparison, two common discrete methods with fixed step, i.e., explicit Euler method and 4 order Runge

Kutta method, and a discrete method with variable step, i.e., 4–5 order Dormand/Prince Runge Kutta

method, are used to solve the same problem. For the fixed-step solvers, the sampling time is selected as

1ms, and for the variable-step solver, the relative tolerance is selected as 10−3. The model parameters are

listed in Table 1. The selected parameter values are consistent with those in the experimental environment

and in the actual Toyota V6 engine used in the experiment.

To observe the numerical behaviour of the air flows through the throttle valve and particularly in the

situation in which the pressure ratio across the throttle valve tends to one, the throttle angle is specified

to vary according to the rule shown in Figure 5(a). For comparison, the same throttle-angle change rule

is used in the various numerical methods and in the experiment. Figure 5 (b) to (e) show the air flows

through the throttle valve and induced into the cylinder and the intake chamber pressure, using the

explicit Euler (EE), 4 order Runge Kutta (RK4), 4–5 order Dormand/Prince Runge Kutta (DPRK54)

and the proposed implicit midpoint (IM) methods, respectively.
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Figure 5 Throttle angle, air mass flows and pressures. (a) Throttle angle; (b) explicit Euler method; (c) 4 order Runge

Kutta method; (d) 4 and 5 orders Dormand/Prince Runge Kutta method; (e) implicit midpoint method.
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Figure 6 Simulation results of nonlinear function Φ at 12 to 15 s. (a) Explicit Euler; (b) 4 order Runge Kutta; (c) 4–5

order Dormand/Prince Runge Kutta; (d) implicit midpoint.

In the explicit Euler method, it is observed from Figure 5(b) that oscillations in the air mass flow ṁt

and intake chamber pressure Pi occur when the pressure difference on both sides of the throttle valve goes

to zero and do so clearly at 10.5 to 11 and again at 13 to 15 seconds. The reason for this phenomenon

is that the explicit Euler method calculates the air mass flow using the piecewise function based on the

intake chamber pressure. Therefore, near the pressure balance point, i.e., where the pressure difference

on both sides of the throttle valve is close to zero, this fixed-step algorithm leads to the frequent role

transformation of the upper and down streams, which results in the oscillation.

Notes the fact that after the throttle is sufficiently opened, the air pressure between the atmosphere

and intake chamber gradually balances, and at that time, the air mass flow induced into cylinder should

be equal to the air mass flow through the throttle valve, i.e., ṁc = ṁt. However, in the RK4 method,

although no oscillation occurs in the air mass flow ṁt and intake chamber pressure Pi, a steady-state

error in the air mass flow ṁt is apparent, as shown in Figure 5(c).

When using the DPRK54 method, oscillation also occurs in the air flow ṁt and intake chamber pressure

Pi when the pressure difference on both sides of the throttle valve goes to zero (see Figure 5(d)), despite

the fact that the amplitude of the oscillation is relatively small.

From the simulation results using the proposed midpoint rule, as shown in Figure 5(e), it can be

observed that oscillation in the air mass flow ṁt occurs only at the initial stage of the throttle opening,

and the amplitude of the oscillation rapidly reduces. The steady-state error in the air mass flow ṁt is

dramatically smaller compared with that of the RK4 method.

Figure 6 illustrates the nonlinear function Φ using four different discrete methods during the time

region from 12 to 15 seconds. In this figure, the four subgraphs show the curves of function Φ near the

singularity points using different discrete methods. From this figure, it can be observed that when the

pressure ratio is not near to the singularity point, the curves of function Φ calculated by the different

numerical methods approximate the exact curves. However, when the pressure ratio is close to one,

continuous oscillation occurs in the results of the explicit Euler and DPRK54 methods, as shown in

Figure 6 (a) and (c). Therefore, these two discrete methods cannot correctly describe the behaviour of

the proposed system near the singularity point. Although oscillation does not occur when using the RK4
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Figure 7 Simulation and experimental results on throttle angle and air mass flows. (a) Throttle angle; (b) air mass flow

ṁt; (c) air mass flow ṁc.

method, as shown in Figure 6(b), the error caused by this numerical method is very large. When using

the implicit midpoint method (see Figure 6(d)), oscillations occur several times only when the pressure

ratio goes to one, and the error is smaller than that of the RK4 method.

To verify that the qualitative behaviour of the air mass flow calculated by the proposed algorithm

is consistent with the actual physical system, the experiment is performed on a Toyota V6 engine test

bench. The experimental results are shown in Figure 7. As shown in this figure, the throttle angle of the

actual engine can change following the throttle angle demand (see Figure 7(a)). During the change of

throttle angle, the air mass flow in the experiment did not generate oscillation. This physical behaviour

of the air mass flow is consistent with the simulation results obtained by the proposed algorithm (see

Figure 7 (b) and (c)). Therefore, the proposed algorithm for numerically calculating air mass flow can

correctly describe the qualitative behaviour of air mass flow in actual engine intake systems.

From these simulation and experimental results, we have illustrated that the proposed numerical

method has an advantage over the common numerical methods used to calculate air mass flow because

it can correctly describe the qualitative behaviour of the air charge system.

5 Conclusion

In this paper, an algorithm is proposed for calculating the air mass flows in engine intake systems. This

algorithm can correctly describe the qualitative behaviour of air mass flow through the throttle valve

and in particular at the singularity point where the pressure difference across the throttle valve is zero.

In this algorithm, the physical model of air mass flows is built based on the HLM method. Moreover,

the implicit midpoint rule is utilized to discretize the essential conservation laws in order to numerically

calculate the air mass flow. The simulation results show the oscillation that is generally caused by the
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traditional explicit fixed-step approach has disappeared and that the steady-state error is smaller. The

experimental results verify the validity of the proposed algorithm. In fact, this algorithm is also suitable

for the conventional air mass flow model described by the piecewise function if the conventional model is

modified from the mass and energy conservation perspective. Applying this algorithm to the conventional

model will be our further work.

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Saraswati S, Agarwal P K, Chand S. Neural networks and fuzzy logic-based spark advance control of SI engines. Expert

Syst Appl, 2011, 38: 6916–6925

2 Yang J, Shen T, Jiao X. Model-based stochastic optimal air-fuel ratio control with residual gas fraction of spark ignition

engines. IEEE Trans Contr Syst Technol, 2014, 22: 896–910

3 Xie H, Song K, He Y. A hybrid disturbance rejection control solution for variable valve timing system of gasoline

engines. ISA Trans, 2014, 53: 889–898

4 Wu Y, Kumar M, Shen T. A stochastic logical system approach to model and optimal control of cyclic variation of

residual gas fraction in combustion engines. Appl Therm Eng, 2016, 93: 251–259

5 Guzzella L, Onder C. Introduction to Modeling and Control of Internal Combustion Engine Systems. Berlin: Springer

Science & Business Media, 2009. 30–39

6 Bowns D E, Tomlinson S P, Dorey R E. Computer simulation techniques for the dynamic performance assessment of

fuild power system. In: Proceedings of the 7th International Fluid Power Symposium, Bath, 1986. 81–88

7 Krus P. The simulation of fluid power system with complex load dynamics. Int J Model Simul, 1986, 6: 52–57

8 Ellman A, Vilenius M J. Methods for Simulating Steady-State and Dynamic Behavior of Two-Way Cartridge Valve

Circuits. SAE Technical Paper 901584. 1990
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