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Abstract In this paper, the attitude control of a small-scale helicopter is investigated. The main rotor flapping

dynamics is explicitly explored to improve the control performance. A two-layer control architecture is adopted:

the inner loop controller is designed combining second-order sliding mode control with extended state observer

to control the angular rates and yield good robustness properties with respect to model uncertainties; the outer

loop controller is used to control the attitude. Experimental results show that the proposed controller yields

excellent performance and robustness.
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1 Introduction

Small-scale helicopters can vertically take off and land, hover, turn on the spot, move in various directions,

and cruise similar to fixed-wing vehicles. These characteristics have made them indispensable for a variety

of applications, such as border patrol, intelligent traffic monitoring, rescue services, 3D mapping, power

line inspection, fire front monitoring, and so on [1–5]. However, it is more difficult to control a small-scale

helicopter than its full-scale counterpart due to the faster dynamics and higher sensitivity to the control

inputs and external disturbances. Although basic autonomous flight has been achieved, the performance

is indeed modest in comparison with a skilled pilot and can not satisfy the requirements of some advanced

applications. Meanwhile, the robustness of the controllers also needs to be improved. Therefore, designing

a robust flight controller which can take full advantage of such vehicle is still an attractive research topic.

Traditional approaches for small-scale helicopters flight control involve linearization at a set of pre-

selected equilibrium or trim points within the flight envelop. The final control law is synthesized using

gain-scheduling. The major advantage is that minor computations are required and many linear control

design techniques are available, such as PID [6,7], LQR [8,9], and H∞ method [10,11]. However, a linear

model is only valid in the neighborhood of the trim point. When the operating point of the helicopter
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moves away from the design trim point, performance may be degraded severely and the closed-loop system

may be even unstable.

Recently, many researchers have devoted much attention to nonlinear control techniques to overcome

the theoretical limitations and drawbacks of linear controllers. Backstepping is a systematic and recursive

nonlinear control design technique and has been widely used for small-scale helicopters. In [12] and [13],

the authors developed the velocity and position tracking controller, respectively, based on a similar back-

stepping control of a general rigid body. However, the main rotor flapping dynamics was not considered.

Ref. [14] presented an adaptive backstepping controller for hover mode. Although the flapping dynamics

and servo dynamics were both considered in the control design, the authors did not provide any observer

design for flapping angle estimation, which is important for practical implementation. Based on [15],

a backstepping controller was completed using dynamic extension incorporating with recurrent neural

network in [16], which treated the thrust of the main rotor and its first derivative as the state variables of

the system, and the moment and the second-order derivative of the thrust as system inputs. But neither

the flapping dynamics nor main rotor aerodynamics was considered. Sliding mode control is a nonlinear

robust control method which employs a control action across a sliding surface to eliminate the effect of

uncertainty and has been widely used for nonlinear control system design [17–19]. Ref. [20] proposed a

novel nonlinear control approach based on sliding mode control. This approach is applied to a small-scale

helicopter to deal with the model uncertainties and external disturbances. The flapping dynamics is ex-

plicitly considered, but the immeasurability of the flapping angles are disregarded. Some other methods

also have been adopted to design flight controllers, which include neural networks [21], feedback lineariza-

tion [22], composite nonlinear feedback control [23], and model predictive approach [24, 25], to name a

few.

The attitude control problem for a small-scale helicopter is quite challenging. Beside the attitude

kinematics and the rotation dynamics, the flapping dynamics corresponding to the tilting motion of the

main rotor should also be considered. Flapping dynamics is a unique feature of helicopters which can

be expressed by flapping angles. For the control design of small-scale helicopters, flapping dynamics

is a specially important factor because the stabilizer bar, equipped to provide lagged rate feedback

to facilitate manual operation, substantially renders a lightly damping feature in the rotation dynamics,

which decreases the damping ratio and reduces stability [26]. Disregarding flapping dynamics and treating

it as a quasi steady state equation is a practical method in the existing literature [16,24,27]. Meanwhile,

two second-order notch filters are used in the roll and pitch control channels to compensate for the

aforementioned lightly damping phenomena. But this method will limit the control performance at

higher bandwidths. Adopting flapping angles feedback can change the damping ratio. However, the

flapping angles cannot be directly measured. Moreover, it is difficult to design an observer for estimation

due to the complexity of the main rotor aerodynamics.

In this work, a novel control method is proposed to improve the robustness, which adopts the second-

order sliding mode method [17, 18] incorporating with extended state observer. A two-layer control

architecture is adopted. The inner loop controller is designed to control the angular rates and the

flapping dynamics is explicitly considered. The outer loop controller is used to control the attitude.

The remainder of the paper is organized as follows. In Section 2, the nonlinear model of the small-

scale helicopter used for controller design is presented. The roll and pitch controller design is presented

in Section 3. Several flight simulations and experiments are carried out in Section 4 to validate the

performance of the proposed controller. At last, some conclusions are drawn in Section 5.

2 Nonlinear model of a small-scale helicopter

This research is bsed on a Raptor 90 RC hobby helicopter platform, which has a 1.605 m span and a

1.410 m length, as shown in Figure 1. It has a two-blade teetering rotor augmented with a Bell-Hiller

stabilizing bar. Five digital servo actuators drive the helicopter. The lateral and longitudinal servo

motors are used to control roll and pitch motions through swashplate tilting, the collective motor is used
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Figure 1 Small-scale helicopter system.
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Figure 2 Working principle of a small-scale helicopter.

to control the collective pitch of the main rotor. The onboard avionics includes a sensor packet, flight

control board, and wireless communication modem. The sensor packet consists of an AHRS, named MTi,

a GPS receiver, and a barometric altimeter. MTi can provide three-axis accelerations, three-axis angular

rates and three-axis earth-magnetic field data. Position and velocity can be estimated by fusing data

from the GPS receiver and MTi. The flight control board is designed based on a digital signal controller,

named TMS320F28335, used to implement the control law and collect all the data to a 4GB SD card.

The wireless communication modem is used to monitor the status of the helicopter.

In this work, a hybrid model is used to describe the dynamics of a small-scale helicopter, which

includes the nonlinear rigid body dynamics, main rotor dynamics, and simplified yaw dynamics. The

model uncertainties and other trivial factors are treated as external disturbances. The position of the

gravity center of the helicopter is notated by P = [x, y, z]T in the inertial frame, where the linear velocity

of the gravity center in the inertial frame is given by v = [vx, vy, vz ]
T (see Figure 2). Control forces

and moments originate mainly from the main and tail rotors, controlled by four inputs: lateral and

longitudinal cyclic rotor controls δlat, δlon; collective pitch input δcol; and tail rotor collective input δped.

δlat and δlon are used to control roll and pitch motions through swashplate tilting. The rotation speed

of the main rotor is controlled by an engine governor and it is not considered. The magnitude of the

thrust is controlled by changing the collective pitch angle of the main blades through δcol. δped is used

to control the yaw angular rate and heading. For the orientation, we take advantage of roll(φ), pitch(θ),

and yaw(ψ) representation defining Θ = [φ, θ]T and η = [φ, θ, ψ]T. The angular velocity of the helicopter

represented in the body frame is ω = [ω1, r]
T, where ω1 = [p, q]T. Actually, using the Euler angles to

represent the attitude kinematics, there are singularities when the pitch angle equals to ±90◦. In this

paper, it is assumed that φ and θ are far away from ±90◦.
The nonlinear rigid body dynamics of the fuselage can be derived by Newton-Euler equation and

written as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ṗ = v,

mv̇ = R(η)Fb +mge3,

η̇=π(Θ)ω,

Iω̇ = −ω × Iω +Mb,

(1)

where m is the mass of the body, I = diag{Ixx, Iyy, Izz} is the inertia matrix, g is the gravity acceleration

and e3 is a unit vector along z axis of the inertial frame. Fb and Mb are the control force and moment

expressed in the body frame. The rotation matrix from the body frame to the inertial frame R(η), and

the attitude kinematic matrix π(Θ) are defined, respectively, as

R(η) =

⎡

⎢
⎢
⎣

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

⎤

⎥
⎥
⎦ , π(Θ) =

⎡

⎢
⎢
⎣

1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

⎤

⎥
⎥
⎦ , (2)
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where the compact notation c denotes for cos(	), s for sin(	) and t for tan(	).

Flapping dynamics is the main source of the control moment, which is a unique characteristic of

helicopters. For a small-scale helicopter, the dynamics of the stabilizer mounted on the main rotor

to facilitate manual operation should also be considered. The main rotor flapping dynamics has been

modeled in [28] as follows:

[
ȧ

ḃ

]

= γmΩ
(γm)2+64

[
− 4kβ

IβΩ2 − 8 γm − 32kβ

γmIβΩ2

32kβ

γmIβΩ2 − γm − 4kβ

IβΩ2 − 8

][
a

b

]

−
[
q

p

]

+ γmΩ
(γm)2+64

[
8 −γm
γm 8

] [
Am

1 +Ksas

Bm
1 +Ksbs

]

,

[
ȧs

ḃs

]

= γsΩ
(γs)2+64

[
−8 γs

−γs −8

] [
as

bs

]

−
[
q

p

]

+ γsΩ
(γs)2+64

[
8 −γs
γs 8

][
As

1

Bs
1

]

,

(3)

where (a, b) and (as, bs) are the flapping angles of the main blades and stabilizer in longitudinal and lateral

directions, respectively; kβ is the spring constant of the rotor hub; γm is the lock number of the main

blades; γs is the lock number of the stabilizer; Iβ is the moment of inertia of the main blades; Ω is the

rotation speed of the main rotor; and Ks is the mixer coefficient. (Am
1 , B

m
1 ) and (As

1, B
s
1) are the cyclic

pitch angles of the main blade and stabilizer in longitudinal and lateral directions, respectively, which

can be determined by the pitch angles of swash plate (A1, B1) easily through the following relations:

Am
1 = KbelA1, As

1 = KsbA1,

Bm
1 = KbelB1, Bs

1 = KsbB1,

where Kbel and Ksb are the mechanical gains from the swash plate to the main blade and stabilizer. The

pitch angles of swash plate (A1, B1) satisfy

A1 = KlonKaδlon, B1 = KlatKaδlat,

where Klon and Klat are the linkage gains from the elevator and aileron actuators to the swash plate,

respectively; Ka is the gain of the actuators (from the control signal to the deviation). The dynamics of

the actuator is ignored and modeled as a constant gain Ka.

The main source of the control force is the main rotor. The thrust of the main rotor can be expressed

by a momentum theory based iterative scheme [29]:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T = (wb − vi)
ρΩR2Clαbmcm

4 ,

v2i =

√
(
v̄2

2

)2
+
(

T
2ρπR2

)2

− v̄2

2 ,

v̄2 = u2 + v2 + w(w − 2vi),

(4)

where

wb = w +
2

3
ΩRθcol, θcol = KcolKaδcol.

bm is the number of the main blades; cm is the chord length of the main blade; ρ is the air density; R is

the radius of the main rotor; wb is the resultant velocity at the main rotor in vertical direction; and θcol
is the collective pitch angle. θcol is controlled by the collective actuator. Kcol is the linkage gain from the

collective actuator to the main blade. δcol is the control signal of the collective actuator.

The force components generated by the main rotor can be calculated as follows:
⎧
⎪⎪⎨

⎪⎪⎩

Xmr = −T sin a,

Ymr = T sin b,

Zmr = −T cos a cos b.

(5)

It is known that the dominating force is the thrust component of the main rotor along the z axis of the

body frame, and the components in other directions are small and can be disregarded. Then

Fb =
[

0 0 −T
]T
. (6)
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Table 1 Model parameters of the small-scale helicopter [28]

Parameter Value Parameter Value

m 7.495 kg Iβ 0.0913 kg ·m2

Ixx 0.1895 kg ·m2 γm 1.3112

Iyy 0.4515 kg ·m2 γs 0.3282

Izz 0.3408 kg ·m2 kβ 167.6592

Clα 4.0734 R 0.785 m

cm 0.06 m Ka 9.4248

Kbel 0.4825 Ksb 1.1959

Klon 0.4667 Klat 0.4434

Hmr 0.275 m − −

The moments generated by the main rotor along x and y body axes are given by

{
Lmr = (kβ + THmr) sin b,

Mmr = (kβ + THmr) sin a.
(7)

Generally, it can be assumed that sin a ≈ a and sin b ≈ b because the flapping angles are often very

small. In this paper, it is assumed that Lmr and Mmr are the primary control moments in roll and pitch

channels, and other small components are neglected.

For a small-scale helicopter, yaw direction control in manual flight is very challenging due to the

high control sensitivity and the coupling effect between the main rotor and tail rotor. To overcome

this problem, an Angular Vector Control System (AVCS) is installed to facilitate manual control in our

platform and it is reserved for flight control design. Then, the yaw control moment can be disregarded

and the torques exerted on the small-scale helicopter can be written as follows:

Mb =

⎡

⎢
⎢
⎣

(kβ + THmr)b

(kβ + THmr)a

0

⎤

⎥
⎥
⎦ . (8)

The model parameters are determined by system identification [28] and presented in Table 1. The

objective of this paper is to design the control inputs u = [δlon, δlat] to force the roll and pitch to converge

to the reference signals. Actually, δlon and δlat represent the duty of PWM control signals, which can be

directly applied to the motors. We assume that the existing heave controller and AVCS can yield ideal

performance and the corresponding effect can be disregarded.

3 Controller design

In this section, a nonlinear robust roll and pitch controller is proposed. Firstly, the flapping dynamics

expressed in (3) is simplified as a lumped model. Then, the inner loop angular rate controller and outer

loop attitude controller are designed based on the lumped flapping model.

3.1 Lumped flapping dynamics

As mentioned in Introduction, the flapping motion affects system dynamics heavily. Therefore, consid-

ering flapping dynamics during controller design is very significative for improving control performance.

A practical method is disregarding flapping dynamics and treating it as a quasi-steady state equation,

then the flapping motion can be expressed by a algebraic relationship, named quasi-steady flapping

model [16, 24, 27]. However, this method can not reflect the flapping dynamical characteristics, and will

discount control performance; on the other hand, the full-order flapping model expressed by (3) is too
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complicated, designing a controller based on which is impractical. In this paper, we adopt a lumped

model to depict the flapping dynamics, which can simplify the controller design problem.

Based on (3), we define the first-order main blades flapping time constant τm and stabilizer bar flapping

time constant τs as follows:

τm =
IβΩ[(γ

m)2 + 64]

γm(4kβ + 8IβΩ2)
, τs =

(γs)2 + 64

8γsΩ
.

Generally, τs (about 0.1412 s) is several times larger than τm (about 0.0352 s), and the dominating

dynamics is the stabilizer bar flapping dynamics in (3). The flapping dynamics in (3) can be simplified

as lumped flapping dynamics [26]. Consider the main blades flapping dynamics as steady (ȧ = 0 and

ḃ = 0), the first equation of (3) can be transformed as

βm = Bmωω1 +Bmsβs +Bmuu1, (9)

where βm = [a, b]T is the main rotor flapping angle vector, βs = [as, bs]
T is the stabilizer bar flapping

angle vector, and u1 = [A1, B1]
T is the cyclic pitch angles of the swash plate. Bmω, Bms and Bmu can

be directly calculated:

Bmω =
(

γmΩ
(γm)2+64Γ

)−1
[
0 1

1 0

]

, Bms = −Γ−1Ks

[
8 −γm
γm 8

]

,

Bmu = −Γ−1Kbel

[
8 −γm
γm 8

]

, Γ =

[
− 4kβ

IβΩ2 − 8 γm − 32kβ

γmIβΩ2

32kβ

γmIβΩ2 − γm − 4kβ

IβΩ2 − 8

]

.

The stabilizer bar dynamics also can be expressed as

β̇s = Asβs +Bsωω1 +Bsuu1, (10)

where As, Bsω and Bsu are corresponding to the matrixes in the second equation of (3):

As =
γsΩ

(γs)2+64

[
−8 γs

−γs −8

]

, Bsω =

[
0 −1

−1 0

]

, Bsu = γsΩ
(γs)2+64

[
8 −γs
γs 8

]

.

Expressing (10) in transfer function form and substituting it into (9) yield

βm = Bmωω1 +Bms(sI −As)
−1(Bsωω1 +Bsuu1) +Bmuu1. (11)

With the left multiplication of (sI −As)B
−1
ms on both sides of (11), we obtain

(sI −As)B
−1
msβm = (sI −As)B

−1
ms(Bmωω1 +Bmuu1) +Bsωω1 +Bsuu1. (12)

Applying the inverse Laplace transform to (12) and disregarding the small terms (the derivatives of ω1

and u1), the lumped flapping dynamics finally can be expressed as

β̇m = Aβm +Bωω1 +Buu1, (13)

where
A = BmsAsB

−1
ms,

Bω = Bms(Bsω −AsB
−1
msBmω),

Bu = Bms(Bsu −AsB
−1
msBmu).

Assume that the helicopter works at hover and the main rotor thrust T = Th = mg, taking the roll

channel as an example and disregarding the nonlinear cross product of the angular rates in (1), the roll

dynamics then can be described as

ṗ = Lbb, (14)

where Lb = (kβ + ThHmr)/Ixx. Figure 3 shows the roll response comparison among the full-order,

lumped and quasi-steady models, which clearly indicates that (13) can accurately capture the dynamic

characteristics of the full-order flapping dynamics, and the quasi-steady model is unsuitable at higher

bandwidths. Therefore, it is necessary to consider the flapping dynamics for control design.
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Figure 3 Roll response comparison among the full-order, lumped and quasi-steady models.

3.2 Angular rates control

Based on the analysis in Subsection 3.1, we propose a novel angular rates controller in this section,

in which the flapping dynamics is explicitly considered. A state transformation is introduced to avoid

observing the flapping angles directly, and second-order sliding mode technique is adopted to compensate

for the uncertainties incorporating with extended state observer (ESO), which is a kernel technique of

active disturbance rejection control [30]. The basic idea is treating the disturbances as extended states

and designing an observer to estimate them.

3.2.1 Extended state observer design

Considering the model uncertainties Δ2(ω1, r), the lumped flapping dynamics in (13) is modified as

β̇m = Aβm +Bωω1 +Buu1 +Δ2(ω1, r). (15)

Combining (1) and (7), we can write the roll and pitch dynamics as

ω̇1 = kI(kβ + THmr)βm + f1(ω1, r) + fΔ1(ω1, r), (16)

where f1(ω1, r) denotes the nonlinear cross product of angular rates, fΔ1 denotes the parametric uncer-

tainties, and kI is a constant matrix related to the moments of inertia:

kI =

[
0 1

Ixx

1
Iyy

0

]

.

In (16), the main rotor thrust T is required, which cannot be accurately obtained in real time. To simplify

the design, we start control design from hover mode. Therefore, the roll and pitch rotation dynamics of

the small-scale helicopter can be written as
{
ω̇1 = kI(kβ + ThHmr)βm +Δ1(ω1, r),

β̇m = Aβm +Bωω1 +Buu1 +Δ2(ω1, r),
(17)

where Th = mg is the main rotor thrust at hover, Δ1(ω1, r) denotes the lumped uncertainties defined as

follows:

Δ1(ω1, r) = f1(ω1, r) + fΔ1(ω1, r) + kI(T − Th)Hmrβm.

Apparently, the relative order of (17) is {2, 2}. Two factors make the control problem difficult: the

mis-matched uncertainty Δ1(ω1, r) in the first equation of (17) and the immeasurability of the flapping

angles. To overcome these difficulties, a state transformation is introduced, so that

x = T (z), x =
[

ω1 ω̇1

]T
, z =

[

ω1 βm

]T
.
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It is reasonable to assume that Δ1(ω1, r) is first-order differentiable, because all the factors of Δ1(ω1, r)

are generally smooth. Then, the dynamics in (17) can be rewritten as follows:
{
ẋ1 = x2,

ẋ2 = kωBωx1 + kωBuu1 +Δt,
(18)

where kω = kI(kβ + ThHmr), and Δt = kωAβm + kωΔ2(ω1, r) + Δ̇1(ω1, r) is the total disturbances need

to be compensated.

For the system in (18), we can design an extended state observer to provide the estimates of Δt and

x2. Define the extended state x3 = Δt, the system is extended as
⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2,

ẋ2 = kωBωx1 + kωBuu1 + x3,

ẋ3 = h(t).

(19)

Then the corresponding extended state observer used in this work is designed as follows:
⎧
⎪⎪⎨

⎪⎪⎩

˙̂x1 = x̂2 − L1(x̂1 − x1),

˙̂x2 = kωBωx̂1 + kωBuu1 + x̂3 − L2(x̂1 − x1),

˙̂x3 = −L3(x̂1 − x1),

(20)

where L1, L2, L3 are the observer gain matrixes, and ˆ denotes the estimate of the variable, x̂3 = [χ̂1, χ̂2]
T

is the estimate of the total disturbances. It has been proven in [31] that the estimation errors of (20) are

bounded with appropriate selection of L1, L2, L3. Substantially, Eq. (20) is a high gain observer, and

the selection of observer gain is similar.

3.2.2 Second-order sliding mode control design

The control law is defined as

u1 = un + uc, (21)

where un is the nominal control law, and uc is the compensation control law. un is designed for the

nominal condition that the extended state observer can accurately estimate the system states and total

disturbances: x̂2 = x2, x̂3 = x3. Actually, the nominal control law based on extended state observer

can compensate a large part of uncertainties. However, the extended state observer cannot eliminate

estimation errors. uc is designed to compensate for the residual uncertainties.

The nominal control law is selected as

un = −(kωBu)
−1(kωBωx1 − vn)− (kωBu)

−1x̂3, (22)

where vn is the nominal pseudo control. Substituting (21) into (19), the roll and pitch rotation dynamics

can be simplified as {
ẋ1 = x2,

ẋ2 = vn +Δr + kωBuuc,
(23)

where Δr = −x̃3 +Δo denotes the residual uncertainties, x̃3 = x̂3 − x3, and Δo represents other distur-

bances.

In hope of enhancing robustness, we adopt the second-order sliding mode method to cope with the

residual uncertainties in (23). Defining the sliding variable as s = ω1r − ω1, the second-order sliding

mode control problem is designing a suitable control function to stabilize the system to the following

second-order sliding set in finite time:

Σ2 = {ω1|s = ṡ = 0} .
Define the error vector as [e1, e2]

T
= [s, ṡ]

T
. For the nominal control problem, we have the following

theorem:
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Theorem 1. Assume that the ESO (20) can accurately estimate the states and disturbances, for the

nominal condition (Δr = 0 and uc = 0 in (23)), design the pseudo nominal control as

vn = ω̈1r + kp |e1|α1 sign(e1) + kd |e2|α2 sign(e2), (24)

where kp, kd > 0, 0 < α2 < 1 and α1 = α2/(2− α2). Then, Eq. (23) is globally finite-time stable.

Proof. Substituting (24) into (23), the error dynamics can be concluded as

{
ė1 = e2,

ė2 = −kp |e1|α1 sign(e1)− kd |e2|α2 sign(e2).
(25)

Define the Lyapunov function candidate as

V1 =
kp |e1|α1+1

α1 + 1
+

|e2|2
2

. (26)

Differentiating (26) yields

V̇1 = kp |e1|α1 sign(e1)ė1 + |e2| sign(e2)ė2. (27)

Substituting (25), the above equation can be simplified as

V̇1 = −kd |e2|α2+1 . (28)

Obviously, V̇1 � 0. According to Barbalat Lemma, it is easy to conclude that V̇1 → 0 and e1, e2 → 0.

Additionally, let r1 = 1, r2 = 1/(2−α2) and 0 < α2 < 1, the homogeneous of degree of (25) with respect

to the dilation, (e1, e2) �→ (kr1e1, k
r2e2), is (α2 − 1)/(2 − α2) < 0, that means (25) is globally finite-time

stable.

The above theorem proposes the control law for the nominal condition, which substantially is a reference

signal need to be tracked by the actual system. However, the ESO is impossible to compensate for the

uncertainties completely and there exists residual uncertainties. To compensate for the effect of residual

uncertainties, we define a new sliding variable:

σ = x2 −
∫ T

0

vndτ . (29)

And the compensation pseudo control is designed as

vc = −βsign(σ), (30)

where β = diag{β1, β2} and βi > ‖Δri‖ + εi, εi > 0 for i = 1, 2. Then, the corresponding compensation

control law is

uc = −(kωBu)
−1βsign(σ). (31)

Theorem 2. For the roll and pitch dynamics (19), select the control law as (21), where un and uc are

designed as (22) and (31), respectively. Then, the system (23) can reach the second-order sliding set Σ2

in finite time under the general condition.

Proof. Select the Lyapunov function candidate as

V2 =
1

2
σTσ. (32)

Differentiating V2 along (23), we can get

V̇2 = σTσ̇ = σT(ẋ2 − vn) = σT(−βsign(σ) + Δr)

� −εm ‖σ‖ = −εm
√
2V

1
2
2 ,

(33)
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Figure 4 Flight experiment stand.

where εm = min{ε1, ε2}. According to comparison lemma [32], we can conclude that σ can arrive at 0

in finite time. Meanwhile, vn is designed according to Theorem 1. Therefore, the second-order sliding

mode with respect to s can be established in finite time.

Actually, Theorem 1 is used to derive the nominal pseudo control vn and the goal of the compensation

control law (31) is to force ẋ2 to arrive at vn. The flapping angle feedback is realized by introducing ω̇1

feedback, since (ω1, ω̇1) is equivalent to (ω1, βm). Additionally, x2 is replaced by its estimation x̂2 in (43),

the corresponding estimation error has been included in Δo. For practical implementation, saturation

function is used to replace the sign to decrease the chattering effect.

3.3 Attitude control

Actually, the attitude kinematics is much slower than the rotation dynamics, we can then design attitude

controller independently. Based on (1) and (2), the roll and pitch kinematics can be rewritten as

Θ̇ = AΘω1 +BΘr, (34)

where

AΘ =

[
1 sinφ tan θ

0 cosφ

]

, BΘ =

[
cosφ tan θ

− sinφ

]

.

Here, we choose ω1 as the virtual control input of (34), and define the pseudo control vΘ as

vΘ = Θ̇r + kΘ(Θr −Θ), (35)

where Θr is the reference signal of Θ, kΘ is a positive matrix. Then, the desired angular rate ω1r can be

selected as

ω1r = A−1
Θ (vΘ −BΘr). (36)

4 Experiments and results

Two flight experiments have been carried out to investigate the control performance of the proposed

scheme on the real helicopter. To facilitate experiment implementation and to guarantee the safety of the

helicopter, we construct a five DOFs flight experiment stand in this paper [33], as shown in Figure 4. The

stand is a mechanical construction able to hold a helicopter, allowing basic movements while protecting

it from damaging and crashing. The roll, pitch and yaw axes provide the whole DOFs of rotation, and

the main and elevation axes provide two DOFs of translation. The helicopter is fixed on the stand when

flying and the influences of the stand are treated as disturbances which can be estimated by the ESO in

this paper.

For safety, all the external commands in the experiments are generated by the pilot through RC

controller. The positions of controller sticks are corresponding to the desired attitude angles. Each
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Figure 5 Tracking results without compensation.
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Figure 6 Tracking errors without compensation.

experiment includes two parts: for the first part, the helicopter is kept in hover mode, which is mainly

used to validate the stabilizing performance; and the second part is designed to check the tracking

performance of the proposed controller, in which the helicopter is controlled maneuvering in the roll and

pitch channels.

The nominal pseudo control in (24) adopts the following exponential function of errors

s(ei) = |ei|αi sign(ei), i = 1, 2. (37)

However, the derivative of s(ei) at 0 is infinite when 0 < αi < 1, which will introduce control chattering.

For practical implementation, we use the following function to replace it, where δi is a positive constant.

s(ei) =

{
|ei|αi sign(ei), |ei| > δi,

ei/δ
1−αi

i , |ei| � δi.
(38)

The controller parameters are set as

α2 =
1

3
, kΘ =

[
5 0

0 5

]

, kd =

[
80 0

0 40

]

, kp =

[
200 0

0 200

]

, δ1 = δ2 = 0.05.

The first experiment is designed to validate the situation without disturbance compensation, that

means uc is removed from (21) and the disturbance estimate x̂3 is removed from (22). The experiment

results are given in Figures 5–8. There are two parts: the first part is from 140 s to 165 s, the reference

signals are kept at 0 rad; the second part is from 165 s to 210 s, the helicopter is controlled to track the

reference roll and pitch angles. Figures 5 and 6 indicate that there exists steady-state errors, especially

in the pitch channel (about 0.02 rad). Figures 7 and 8 are the angular rate results and corresponding

control inputs, respectively. Although the controller without uc and x̂3 in this experiment can track

the reference signals modestly, but its control performance still need to be improved. It is clear that

the control performance need to be improved although the control law determined only by the nominal

model can modestly track the reference signals.

The second experiment is used to validate the whole controller, the disturbance compensation is in-

cluded. To verify the merits of the proposed method, the experimental results based on the controller

proposed in [28] are also presented for comparison, which does not consider the main rotor flapping

dynamics.The results are given in Figures 9–15. Figures 9 and 10 are the experimental results of the

controller in [28]. The whole experiment includes two phases: the first phase is from 470 s to 490 s, in

which the reference signals are kept at 0 rad; and the second phase is from 490 s to 530 s, in which the

helicopter is controlled to track the reference roll and pitch angles. Figures 11–15 are the experimental

results of the proposed controller in this paper. From 210 s to 240 s, the reference signals are kept

at 0 rad; From 240 s to 280 s, the helicopter is controlled to track the reference roll and pitch angles.
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Figure 7 Tracking results without compensation.
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Figure 8 Control inputs without compensation.

470 480 490 500 510 520 530
−0.3
−0.2
−0.1

0
0.1

 

 

Reference attitude Tracking result

470 480 490 500 510 520 530
−0.4

−0.2

0

0.2

0.4

φ
 (

ra
d)

θ 
(r

ad
)

Time (s)

Figure 9 Tracking results of the controller in [28].
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Figure 10 Tracking errors of the controller in [28].
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Figure 11 Tracking results with compensation.
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Figure 12 Tracking errors with compensation.

Figures 11 and 12 indicate that the disturbance compensation can eliminate the steady-state errors and

improve the tracking performance. Compared with the results in Figures 9 and 10, we can conclude that

the proposed controller in this paper yields smaller errors and better tracking performance. Figures 13

and 14 are the angular rate results and corresponding control inputs, respectively. Figure 15 is the result

of the total disturbance estimation, which is the output of the ESO. The experiment results show that

the proposed controller is effective.
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Figure 13 Angular rates with compensation.
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Figure 14 Control inputs with compensation.
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Figure 15 Disturbance estimation results with compensation.

5 Conclusion

This paper proposes a nonlinear robust roll and pitch controller of a small-scale helicopter, which adopts

the second-order sliding mode method incorporating with extended state observer. To improve the

control performance, the flapping dynamics of the main rotor is explored explicitly by introducing an

equivalent state transformation. Considering the second-order characteristics of the angular dynamics,

the second-order sliding mode method is adopted for angular control design. Extended state observer is

used to estimate the immeasurable states and disturbance. The control performance and robustness of

the proposed controller have been demonstrated by the experimental results.
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