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Abstract This paper is concerned with the problem of learning structure of the lateral flow immunoassay

(LFIA) devices via short but available time series of the experiment measurement. The model for the LFIA is

considered as a nonlinear state-space model that includes equations describing both the biochemical reaction

process of LFIA system and the observation output. Especially, the time-delays occurring among the biochemical

reactions are considered in the established model. Furthermore, we utilize the unscented Kalman filter (UKF)

algorithm to simultaneously identify not only the states but also the parameters of the improved state-space

model by using short but high-dimensional experiment data in terms of images. It is shown via experiment

results that the UKF approach is particularly suitable for modelling the LFIA devices. The identified model

with time-delay is of great significance for the quantitative analysis of LFIA in both the accurate prediction of the

dynamic process of the concentration distribution of the antigens/antibodies and the performance optimization

of the LFIA devices.
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1 Introduction

In recent years, the lateral flow immunoassay (LFIA) devices have been studied extensively and have

become the basis of point-of-care testing (POCT) for clinical diagnostics due conceivably to LFIA’s

remarkable advantages including rapidness, simplicity, good specificity and sensitiveness [1–3]. Owing

to these attractive properties, LFIAs have been successfully applied in targeted analytes such as clinical

diagnostics, toxins in food and agriculture products, industrial testing, and also biowarfare [4–8]. A

critical limitation in immunochromatographic assays, however, is that most assays are qualitative (or

semi-quantitative) [9] and this, to some extent, has hindered these assays from further applications

especially scientific experiments where accurate prediction is required. Therefore, based on the material

selection (see e.g. [10–12]), a number of methods have been introduced for improving the biochemical

properties of the strips over the past decade. On the other hand, it is often desirable to increase the

reliability of a diagnosis by developing quantitative instruments (see e.g. [13–19]), and this has led to
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a growing research interest on developing multidisciplinary approaches to modeling and analyzing the

LFIA devices in order to optimize immunochromatographic strip performance for the quantification, see

e.g. [20–26]. The present research of this paper is along the new research line of inferring more accurate

models for LFIA state-space models by exploiting more computational appealing algorithms.

A mathematical model for LFIA devices is firstly established by the convection-diffusion-reaction equa-

tions in [20,21], where the COMSOL software is exploited to demonstrated the process of the biochemical

reactions of LFIA. Here, it is worth highlighting that a nonlinear state-space model has been developed

in [22–24] for sandwich-type LFIA devices. The established model includes the equations for describing

the biochemical reaction process of LFIA system and the observation output. Especially, the process

of the concentration distribution of LFIA devices is described by the nonlinear state equations, and the

available observation signals are modeled by the observation equation including the measurement noises.

It should be mentioned that such a model allows us to predict kinetic characteristics and also optimize

device performance. Unfortunately, the time-delay which exists among the biochemical reactions of LFIA

has not been taken into account in [22–24] despite the fact that the sample containing the target analytes

does need time to flow from the sample pad along the nitrocellulose membrane encountering the detection

zone via capillary action. In order to establish a more accurate model for the LFIA, the main purpose of

this paper is to further incorporate the inherent time-delays between the biochemical reactions into the

modeling process by looking for more efficient algorithms.

A critical issue in inferring nonlinear LFIA state-space models is to search for a justifiable algorithm

capable of jointly estimating parameters and states for nonlinear systems with time-delays. So far, we have

used the extend Kalman filter (EKF) [22], hybrid EKF and switching PSO (particle swarm optimization)

algorithm [24] and particle filter [23] for the system identification problems of the nonlinear state-space

models. The EKF approach is a suboptimal state estimator which utilizes the Taylor expansion to

linearize the nonlinear model and then the traditional Kalman filter (KF) is applied to the linearized

model. As such, when the models are highly nonlinear, the EKF approach cannot get good performance.

Note that the model of LFIA devices to be developed includes inherent high degree of nonlinearities

that would make it ineffective to exploit the KF and EKF approaches. Also, satisfactory usage of the

particle filter generally needs a sufficient amount of data so as to the statistical inference, which is not the

case for the LFIA data (images) that is typically a short number of time series. In search of a qualified

identification algorithm, the unscented Kalman filtering (UKF) [27, 28] stands out as an ideal candidate

for the LFIA systems that is specialized in handling nonlinearities and incorporating time-delays.

Based on the unscented transform (UT), the UKF algorithm is developed for nonlinear systems as a

recursive state estimator. The unscented transform (UT) is a deterministic sampling technique, which

utilizes a set of 2n+ 1 sample points (called “sigma points”) to estimate the statistics characteristics of

the transformed variable. Especially, the sigma points are generated deterministically from a priori mean

and covariance of the states. Therefore, both the posterior mean and the covariance of UKF approach

are computed directly from these 2n+1 sigma points by going through nonlinear transformation [28–30].

Note that the UKF can approximate the posterior mean and covariance for nonlinear systems without

any linearization step, but can get second-order or higher order accuracy. However, the EKF algorithm

can only obtain first-order accuracy by using the linearization method. In case of high nonlinearities, the

UKF algorithm represents a capable alternative to the EKF method that requires accurate evaluation of

the Jacobians of the nonlinear functions. Owing to the attractive advantages, the UKF has widely used

in many nonlinear systems (e.g., [27–34]) at the cost of relatively high computational cost. Nevertheless,

the identification of the LFIA model can be conducted off-line and the computing efforts are really an

issue in this case. Hence, in this paper, the UKF algorithm is exploited to identify both the system

states and the parameters of the improved LFIA state-space model with time-delay via short available

experiment measurement.

It should be pointed out that it is a challenging task to apply the UKF approach in inferring nonlinear

LFIA state-space models. This is simply because of the distinguishing features of the LFIA system such as

high-degree of nonlinearities, small number of time series, prolonged time-delays between the biochemical

reactions as well as noisy observations. It is, therefore, the aim of this paper to infer the nonlinear
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Figure 1 (Color online) Lateral flow immunoassay format.

LFIA state-space models with time-delays via unscented Kalman filtering by overcoming the identified

challenges. The contributions of this essay are twofold. (1) An improved nonlinear state-space model is

established for the LFIA system where the time-delays which exist among the biochemical reactions are

considered in the established model. (2) The UKF algorithm is applied to simultaneously identify the

system parameters and states of the LFIA system via short but available time series data and it is shown

that the UKF approach achieves satisfactory accuracy for modeling the lateral flow immunoassay since

no linearization is involved.

The organization of this paper is listed as follows. In Section 2, the LFIA format is introduced and

the improved model with time delays is proposed for the LFIA system. In Section 3, the UKF method

for simultaneously identifying the parameters and the states of the improved LFIA model is conducted.

The results of the UKF method for the LFIA system identification are discussed in Section 4 and some

indexes are utilized to evaluate the model performance. In the end, conclusion remarks are provided in

Section 5.

2 Improved LFIA model with time-delay and problem formulation

A typical LFIA device format, which can be seen in Figure 1, consists of a surface layer to carry the

sample from the sample pad via the conjugate pad along the nitrocellulose membrane encountering the

detection zone up to the wicking pad. Quantitative detection of immunocomplexes formed on the test

line, that has direct relationship with the concentration of the target analyte in the samples, has been

obtained by detecting the reflectance of labeled particles on the test line (signal intensity) via a reader

system [12, 13].

For the LFIA device considered in this paper, we assume that there is only one single target analyte

A in the sample. Similar to the [22–24], the control line is not taken into account. According to the

principle of the process of biochemical reactions, the signal pathway of the sandwich-type LFIA device

can be conducted as follows [20, 22]:

(a) Once the sample flows through the conjugate pad, the analyte A will interact with the labeled

particle P to form particle-analyte complexes PA,

A + P
k1−⇀↽−
k2

PA. (1)
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(b) The free analyte A and the complexes PA both flow through the membrane via the capillary action.

Therefore, A and PA are going to interact with the R which immobilized on the test line to form the

complexes,

A + R
k3−⇀↽−
k4

RA, (2)

PA+ R
k5−⇀↽−
k6

RPA. (3)

(c) In addition, unbound labeled particle P may interact with the complex RA to form the complex

RPA,

P + RA
k7−⇀↽−
k8

RPA. (4)

It is worth highlighting that a nonlinear state-space model has recently been developed in [22–24] for

sandwich-type LFIA devices, where the established model accounts for the biochemical reaction process

of LFIA system as well as the observation output. More specifically, the process of the concentration

distribution of LFIA devices is described by the nonlinear state equations, and the available measurement

signals are characterized by the observation equation including the measurement noises. In [22–24],

however, it has been assumed that there is no time-delay in the process of LFIA reactions (1)–(4).

Such an assumption is not really reasonable since the sample containing the target analytes needs time

to flow from the sample pad along the nitrocellulose membrane encountering the detection zone via

capillary action. In order to establish a more accurate model for the LFIA, the time-delays between the

biochemical reactions are considered in this paper, and this constitutes one of the main contributions of

the present research.

Let x1, x2, x3, x4, x5 and x6 be the concentration of A, P, PA, R, RA and RPA, respectively. The

reaction rates of the LFIA devices are defined as follows:

v1 = k1x1x2 − k2x3, (5)

v2 = (k3x1x4 − k4x5)(t− τ1), (6)

v3 = (k5x3x4 − k6x6)(t− τ2), (7)

v4 = (k7x2x5 − k8x6)(t− τ3), (8)

where k1, k3, k5, k7 and k2, k4, k6, k8 are, respectively, the association and dissociation rate constants, and

τ1, τ2, τ3 are time delays which exist among the biochemical reactions (1)–(4). Then, the stoichiometrix

for describing the biochemical reaction of the LFIA device is provided by

S =

























−1 −1 0 0

−1 0 0 −1

1 0 −1 0

0 −1 −1 0

0 1 0 −1

0 0 1 1

























.

Let x = [x1, x2, . . . , x6]
T, V = [v1, v2, . . . , v4]

T, τ = [τ1, τ2, τ3]
T, and θ = [k1, k2, . . . , k9]

T stand for

the parameters to be identified. The improved nonlinear state-space model with time-delay of the LFIA

device is shown as follows:

x(k + 1) = f(x(k), τ, θ) + w(k), (9)

y(k) = g(x(k), τ, θ) + v(k), (10)

where x(k) is the vector of state variables which are concentrations of antibodies, antigens or complex

material; y(k) is the observation experiment value; f(x(k), τ, θ) = SV (x(k)) is the nonlinear function
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to describe the transformation in the LFIA device; V (x(k)) stands for the vector of reaction rates [35];

g(x(k), τ, θ) = k9(x3 + x6) is the observation function; w(k) and v(k) are the zero-mean independent

Gaussian noises, respectively.

The objective of this paper is to jointly identify the parameters and states of the improved model (9)

and (10) via the unscented Kalman filter method from the short available experiment data.

3 Unscented Kalman filter

In this section, we introduce the UKF algorithm for estimating system states and parameters, e.g.,

[28–30,32] for more details.

The Kalman filter (KF) is developed as an optimal state estimator for a linear system. Based on the

unscented transform (UT), the UKF algorithm is developed for nonlinear systems as a recursive state

estimator. The unscented transform (UT) is a deterministic sampling technique, which utilizes a set of

2n+1 sample points (called “sigma points”) to estimate the statistics characteristics of the transformed

variable. Especially, the sigma points are generated deterministically from a priori mean and covariance

of the states. Therefore, both the posterior mean and the covariance of UKF approach are computed

directly from these 2n + 1 sigma points by going through nonlinear transformation [28–30, 32]. Note

that the UKF can approximate the posterior mean and covariance for nonlinear systems without any

linearization step, but can get second-order accuracy. However, the EKF algorithm can only obtain first-

order accuracy by using the linearization method. Therefore, the UKF represents a possible alternative

to the extend Kalman filter (EKF), which requires evaluation of the Jacobians of the nonlinear functions

in the state and output equations.

Consider the following system with nonlinear state and measurement functions:

x(k + 1) = f(x(k)) + w(k), (11)

y(k) = g(x(k)) + v(k), (12)

where k is the time index, x(k) is a state vector, y(k) is the measurement vector, w(k) and v(k) are

zero-mean white Gaussian noises with covariance matrices Qk and Rk for the process and measurements,

respectively. Here, f :Rn → R
n is a nonlinear state function and g:Rn → R

r is a nonlinear measurement

function.

The procedure for implementing the UKF is given as follows.

(1) Initialize in time step k = 0:

x̂0 = E[x0], Px0
= E[(x0 − x̂0)(x0 − x̂0)

T],

x̂a
0 = E[xa

0 ] = [x̂T
0 ŵT

k v̂Tk ],

P a
x0

= E[(xa
0 − x̂a

0)(x
a
0 − x̂a

0)
T] = diag(Px0

, Q0, R0).

For k = 1, 2, 3, . . .:

(2) Calculate sigma points

χa
k−1 =

[

x̂a
k−1 x̂a

k−1 + γ(
√

Pk−1)i x̂
a
k−1 − γ(

√

Pk−1)i

]

i = 1, . . . , 2n,

where n = nx + nw + nv is the augmented dimension of xa, γ =
√
n+ λ, λ = α2(n+ κ)− n.

(3) Time update:

χ̂
(x)
i,k|k−1 = f(χ

(x)
i,k−1, χ

(w)
i,k−1),

x̂k|k−1 =
2n
∑

i=0

W
(m)
i χ̂

(x)
i,k|k−1,

Pk|k−1 =
2n
∑

i=0

W
(c)
i {χ̂(x)

i,k|k−1 − x̂k|k−1}{χ̂(x)
i,k|k−1 − x̂k|k−1}T,
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ŷi,k|k−1 = h(χi,k|k−1, χ
(v)
i,k−1),

y−k =

2n
∑

i=0

W
(m)
i ŷi,k|k−1,

where W
(c)
0 = λ/(n + λ) + 1 − α2 + β, W

(m)
0 = λ/(n + λ), W

(c)
i = W

(m)
i = 1/2(n + λ), i = 1, . . . , 2n.

When the system meets the Gaussian noise assumptions, α, β and κ in the UKF approach are typically

set as 10−3, 2 and 0 respectively [36].

(4) Measurement update:

Pyk
=

2n
∑

i=0

W
(c)
i {ŷi,k|k−1 − y−k }{ŷi,k|k−1 − y−k }T,

Pxkyk
=

2n
∑

i=0

W
(c)
i {χ̂(x)

i,k|k−1 − x̂k|k−1}{ŷi,k|k−1 − y−k }T,

x̂k|k = x̂k|k−1 +Kk/k[yk − y−k ],

Kk/k = Pxkyk
P−1
yk

,

Pk/k = Pk/k−1 −Kk/kPyk
KT

k/k.

Remark 1. Note that UKF has advantages over the EKF in that there is no need to compute the Jaco-

bian matrix and the accuracy may therefore be improved. It should be pointed out that the convergence

of UKF has been discussed in [28] and the references therein.

4 Results using the UKF approach and discussion

In this section, the unscented Kalman filter (UKF) is exploited to jointly estimate the states and param-

eters of the improved sandwich-type LFIA model with time-delay. The short time series data is used and

shown in Figure 2. It should be mentioned that the short time series data, 45 equally spaced time points,

are obtained when the sample flows over the nitrocellulose membrane within 11 minutes [22].

The initial values of the state variables are set as

x0 = [5, 6.5, 0, 13, 0, 0]T,

and the initial values of parameters are set as

k0 = [0.03, 0.0001, 0.01, 0.0001, 0.04, 0.0001, 0.04, 0.0001, 2.2]T.

In the improved LFIA model with time-delay, we assume that the time-delay τ2 equals to the time-delay

τ3, and is larger than the τ1 according to the biochemical reactions of the sandwich-type LFIA. Then,

the UKF algorithm is applied to jointly identify parameters and state variables of the LFIA devices. The

identified parameters in the nonlinear model and the system state variables that depicted in the form of

time series are given in Figures 3 and 4.

Similar to the [22], three experiments by modifying the concentration of the target analyte A are made

to further evaluate the UKF method for inferring the nonlinear LFIA state-space models with time-

delay. The results are given in Figure 5. The solid line shows the observed signal from the experiments,

and the dotted line shows the predicted value by the UKF algorithm. Especially, the error ratio in

percentage [22, 37, 38] is exploited to evaluate the model quality in a quantitative way, which shows the

modeling errors between the experiment values and the predicted value,

Error ratio = 100× 1

l

l
∑

c=1

[
√

∑s
k=1(yck − ŷck)2
∑s

k=1(yck)
2

]

%, (13)
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Figure 2 (Color online) (a) The pixel intensity of the surface layer; (b) the measurement output of LFIA devices.
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Figure 3 The identified time series of parameters k1, k2, k3, k4, k5, k6, k7, k8, k9.

where l is the dimension of the observations (l=1 in this paper); s is the length of observations, and yck
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Figure 4 (Color online) The identified time series of

states A, P, PA, R, RA, RPA.

Figure 5 (Color online) The observed value predicted by

UKF method and observed value from the experiment.

Table 1 Error ratio in percentage for evaluating the model quality

Experiment 1 2 3

Error ratio (%) 1.55 2.41 3.72

is the experiment value for cth observation at the kth time point. The results are provided in Table 1.

It is noticed that the error ratio of the UKF approach for modeling the LFIA with time-delays through

only 45 time points (images) is generally satisfactory.

5 Conclusion

In this paper, we have applied the unscented Kalman filter (UKF) algorithm to model the lateral flow

immunoassay via short but available time series data. The model for the LFIA is considered as a

nonlinear state-space model, which includes the equations for describing the biochemical reaction process

of LFIA system and the observation output. Note that the time-delays which exist among the biochemical

reactions are included in the established model. In the end, the UKF approach is successfully exploited

to identify not only the model parameters but also states of the improved nonlinear state-space model

with time-delay simultaneously. Experiment results have shown the effectiveness of the UKF approach

for modelling the lateral flow immunoassay.

In the near feature, our research topics will focus on the analysis of LFIA system with more com-

plicated phenomenons (e.g., Markovian jumping [39–41] and incomplete observations [42–45]) so as to

comprehensively simulate the biochemical reaction network of LFIA system.

Acknowledgements This work was supported in part by National Natural Science Foundation of China (Grant

No. 61403319), Fujian Natural Science Foundation (Grant No. 2015J05131), Fujian Provincial Key Laboratory

of Eco-Industrial Green Technology, and Fundamental Research Funds for the Central Universities.

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Kolosova A, Saeger S, Sibanda L, et al. Development of a colloidal gold-based lateral-flow immunoassay for the rapid

simultaneous detection of zearalenone and deoxynivalenol. Anal Bioanal Chem, 2007, 389: 2103–2107

2 Laderman E, Whitworth E, Dumaual E, et al. Rapid, sensitive, and specific lateral-flow immunochromatographic

point-of-care device for detection of herpes simplex virus type 2-specific immunoglobulin G antibodies in serum and

whole blood. Clin Vaccine Immunol, 2008, 5: 159–163

3 Raphael C, Harley Y. Lateral Flow Immunoassay. New York: Humana Press, 2008

4 Gillespie J, Gannot G, Tangrea M, et al. Molecular profiling of cancer. Toxicol Pathol, 2004, 32: 67–71



Zeng N Y, et al. Sci China Inf Sci November 2016 Vol. 59 112204:9

5 Huang S, Wei H, Lee Y. One-step immunochro-matographic assay for the detection of Staphylococcus aureus. Food

Control, 2007, 18: 893–897

6 Lundblad R, Wagner P. The potential of proteomics in developing diagnostics. IVD Tech, 2005, 3: 20–22

7 Zhang G, Wang X, Zhi A, et al. Development of a lateral flow immunoassay strip for screening of sulfamonomethoxine

residues. Food Addit Contam A, 2008, 25: 413–423

8 Zhu J, Chen W, Lu Y, et al. Development of an immunochromatographic assay for the rapid detection of bromoxynil

in water. Environ Pollut, 2008, 156: 136–142

9 Chuang L, Hwang J, Chang H, et al. Rapid and simple quantitative measurement of a-fetoprotein by combining

immunochromatographic strip test and artificial neural network image analysis system. Cli Chim Acta, 2004, 348:

87–93

10 Kaur J, Singh K, Boro R, et al. Immunochromatographic dipstick assay format using gold nanoparticles labeled

protein-hapten conjugate for the detection of atrazine. Environ Sci Tech, 2007, 41: 5028–5036

11 Li D, Wei S, Yang H, et al. A sensitive immunochromatographic assay using colloidal gold-antibody probe for rapid

detection of pharmaceutical indomethacin in water samples. Biosens Bioelectron, 2009, 24: 2277–2280

12 Tanaka R, Yuhi T, Nagatani N, et al. A novel enhancement assay for immunochromatographic test strips using gold

nanoparticles. Anal Bioanal Chem, 2006, 385: 1414–1420

13 Du M, Fang Z, Fei H. Application of photoelectric sensor to quantitative determination of immunochro-matographic

assay strip. Chin J Sci Instr, 2005, 36: 671–673

14 Faulstich K, Gruler R, Eberhard M, et al. Developing rapid mobile POC systems. Part 1: devices and applications

for lateral-flow immunodiagnostics. IVD Tech, 2007, 13: 47–53

15 Huang L, Zhang Y, Xie C, et al. Research of reflectance photometer based on optical absorption. Optik, 2010, 121:

1725–1728

16 Li J, Ouellette A, Giovangrandi L, et al. Optical scanner for immunoassays with up-converting phosphorescent labels.

IEEE Trans Bio-med Eng, 2008, 55: 1560–1571

17 Li Y R, Zeng N, Du M. Study on the methodology of quantitative gold immunochromatographic strip assay. In:

Proceedings of International Workshop on Intelligent Systems and Application, Wuhan, 2010. 182–185

18 Zeng N, Hung Y, Li Y, et al. A novel switching local evolutionary PSO for quantitative analysis of lateral flow

immunoassay. Expert Syst Appl, 2014, 41: 1708–1715

19 Zeng N, Wang Z, Zineddin B, et al. Image-based quantitative analysis of gold immunochromatographic strip via

cellular neural network approach. IEEE Trans Med Imaging, 2014, 33: 1129–1136

20 Qian S, Haim H. A mathematical model of lateral flow bioreactions applied to sandwich assays. Anal Biochem, 2003,

322: 89–98

21 Qian S, Haim H. Analysis of lateral flow biodetectors: competitive format. Anal Biochem, 2004, 326: 211–224

22 Zeng N, Wang Z, Li Y, et al. Inference of nonlinear state-space models for sandwich-type lateral flow immunoassay

using extended Kalman filtering. IEEE Trans Bio-med Eng, 2011, 58: 1959–1966

23 Zeng N, Wang Z, Li Y, et al. Identification of nonlinear lateral flow immunoassay state-space models via particle filter

approach. IEEE Trans Nanotechnol, 2012, 11: 321–327

24 Zeng N, Wang Z, Li Y, et al. A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of

lateral flow immunoassay models. IEEE ACM Trans Comput Biol, 2012, 9: 321–329

25 Zeng N, Wang Z, Li Y, et al. Time series modeling of nano-gold immunochromatographic assay via expectation

maximization algorithm. IEEE Trans Bio-med Eng, 2013, 60: 3418–3424

26 Zeng N, Wang Z, Zhang H, et al. A novel switching delayed PSO algorithm for estimating unknown parameters of

lateral flow immunoassay. Cogn Comput, 2016, 8: 143–152
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